ePrints@IIScePrints@IISc Home | About | Browse | Latest Additions | Advanced Search | Contact | Help

Differential evolution based 3-D guidance law for a realistic interceptor model

Raghunathan, T and Ghose, D (2014) Differential evolution based 3-D guidance law for a realistic interceptor model. In: APPLIED SOFT COMPUTING, 16 . pp. 20-33.

[img] PDF
app_sof_com_16_20_2014.pdf - Published Version
Restricted to Registered users only

Download (1MB) | Request a copy
Official URL: http://dx.doi.org/10.1016/j.asoc.2013.11.017

Abstract

This paper presents a novel, soft computing based solution to a complex optimal control or dynamic optimization problem that requires the solution to be available in real-time. The complexities in this problem of optimal guidance of interceptors launched with high initial heading errors include the more involved physics of a three dimensional missile-target engagement, and those posed by the assumption of a realistic dynamic model such as time-varying missile speed, thrust, drag and mass, besides gravity, and upper bound on the lateral acceleration. The classic, pure proportional navigation law is augmented with a polynomial function of the heading error, and the values of the coefficients of the polynomial are determined using differential evolution (DE). The performance of the proposed DE enhanced guidance law is compared against the existing conventional laws in the literature, on the criteria of time and energy optimality, peak lateral acceleration demanded, terminal speed and robustness to unanticipated target maneuvers, to illustrate the superiority of the proposed law. (C) 2013 Elsevier B. V. All rights reserved.

Item Type: Journal Article
Publication: APPLIED SOFT COMPUTING
Publisher: ELSEVIER SCIENCE BV
Additional Information: Copyright for this article belongs to the ELSEVIER SCIENCE BV, NETHERLANDS
Keywords: Missile guidance; Optimal control; Optimal trajectory; Genetic algorithm; Online control; Real-time
Department/Centre: Division of Mechanical Sciences > Aerospace Engineering(Formerly Aeronautical Engineering)
Date Deposited: 10 Mar 2014 07:27
Last Modified: 10 Mar 2014 07:27
URI: http://eprints.iisc.ac.in/id/eprint/48542

Actions (login required)

View Item View Item