ePrints@IIScePrints@IISc Home | About | Browse | Latest Additions | Advanced Search | Contact | Help

Reciprocating wear mechanisms in a Zr-based bulk metallic glass

Jin, HW and Ayer, R and Koo, JY (2007) Reciprocating wear mechanisms in a Zr-based bulk metallic glass. In: Journal of Materials Research, 22 (2). pp. 264-273.

[img] PDF
Restricted to Registered users only

Download (5MB) | Request a copy


The dry sliding friction coefficient \mu and the wear volume loss W, in a zirconium-based bulk metallic glass (BMG) under high-frequency (50 Hz) reciprocating conditions, were investigated with the objective of assessing the influence of free volume and crystallization on the wear behavior of amorphous metals. The BMG samples were annealed either below the glass transition temperature $T_g$ to induce structural relaxation and hence reduce the free volume that controls plasticity through shear-band formation or above $T_g$ to crystallize the amorphous BMG prior to wear testing. Results show that the wear behavior of both the as-cast and relaxed glasses was dominated by the xidation of the surface layers. A sharp transition in the contact electrical resistance complemented by a marked increase in \mu was noted. This was attributed to the formation of a thick tribo film with high oxygen concentration and its subsequent delamination. The \mu values, before as well as after the transition, in the relaxed glasses were similar to those for the as-cast alloy. However, a gradual decrease in W with annealing temperature was observed. A good correlation between W and nanohardness was noted, implying that the intrinsic hardness in the BMGs controlled the wear rate.

Item Type: Journal Article
Publication: Journal of Materials Research
Publisher: Material Research Society
Additional Information: Copyright of this article belongs to Material Research Society.
Department/Centre: Division of Mechanical Sciences > Materials Engineering (formerly Metallurgy)
Date Deposited: 29 Jul 2008
Last Modified: 19 Sep 2010 04:48
URI: http://eprints.iisc.ac.in/id/eprint/15294

Actions (login required)

View Item View Item