ePrints@IIScePrints@IISc Home | About | Browse | Latest Additions | Advanced Search | Contact | Help

Melting of an Anchored Bilayer: Molecular Dynamics Simulations of the Structural Transition in (CnH2n+1NH3)(2)PbI4 (n=12, 14, 16, 18)

Naik, Vikrant V and Vasudevan, S (2010) Melting of an Anchored Bilayer: Molecular Dynamics Simulations of the Structural Transition in (CnH2n+1NH3)(2)PbI4 (n=12, 14, 16, 18). In: Journal Of Phisical Chemistry C, 114 (10). pp. 4536-4543.

[img] PDF
jp910300v.pdf - Published Version
Restricted to Registered users only

Download (5MB) | Request a copy
Official URL: http://pubs.acs.org/doi/abs/10.1021/jp910300v

Abstract

The thermally driven Structural phase transition in the organic-inorganic hybrid perovskite (CnH2n+1NH3)(2)PbI4 has been investigated using molecular dynamics (MD) simulations. This system consists of positively charged alkyl-amine chains anchored to a rigid negatively charged PbI4 sheet with the chains organized as bilayers with a herringbone arrangement. Atomistic simulations were performed using ail isothermal-isobaric ensemble over a wide temperature range from 65 to 665 K for different alkyl chain lengths, n = 12, 14, 16, and 18. The simulations are able to reproduce the essential Features of the experimental observations of this system, including the existence of a transition, the linear variation of the transition temperature with alkyl chain length, and the expansion of the bilayer thickness at the transition. By use of the distance fluctuation Criteria, it is Shown that the transition is associated With a Melting of the alkyl chains of the anchored bilayer. Ail analysis of the conformation of the alkyl chains shows increased disorder in the form of gauche defects above due melting transition. Simulations also show that the melting transition is characterized by the complete disappearance of all-trans alkyl chains in the anchored bilayer, in agreement with experimental observations. A conformationally disordered chain has a larger effective cross-sectional area, and above due transition a uniformly tilted arrangement of the anchored chains call no longer be Sustained. At the melt the angular distribution of the orientation of the chains are 110 longer uniform; the chains are splayed allowing for increased space for individual chains of the anchored bilayer. This is reflected in a sharp rise in the ratio of the mean head-to-head to tail-to-tail distance of the chains of the bilayer at the transition resulting in in expansion of the bilayer thickness. The present MD simulations provide a simple explanation as to how changes in conformation of individual alkyl-chains gives rise to the observed increase in the interlayer lattice spacing of (CnH2n+1NH3)(2)PbI4 at the melting transition.

Item Type: Journal Article
Publication: Journal Of Phisical Chemistry C
Publisher: American Chemical Society
Additional Information: Copyright of this article belongs to American Chemical Society.
Department/Centre: Division of Chemical Sciences > Inorganic & Physical Chemistry
Date Deposited: 29 Mar 2010 11:41
Last Modified: 19 Sep 2010 05:58
URI: http://eprints.iisc.ac.in/id/eprint/26650

Actions (login required)

View Item View Item