ePrints@IIScePrints@IISc Home | About | Browse | Latest Additions | Advanced Search | Contact | Help

Stereochemistry of 2'-5' linked nucleic acids: crystal and molecular structure of ammonium adenylyl-2',5'-adenosine tetrahydrate: a core fragment of 2'-5' oligo A's produced by interferon induced adenylate synthetase

Krishnan, R and Seshadri, TP (1993) Stereochemistry of 2'-5' linked nucleic acids: crystal and molecular structure of ammonium adenylyl-2',5'-adenosine tetrahydrate: a core fragment of 2'-5' oligo A's produced by interferon induced adenylate synthetase. In: Journal of Biomolecular Structure & Dynamics, 10 (4). pp. 727-745.

Full text not available from this repository. (Request a copy)
Official URL: http://www.jbsdonline.com/Issue-April-2011-c4309.h...

Abstract

The preponderance of 3'-5' phosphodiester links in nucleic acids is well known. Albeit less prevalent, the 2'-5' links are specifically utilised in the formation of 'lariat' in group II introns and in the msDNA-RNA junction in myxobacterium. As a sequel to our earlier study on cytidylyl-2',5'-adenosine we have now obtained the crystal structure of adenylyl-2',5'-adenosine (A2'p5'A) at atomic resolution. This dinucleoside monophosphate crystallizes in the orthorhombic space group P2(1)2(1)2(1) with a = 7.956(3) A, b = 12.212(3) A and c = 36.654(3) A. CuK alpha intensity data were collected on a diffractometer. The structure was sloved by direct methods and refined by full matrix least squares methods to R = 10.8%. The 2' terminal adenine is in the commonly observed anti (chi 2 = 161 degrees) conformation and the 5' terminal base has a syn (chi 1 = 55 degrees) conformation more often seen in purine nucleotides. A noteworthy feature of A2'p5'A is the intranucleotide hydrogen bond between N3 and O5' atoms of the 5' adenine base. The two furanose rings in A2'p5'A show different conformations - C2' endo, C3' endo puckering for the 5' and 2' ends respectively. In this structure too there is a stacking of the purine base on the ribose O4' just as in other 2'-5' dinucleoside structures, a feature characteristically seen in the left handed Z DNA. In having syn, anti conformation about the glycosyl bonds, C2' endo, C3' endo mixed sugar puckering and N3-O5' intramolecular hydrogen bond A2'p5'A resembles its 3'-5' analogue and several other 2'-5' dinucleoside monophosphate structures solved so far. Striking similarities between the 2'-5' dinucleoside monophosphate structures suggest that the conformation of the 5'-end nucleoside dictates the conformation of the 2' end nucleoside. Also, the 2'-5' dimers do not favour formation of miniature classical double helical structures like the 3'-5' dimers. It is conceivable, 2-5(A) could be using the stereochemical features of A2'p5'A which accounts for its higher activity.

Item Type: Journal Article
Publication: Journal of Biomolecular Structure & Dynamics
Publisher: Adenine Press
Additional Information: Copyright of this article belongs to Adenine Press.
Department/Centre: Division of Physical & Mathematical Sciences > Physics
Date Deposited: 28 Feb 2011 08:21
Last Modified: 28 Feb 2011 08:21
URI: http://eprints.iisc.ac.in/id/eprint/35763

Actions (login required)

View Item View Item