ePrints@IIScePrints@IISc Home | About | Browse | Latest Additions | Advanced Search | Contact | Help

Native and Unfolded Cytochrome c-Comparison of Dynamics using 2D-IR Vibrational Echo Spectroscopy

Kim, Seongheun and Chung, Jean K and Kwak, Kyungwon and Bowman, Sarah EJ and Bren, Kara L and Bagchi, Biman and Fayer, MD (2008) Native and Unfolded Cytochrome c-Comparison of Dynamics using 2D-IR Vibrational Echo Spectroscopy. In: Journal of Physical Chemistry B, 112 (32). pp. 10054-10063.

[img] PDF
native.pdf - Published Version
Restricted to Registered users only

Download (371kB) | Request a copy
Official URL: http://pubs.acs.org/cgi-bin/article.cgi/jpcbfk/200...


Unfolded vs native CO-coordinated horse heart cytochrome c (h-cyt c) and a heme axial methionine mutant cyt c552 from Hydrogenobacter thermophilus (Ht-M61A) are studied by IR absorption spectroscopy and ultrafast 2D-IR vibrational echo spectroscopy of the CO stretching mode. The unfolding is induced by guanidinium hydrochloride (GuHCl). The CO IR absorption spectra for both h-cyt c and Ht-M61A shift to the red as the GuHCl concentration is increased through the concentration region over which unfolding occurs. The spectra for the unfolded state are substantially broader than the spectra for the native proteins. A plot of the CO peak position vs GuHCl concentration produces a sigmoidal curve that overlays the concentration-dependent circular dichroism (CD) data of the CO-coordinated forms of both Ht-M61A and h-cyt c within experimental error. The coincidence of the CO peak shift curve with the CD curves demonstrates that the CO vibrational frequency is sensitive to the structural changes induced by the denaturant. 2D-IR vibrational echo experiments are performed on native Ht-M61A and on the protein in low- and high-concentration GuHCl solutions. The 2DIR vibrational echo is sensitive to the global protein structural dynamics on time scales from subpicosecond to greater than 100 ps through the change in the shape of the 2D spectrum with time (spectraldiffusion). At the high GuHCl concentration (5.1 M), at which Ht-M61A is essentially fully denatured as judged by CD, a very large reduction in dynamics is observed compared to the native protein within the $\sim 100$ ps time window of the experiment. The results suggest the denatured protein may be in a glassy-like state involving hydrophobic collapse around the heme.

Item Type: Journal Article
Publication: Journal of Physical Chemistry B
Publisher: American Chemical Society
Additional Information: Copyright of this article belongs to American Chemical Society.
Department/Centre: Division of Chemical Sciences > Solid State & Structural Chemistry Unit
Date Deposited: 17 Oct 2008 05:21
Last Modified: 19 Sep 2010 04:50
URI: http://eprints.iisc.ac.in/id/eprint/16032

Actions (login required)

View Item View Item