Biswas, Indranil and Ravindra, GV (2009) On the Picard bundle. In: Bulletin des Sciences Mathématiques, 133 (1). pp. 51-55.
PDF
3.pdf - Published Version Restricted to Registered users only Download (105kB) | Request a copy |
Abstract
Fix a holomorphic line bundle over a compact connected Riemann surface X of genus g, with g >= 2, and also fix an integer r such that degree(xi) > r(2g - 1). Let M-xi (r) denote the moduli space of stable vector bundles over X of rank r and determinant. The Fourier-Mukai transform, with respect to a Poincare line bundle on X x J (X), of any F is an element of M-xi(r) is a stable vector bundle on J (X). This gives an injective map of M-xi (r) in a moduli space associated to J (X). If g = 2, then M-xi(r) becomes a Lagrangian subscheme. (c) 2009 Elsevier Masson SAS. All rights reserved.
Item Type: | Journal Article |
---|---|
Publication: | Bulletin des Sciences Mathématiques |
Publisher: | Elsevier Science |
Additional Information: | Copyright of this article belongs to Elsevier Science . |
Keywords: | Moduli space; Fourier-Mukai transformation; Lagrangian subscheme |
Department/Centre: | Division of Physical & Mathematical Sciences > Mathematics |
Date Deposited: | 05 Nov 2009 08:27 |
Last Modified: | 19 Sep 2010 05:26 |
URI: | http://eprints.iisc.ac.in/id/eprint/19074 |
Actions (login required)
View Item |