ePrints@IIScePrints@IISc Home | About | Browse | Latest Additions | Advanced Search | Contact | Help

Collective stochastic resonance in shear-induced melting of sliding bilayers

Das, Moumita and Ananthakrishna, G and Ramaswamy, Sriram (2003) Collective stochastic resonance in shear-induced melting of sliding bilayers. In: Physical Review E (Statistical, Nonlinear, and Soft Matter Physics), 68 (6). pp. 61402-1.


Download (1MB)


The far-from-equilibrium dynamics of two crystalline two-dimensional monolayers driven past each other is studied using Brownian dynamics simulations. While at very high and low driving rates the layers slide past one another retaining their crystalline order, for intermediate range of drives the system alternates irregularly between the crystalline and fluidlike phases. A dynamical phase diagram in the space of interlayer coupling and drive is obtained. A qualitative understanding of this stochastic alternation between the liquidlike and crystalline phases is proposed in terms of a reduced model within which it can be understood as a stochastic resonance for the dynamics of collective order parameter variables. This remarkable example of stochastic resonance in a spatially extended system should be seen in experiments which we propose in the paper.

Item Type: Journal Article
Publication: Physical Review E (Statistical, Nonlinear, and Soft Matter Physics)
Publisher: American Physical Society (APS)
Additional Information: Copyright for this article belongs to American Physical Society (APS).
Department/Centre: Division of Chemical Sciences > Materials Research Centre
Division of Physical & Mathematical Sciences > Physics
Date Deposited: 10 Dec 2004
Last Modified: 19 Sep 2010 04:12
URI: http://eprints.iisc.ac.in/id/eprint/324

Actions (login required)

View Item View Item