Keshava Murthy, K and Seshagiri, N (1968) A generalized mathematical theory and experimental verification of proportional notches. In: Journal of the Franklin Institute, 285 (5). pp. 347-363.
PDF
66.pdf - Published Version Restricted to Registered users only Download (647kB) | Request a copy |
Abstract
A theory and generalized synthesis procedure is advocated for the design of weir notches and orifice-notches having a base in any given shape, to a depth a, such that the discharge through it is proportional to any singular monotonically-increasing function of the depth of flow measured above a certain datum. The problem is reduced to finding an exact solution of a Volterra integral equation in Abel form. The maximization of the depth of the datum below the crest of the notch is investigated. Proof is given that for a weir notch made out of one continuous curve, and for a flow proportional to the mth power of the head, it is impossible to bring the datum lower than (2m − 1)a below the crest of the notch. A new concept of an orifice-notch, having discontinuity in the curve and a division of flow into two distinct portions, is presented. The division of flow is shown to have a beneficial effect in reducing the datum below (2m − 1)a from the crest of the weir and still maintaining the proportionality of the flow. Experimental proof with one such orifice-notch is found to have a constant coefficient of discharge of 0.625. The importance of this analysis in the design of grit chambers is emphasized.
Item Type: | Journal Article |
---|---|
Publication: | Journal of the Franklin Institute |
Publisher: | Elsevier Science |
Additional Information: | Copy right of this article belongs to Elsevier Science. |
Department/Centre: | Division of Mechanical Sciences > Civil Engineering Division of Electrical Sciences > Electrical Communication Engineering |
Date Deposited: | 14 May 2010 05:09 |
Last Modified: | 19 Sep 2010 06:06 |
URI: | http://eprints.iisc.ac.in/id/eprint/27735 |
Actions (login required)
View Item |