Mukunda, N and Arvind, * and Chaturvedi, S and Simon, R (2004) Wigner distributions and quantum mechanics on Lie groups: The case of the regular representation. In: Journal of Mathematical Physics, 45 (1). pp. 114148.

PDF
Wigner.pdf Download (2MB) 
Abstract
We consider the problem of setting up the Wigner distribution for states of a quantum system whose configuration space is a Lie group. The basic properties of Wigner distributions in the familiar Cartesian case are systematically generalized to accommodate new features which arise when the configuration space changes from ndimensional Euclidean space R n to a Lie group G. The notion of canonical momentum is carefully analyzed, and the meanings of marginal probability distributions and their recovery from the Wigner distribution are clarified. For the case of compact G an explicit definition of the Wigner distribution is proposed, possessing all the required properties. Geodesic curves in G which help introduce a notion of the midpoint of two group elements play a central role in the construction.
Item Type:  Journal Article 

Publication:  Journal of Mathematical Physics 
Publisher:  American Institute of Physics 
Additional Information:  Copyright for this article belongs to American Institute of Physics (AIP). 
Department/Centre:  Division of Physical & Mathematical Sciences > Centre for Theoretical Studies (Ceased to exist at the end of 2003) 
Date Deposited:  03 Nov 2004 
Last Modified:  19 Sep 2010 04:17 
URI:  http://eprints.iisc.ac.in/id/eprint/2240 
Actions (login required)
View Item 