ePrints@IIScePrints@IISc Home | About | Browse | Latest Additions | Advanced Search | Contact | Help

Alkali Ion-Controlled Excited-State Ordering of Acetophenones Included in Zeolites: Emission, Solid-State NMR, and Computational Studies

Shailaja, J and Lakshminarasimhan, PH and Pradhan, Ajit R and Sunoj, RB and Jockusch, Steffen and Karthikeyan, S and Uppili, Sundararajan and Chandrasekhar, J and Turro, Nicholas J and Ramamurthy, V (2003) Alkali Ion-Controlled Excited-State Ordering of Acetophenones Included in Zeolites: Emission, Solid-State NMR, and Computational Studies. In: The Journal of Physical Chemistry A, 107 (18). pp. 3187-3198.

[img] PDF
jp0265586_cookieSet=1.pdf - Published Version
Restricted to Registered users only

Download (400kB) | Request a copy
Official URL: http://pubs.acs.org/doi/pdf/10.1021/jp0265586


The nature of the lowest triplet excited state of acetophenones included in zeolites has been inferred through steady-state and time-resolved emission spectra. Acetophenone shows cation-dependent state switching. Within NaLiY and NaY zeolites, the emitting state is identified to have$ \pi\pi^*$ character, whereas in NaRbY and NaCsY, two emissions characteristic of n$\pi^*$ and $\pi\pi^* $were observed. In contrast, 4¢-methoxyacetophenone does not show cation-dependent state switching; in all alkali cation-exchanged zeolites, the lowest triplet is identified to have $\pi\pi^* $character. The results are attributed to a specific cation-acetophenone interaction. Static, MAS, and CP-MAS spectra of 13C-enriched acetophenone included in MY zeolites confirm the presence of such an interaction. The data reveals that the extent of interaction, as reflected by the molecular mobility,depends on the cation. Small cations such as Li+ and Na+ interact strongly whereas large cations such as Rb+ and Cs+ interact weakly with acetophenone. Consistent with these trends, small cations are found to switch the lowest triplet to $\pi\pi^*$ character, whereas the large cations leave the n$\pi^*$ and $\pi\pi^*$ triplet states of acetophenone close to each other. Computational studies provide strong support for these interpretations. B3LYP/6-31G* calculations were carried out on acetophenone and 4¢-methoxyacetophenone as well as their Li+ and Na+ complexes. Geometries with cations bound to the carbonyl, phenyl, and methoxy groups were examined. The most-stable structures involve a cation-carbonyl interaction, which stabilizes the n orbital and, in turn, destabilizes the n$\pi^*$ triplet state. Excited-state energetics were quantified using TDDFT/6-31+G* calculations. Consistent with experimental observations, acetophenone and 4¢-methoxyacetophenone are predicted to have nð* and $\pi\pi^*$ as their lowest triplet states, respectively. Complexation with $Li^+$ or $Na^+$ ispredicted to lead to a $\pi\pi^*$ triplet as the lowest excited state for both compounds. The present study, combining steady-state and time-resolved emission spectra, solid state NMR, and computations, demonstrates the occurrence of cation-dependent state switching in acetophenones and offers an internally consistent explanationof the effect in terms of specific cation-carbonyl interaction.

Item Type: Journal Article
Publication: The Journal of Physical Chemistry A
Publisher: American Chemical Society
Additional Information: Copyright of this article belongs to American Chemical Society.
Keywords: Photoinduced Electron-Transfer;Density-Functional Theory;Aromatic Carbonyl-Compounds;Ray-Powder Diffraction;Sodium-Y Zeolite;Mas Nmr;Configuration-Interaction;Neutron-Diffraction;Crystal-Structure;Cation Migration.
Department/Centre: Division of Chemical Sciences > Organic Chemistry
Date Deposited: 03 Dec 2008 08:33
Last Modified: 19 Sep 2010 04:52
URI: http://eprints.iisc.ac.in/id/eprint/16551

Actions (login required)

View Item View Item