ePrints@IIScePrints@IISc Home | About | Browse | Latest Additions | Advanced Search | Contact | Help

Small Ubiquitin-related Modifier Ligase Activity of Mms21 Is Required for Maintenance of Chromosome Integrity during the Unperturbed Mitotic Cell Division Cycle in Saccharomyces cerevisiae

Rai, Ragini and Varma, Satya PMV and Shinde, Nikhil and Ghosh, Shilpa and Kumaran, Srikala P and Skariah, Geena and Laloraya, Shikha (2011) Small Ubiquitin-related Modifier Ligase Activity of Mms21 Is Required for Maintenance of Chromosome Integrity during the Unperturbed Mitotic Cell Division Cycle in Saccharomyces cerevisiae. In: Journal of Biological Chemistry, 286 (16). pp. 14516-14530.

[img] PDF
Small.pdf - Published Version
Restricted to Registered users only

Download (5MB) | Request a copy
Official URL: http://www.jbc.org/content/286/16/14516

Abstract

The SUMO ligase activity of Mms21/Nse2, a conserved member of the Smc5/6 complex, is required for resisting extrinsically induced genotoxic stress. We report that the Mms21 SUMO ligase activity is also required during the unchallenged mitotic cell cycle in Saccharomyces cerevisiae. SUMO ligase-defective cells were slow growing and spontaneously incurred DNA damage. These cells required caffeine-sensitive Mec1 kinase-dependent checkpoint signaling for survival even in the absence of extrinsically induced genotoxic stress. SUMO ligase-defective cells were sensitive to replication stress and displayed synthetic growth defects with DNA damage checkpoint-defective mutants such as mec1, rad9, and rad24. MMS21 SUMO ligase and mediator of replication checkpoint 1 gene (MRC1) were epistatic with respect to hydroxyurea-induced replication stress or methyl methanesulfonate-induced DNA damage sensitivity. Subjecting Mms21 SUMO ligase-deficient cells to transient replication stress resulted in enhancement of cell cycle progression defects such as mitotic delay and accumulation of hyperploid cells. Consistent with the spontaneous activation of the DNA damage checkpoint pathway observed in the Mms21-mediated sumoylation-deficient cells, enhanced frequency of chromosome breakage and loss was detected in these mutant cells. A mutation in the conserved cysteine 221 that is engaged in coordination of the zinc ion in Loop 2 of the Mms21 SPL-RING E3 ligase catalytic domain resulted in strong replication stress sensitivity and also conferred slow growth and Mec1 dependence to unchallenged mitotically dividing cells. Our findings establish Mms21-mediated sumoylation as a determinant of cell cycle progression and maintenance of chromosome integrity during the unperturbed mitotic cell division cycle in budding yeast.

Item Type: Journal Article
Publication: Journal of Biological Chemistry
Publisher: The American Society for Biochemistry and Molecular Biology
Additional Information: Copyright of this article belongs to The American Society for Biochemistry and Molecular Biology.
Department/Centre: Division of Biological Sciences > Biochemistry
Date Deposited: 06 May 2011 06:54
Last Modified: 06 May 2011 06:54
URI: http://eprints.iisc.ac.in/id/eprint/37384

Actions (login required)

View Item View Item