Bhowmick, Somnath and Shenoy, Vijay B (2010) Weber-Fechner type nonlinear behavior in zigzag edge graphene nanoribbons. In: Physical Review B: Condensed Matter and Materials Physics, 82 (15).
PDF
Weber.pdf - Published Version Restricted to Registered users only Download (277kB) | Request a copy |
Abstract
Using a continuum Dirac theory, we study the density and spin response of zigzag edge-terminated graphene ribbons subjected to edge potentials and Zeeman fields. Our analytical calculations of the density and spin responses of the closed system (fixed particle number) to the static edge fields, show a highly nonlinear Weber-Fechner type behavior where the response depends logarithmically on the edge potential. The dependence of the response on the size of the system (e.g., width of a nanoribbon) is also uncovered. Zigzag edge graphene nanoribbons, therefore, provide a realization of response of organs such as the eye and ear that obey Weber-Fechner law. We validate our analytical results with tight-binding calculations. These results are crucial in understanding important effects of electron-electron interactions in graphene nanoribbons such as edge magnetism, etc., and also suggest possibilities for device applications of graphene nanoribbons.
Item Type: | Journal Article |
---|---|
Publication: | Physical Review B: Condensed Matter and Materials Physics |
Publisher: | The American Physical Society |
Additional Information: | Copyright of this article belongs to The American Physical Society. |
Department/Centre: | Division of Chemical Sciences > Materials Research Centre Division of Physical & Mathematical Sciences > Physics |
Date Deposited: | 19 Nov 2010 10:30 |
Last Modified: | 11 Oct 2018 15:04 |
URI: | http://eprints.iisc.ac.in/id/eprint/33829 |
Actions (login required)
View Item |