ePrints@IIScePrints@IISc Home | About | Browse | Latest Additions | Advanced Search | Contact | Help

Investigations of the reduction behavior of Iron-impregnated alumina gels (Fe/AlOOH) and the formation of Fe0-Al2O3 metal-ceramic composites

Verelst, M and Kannan, KR and Subbanna, GN and Rao, CNR and Laurent, Ch and Rousset, A (1992) Investigations of the reduction behavior of Iron-impregnated alumina gels (Fe/AlOOH) and the formation of Fe0-Al2O3 metal-ceramic composites. In: Journal of Materials Research, 7 (11). pp. 3072-3079.

Full text not available from this repository. (Request a copy)
Official URL: http://journals.cambridge.org/action/displayAbstra...


Fe/AlOOH gels calcined and reduced at different temperatures have been investigated by a combined use of Mossbauer spectroscopy, x-ray diffraction, and electron microscopy in order to obtain information on the nature of the iron species formed as well as the various reduction processes. Calcination at or below 1070 K mainly gives reducible Fe3+ while calcination at higher temperatures gives substitutional Fe3+ in the form of Al2-xFexO3. The Fe3+ species in the calcined samples are, by and large, present in the form of small superparamagnetic particles. Crystallization of Al2O3 from the gels is catalyzed by Fe2O3 as well as FeAl2O4. Fe (20 wt. %)/AlOOH gels calcined at or below 870 K give FeAl2O4 when reduced in hydrogen at 1070 K or lower and a ferromagnetic Fe0-Al2O3 composite (with the metallic Fe particles >100 angstrom) when reduced at 1270 K. Samples calcined at 1220 K or higher give the Fe0-Al2O3 composite when reduced in the 870-12,70 K range, but a substantial proportion of Fe3+ remains unreduced in the form of Al2-xFexO3, showing thereby the extraordinary stability of substitutional Fe3+ to reduction even at high temperatures. Besides the ferromagnetic Fe0-Al2O3 composite, high-temperature reduction of Al2-xFexO3 yields a small proportion of superparamagnetic Fe0-Al2O3 wherein small metallic particles (<100 angstrom) are embedded in the ceramic matrix. In order to preferentially obtain the Fe0-Al2O3 composite on reduction, Fe/AlOOH gels should be calcined at low temperatures (less-than-or-equal-to 1100 K); high-temperature calcination results in Al2-xFexO3. Several modes of formation of FeAl2O4 are found possible during reduction of the gels, but a novel one is that involving the reaction, 2Fe3+ + Fe0 --> 3Fe2+.

Item Type: Journal Article
Publication: Journal of Materials Research
Publisher: Materials Research Society
Additional Information: Copyright of this article belongs to Materials Research Society.
Keywords: Composite material;Oxides;Sol gel process;Alumina;Iron.
Department/Centre: Division of Chemical Sciences > Solid State & Structural Chemistry Unit
Date Deposited: 05 May 2011 06:59
Last Modified: 05 May 2011 06:59
URI: http://eprints.iisc.ac.in/id/eprint/37163

Actions (login required)

View Item View Item