Raghu, N and Kutty, TRN (1992) Relationship between nonlinear resistivity and the varistor forming mechanism in ZnO ceramics. In: Applied Physics Letters, 60 (1). pp. 100-102.
PDF
Relationship_between.pdf - Published Version Restricted to Registered users only Download (380kB) | Request a copy |
Abstract
The use of a number of perovskite phases M� M�O3-x, as the only forming additive in ZnO ceramics, produces a high nonlinearity index, ?(up to 45), where M� is a multivalent transition?metal ion and M� is an alkaline earth or a rare?earth ion. From this study, the formation parameters crucial to high nonlinearity, such as nonstoichiometry in the as?received ZnO powder, low x values of the additives and fast cooling rate after the sintering, are explainable on the basis of a depletion layer formation at the presintering stage. This is because of the surface states arising out of the chemisorbed oxygen. The depletion layer is retained during sintering as a result of the higher valence state of M� ions, preferentially present at the grain?boundary regions. The fast cooling freezes in the high?temperature concentration of donor?type defects, thereby decreasing the depletion layer width.
Item Type: | Journal Article |
---|---|
Publication: | Applied Physics Letters |
Publisher: | American Institute of Physics |
Additional Information: | Copyright of this article belongs to American Institute of Physics. |
Department/Centre: | Division of Chemical Sciences > Materials Research Centre |
Date Deposited: | 30 May 2011 09:31 |
Last Modified: | 30 May 2011 09:31 |
URI: | http://eprints.iisc.ac.in/id/eprint/37591 |
Actions (login required)
View Item |