ePrints@IIScePrints@IISc Home | About | Browse | Latest Additions | Advanced Search | Contact | Help

Large-scale structures in turbulent and reverse-transitional sink flow boundary layers

Dixit, SA and Ramesh, ON (2010) Large-scale structures in turbulent and reverse-transitional sink flow boundary layers. In: Journal of Fluid Mechanics, 649 . pp. 233-273.

Full text not available from this repository. (Request a copy)
Official URL: http://journals.cambridge.org/action/displayAbstra...

Abstract

Aspects of large-scale organized structures in sink flow turbulent and reverse-transitional boundary layers are studied experimentally using hot-wire anemometry. Each of the present sink flow boundary layers is in a state of 'perfect equilibrium' or 'exact self-preservation' in the sense of Townsend (The Structure of Turbulent Shear Flow, 1st and 2nd edns, 1956, 1976, Cambridge University Press) and Rotta (Progr. Aeronaut. Sci., vol. 2, 1962, pp. 1-220) and conforms to the notion of 'pure wall-flow' (Coles, J. Aerosp. Sci., vol. 24, 1957, pp. 495-506), at least for the turbulent cases. It is found that the characteristic inclination angle of the structure undergoes a systematic decrease with the increase in strength of the streamwise favourable pressure gradient. Detectable wall-normal extent of the structure is found to be typically half of the boundary layer thickness. Streamwise extent of the structure shows marked increase as the favourable pressure gradient is made progressively severe. Proposals for the typical eddy forms in sink flow turbulent and reverse-transitional flows are presented, and the possibility of structural self-organization (i.e. individual hairpin vortices forming streamwise coherent hairpin packets) in these flows is also discussed. It is further indicated that these structural ideas may be used to explain, from a structural viewpoint, the phenomenon of soft relaminarization or reverse transition of turbulent boundary layers when subjected to strong streamwise favourable pressure gradients. Taylor's 'frozen turbulence' hypothesis is experimentally shown to be valid for flows in the present study even though large streamwise accelerations are involved, the flow being even reverse transitional in some cases. Possible conditions, which are required to be satisfied for the safe use of Taylor's hypothesis in pressure-gradient-driven flows, are also outlined. Measured convection velocities are found to be fairly close to the local mean velocities (typically 90% or more) suggesting that the structure gets convected downstream almost along with the mean flow.

Item Type: Journal Article
Publication: Journal of Fluid Mechanics
Publisher: Cambridge University Press
Additional Information: Copyright of this article belongs to Cambridge University Press.
Department/Centre: Division of Mechanical Sciences > Aerospace Engineering(Formerly Aeronautical Engineering)
Date Deposited: 15 Jul 2010 09:38
Last Modified: 15 Jul 2010 09:38
URI: http://eprints.iisc.ac.in/id/eprint/28943

Actions (login required)

View Item View Item