ePrints@IIScePrints@IISc Home | About | Browse | Latest Additions | Advanced Search | Contact | Help

Analyzing stability of equilibrium points in neural networks: a general approach

Truccolo, Wilson A and Rangarajan, Govindan and Chen, Yonghong and Ding, Mingzhou (2003) Analyzing stability of equilibrium points in neural networks: a general approach. In: Neural Networks, 16 (10). pp. 1453-1460.

[img] PDF
sdarticle2.pdf - Published Version
Restricted to Registered users only

Download (175kB) | Request a copy
Official URL: http://www.sciencedirect.com/science?_ob=MImg&_ima...


Networks of coupled neural systems represent an important class of models in computational neuroscience. In some applications it is required that equilibrium points in these networks remain stable under parameter variations. Here we present a general methodology to yield explicit constraints on the coupling strengths to ensure the stability of the equilibrium point. Two models of coupled excitatory–inhibitory oscillators are used to illustrate the approach.

Item Type: Journal Article
Publication: Neural Networks
Publisher: Elsevier Science
Additional Information: Copyright of this article belongs to Elsevier Science
Keywords: Neural networks;Excitatory–inhibitory unit;Equilibrium point;Stability constraints;Jordan canonical form;Gershgo rin disc theorem
Department/Centre: Division of Physical & Mathematical Sciences > Centre for Theoretical Studies (Ceased to exist at the end of 2003)
Division of Physical & Mathematical Sciences > Mathematics
Date Deposited: 04 Dec 2008 06:45
Last Modified: 19 Sep 2010 04:52
URI: http://eprints.iisc.ac.in/id/eprint/16583

Actions (login required)

View Item View Item