ePrints@IIScePrints@IISc Home | About | Browse | Latest Additions | Advanced Search | Contact | Help

A hybrid clustering procedure for concentric and chain-like clusters

Murty, M Narasimha and Krishna, G (1981) A hybrid clustering procedure for concentric and chain-like clusters. In: International Journal of Computer & Information Sciences, 10 (6). pp. 397-412.

[img] PDF
2.pdf - Published Version
Restricted to Registered users only

Download (773kB) | Request a copy
Official URL: http://www.springerlink.com/content/g73h2165t81333...


K-means algorithm is a well known nonhierarchical method for clustering data. The most important limitations of this algorithm are that: (1) it gives final clusters on the basis of the cluster centroids or the seed points chosen initially, and (2) it is appropriate for data sets having fairly isotropic clusters. But this algorithm has the advantage of low computation and storage requirements. On the other hand, hierarchical agglomerative clustering algorithm, which can cluster nonisotropic (chain-like and concentric) clusters, requires high storage and computation requirements. This paper suggests a new method for selecting the initial seed points, so that theK-means algorithm gives the same results for any input data order. This paper also describes a hybrid clustering algorithm, based on the concepts of multilevel theory, which is nonhierarchical at the first level and hierarchical from second level onwards, to cluster data sets having (i) chain-like clusters and (ii) concentric clusters. It is observed that this hybrid clustering algorithm gives the same results as the hierarchical clustering algorithm, with less computation and storage requirements.

Item Type: Journal Article
Publication: International Journal of Computer & Information Sciences
Publisher: Springer
Additional Information: Copyright of this article belongs to Springer.
Keywords: Nonhierarchical;agglomerative;multilevel theory;seed point selection;partitioning;relabeling;representative samples; chain-like and concentric clusters.
Department/Centre: Division of Electrical Sciences > Computer Science & Automation
Date Deposited: 26 Aug 2009 04:35
Last Modified: 19 Sep 2010 05:42
URI: http://eprints.iisc.ac.in/id/eprint/22523

Actions (login required)

View Item View Item