Thomson, James and Ratnaparkhi, Girish S and Varadarajan, Raghavan and Sturtevant, Julian M and Richards, Frederic M (1994) Thermodynamic and structural consequences of changing a sulfur atom to a methylene group in the M13Nle mutation in ribonuclease-S. In: Biochemistry, 33 (28). pp. 8587-8593.
![]() |
PDF
Thermodynamic_and_Structural.pdf - Published Version Restricted to Registered users only Download (855kB) | Request a copy |
Abstract
Two fragments of pancreatic ribonuclease A, a truncated version of S-peptide (residues 1-15) and S-protein (residues 21-124), combine to give a catalytically active complex. We have substituted the wild-type residue at position 13, methionine (Met), with norleucine (Nle), where the only covalent change is the replacement of the sulfur atom with a methylene group. The thermodynamic parameters associated with the binding of this variant to S-protein, determined by titration calorimetry in the temperature range 10-40 degrees C, are reported and compared to values previously reported [Varadarajan, R., Connelly, P. R., Sturtevant, J. M., & Richards, F. M. (1992) Biochemistry 31, 1421-1426] for other position 13 analogs. The differences in the free energy and enthalpy of binding between the Met and Nle peptides are 0.6 and 7.9 kcal/mol at 25 degrees C, respectively. These differences are slightly larger than, but comparable to, the differences in the values for the Met/Ile and Met/Leu pairs. The structure of the mutant complex was determined to 1.85 Angstrom resolution and refined to an R-factor of 17.4% The structures of mutant and wild-type complexes are practically identical although the Nle side chain has a significantly higher average B-factor than the corresponding Met side chain. In contrast, the B-factors of the atoms of the cage of residues surrounding position 13 are all somewhat lower in the Nle variant than in the Met wild-type. Thus, the large differences in the binding enthalpy appear to reside entirely in the difference in chemical properties or dynamic behavior of the -S- and -CH2- groups and not in differences in the geometry of the side chains or the internal cavity surface. In addition, a novel method of obtaining protein stability data by means of isothermal titration calorimetry is introduced.
Item Type: | Journal Article |
---|---|
Publication: | Biochemistry |
Publisher: | American chemical society |
Additional Information: | Copyright of this article belongs to American chemical society. |
Department/Centre: | Division of Biological Sciences > Molecular Biophysics Unit |
Date Deposited: | 16 Apr 2011 13:10 |
Last Modified: | 16 Apr 2011 13:10 |
URI: | http://eprints.iisc.ac.in/id/eprint/36891 |
Actions (login required)
![]() |
View Item |