ePrints@IIScePrints@IISc Home | About | Browse | Latest Additions | Advanced Search | Contact | Help

Robust tracking with motion estimation and local Kernel-based color modeling

Babu, Venkatesh R and Perez, Patrick and Bouthemy, Patrick (2007) Robust tracking with motion estimation and local Kernel-based color modeling. In: Image and Vision Computing, 25 (8). pp. 1205-1216.

[img] PDF
Robust_tracking.pdf
Restricted to Registered users only

Download (1MB) | Request a copy

Abstract

Visual tracking has been a challenging problem in computer vision over the decades. The applications of visual tracking are far-reaching, ranging from surveillance and monitoring to smart rooms. Mean-shift tracker, which gained attention recently, is known for tracking objects in a cluttered environment. In this work, we propose a new method to track objects by combining two well-known trackers, sum-of-squared differences (SSD) and color-based mean-shift (MS) tracker. In the proposed combination, the two trackers complement each other by overcoming their respective disadvantages. The rapid model change in SSD tracker is overcome by the MS tracker module, while the inability of MS tracker to handle large displacements is circumvented by the SSD module. The performance of the combined tracker is illustrated to be better than those of the individual trackers, for tracking fast-moving objects. Since the MS tracker relies on global object parameters such as color, the performance of the tracker degrades when the object undergoes partial occlusion. To avoid adverse effects of the global model, we use MS tracker to track local object properties instead of the global ones. Further, likelihood ratio weighting is used for the SSD tracker to avoid drift during partial occlusion and to update the MS tracking modules. The proposed tracker outperforms the traditional MS tracker as illustrated.

Item Type: Journal Article
Publication: Image and Vision Computing
Publisher: Elsevier
Additional Information: Copyright of this article belongs to Elsevier.
Keywords: Visual tracking;Mean-shift;Object tracking;Kernel tracking
Department/Centre: Division of Electrical Sciences > Electrical Engineering
Date Deposited: 27 Sep 2007
Last Modified: 19 Sep 2010 04:39
URI: http://eprints.iisc.ac.in/id/eprint/11958

Actions (login required)

View Item View Item