ePrints@IIScePrints@IISc Home | About | Browse | Latest Additions | Advanced Search | Contact | Help

Estimating granger causality from fourier and wavelet transforms of time series data

Dhamala, Mukeshwar and Rangarajan, Govindan and Ding, Mingzhou (2008) Estimating granger causality from fourier and wavelet transforms of time series data. In: Physical Review Letters, 100 (1). 018701-1-018701-4.

[img] PDF
GetPDFServlet1.pdf
Restricted to Registered users only

Download (326kB) | Request a copy

Abstract

Experiments in many fields of science and engineering yield data in the form of time series. The Fourier and wavelet transform-based nonparametric methods are used widely to study the spectral characteristics of these time series data. Here, we extend the framework of nonparametric spectral methods to include the estimation of Granger causality spectra for assessing directional influences. We illustrate the utility of the proposed methods using synthetic data from network models consisting of interacting dynamical systems.

Item Type: Journal Article
Publication: Physical Review Letters
Publisher: The American Physical Society
Additional Information: This article copyright belongs to The American Physical Society.
Department/Centre: Division of Physical & Mathematical Sciences > Mathematics
Date Deposited: 19 Feb 2008
Last Modified: 19 Sep 2010 04:42
URI: http://eprints.iisc.ac.in/id/eprint/13057

Actions (login required)

View Item View Item