ePrints@IIScePrints@IISc Home | About | Browse | Latest Additions | Advanced Search | Contact | Help

Physics based basis function for vibration analysis of high speed rotating beams

Ganesh, R and Ganguli, Ranjan (2011) Physics based basis function for vibration analysis of high speed rotating beams. In: Structural Engineering & Mechanics, 39 (1). pp. 21-46.

Full text not available from this repository. (Request a copy)
Official URL: http://technopress.kaist.ac.kr/?page=container&jou...

Abstract

The natural frequencies of continuous systems depend on the governing partial differential equation and can be numerically estimated using the finite element method. The accuracy and convergence of the finite element method depends on the choice of basis functions. A basis function will generally perform better if it is closely linked to the problem physics. The stiffness matrix is the same for either static or dynamic loading, hence the basis function can be chosen such that it satisfies the static part of the governing differential equation. However, in the case of a rotating beam, an exact closed form solution for the static part of the governing differential equation is not known. In this paper, we try to find an approximate solution for the static part of the governing differential equation for an uniform rotating beam. The error resulting from the approximation is minimized to generate relations between the constants assumed in the solution. This new function is used as a basis function which gives rise to shape functions which depend on position of the element in the beam, material, geometric properties and rotational speed of the beam. The results of finite element analysis with the new basis functions are verified with published literature for uniform and tapered rotating beams under different boundary conditions. Numerical results clearly show the advantage of the current approach at high rotation speeds with a reduction of 10 to 33% in the degrees of freedom required for convergence of the first five modes to four decimal places for an uniform rotating cantilever beam.

Item Type: Journal Article
Publication: Structural Engineering & Mechanics
Publisher: TechnoPress
Additional Information: Copyright of this article belongs to TechnoPress.
Keywords: rotating beam;finite element method;basis functions;shape function;turbine blade
Department/Centre: Division of Mechanical Sciences > Aerospace Engineering(Formerly Aeronautical Engineering)
Date Deposited: 05 Jul 2011 10:07
Last Modified: 05 Jul 2011 10:07
URI: http://eprints.iisc.ac.in/id/eprint/38871

Actions (login required)

View Item View Item