ePrints@IIScePrints@IISc Home | About | Browse | Latest Additions | Advanced Search | Contact | Help

Electromechanical interactions in a carbon nanotube based thin film field emitting diode

Sinha, N and Mahapatra, D Roy and Sun, Y and Yeow, JTW and Melnik, RVN and Jaffray, DA (2008) Electromechanical interactions in a carbon nanotube based thin film field emitting diode. In: Nanotechnology, 19 (2).

[img] PDF
0957-4484_19_2_025701.pdf - Published Version
Restricted to Registered users only

Download (1MB) | Request a copy
Official URL: http://iopscience.iop.org/0957-4484/19/2/025701?ej...

Abstract

Carbon nanotubes (CNTs) have emerged as promising candidates for biomedical x-ray devices and other applications of field emission. CNTs grown/deposited in a thin film are used as cathodes for field emission. In spite of the good performance of such cathodes, the procedure to estimate the device current is not straightforward and the required insight towards design optimization is not well developed. In this paper, we report an analysis aided by a computational model and experiments by which the process of evolution and self-assembly (reorientation) of CNTs is characterized and the device current is estimated. The modeling approach involves two steps: (i) a phenomenological description of the degradation and fragmentation of CNTs and (ii) a mechanics based modeling of electromechanical interaction among CNTs during field emission. A computational scheme is developed by which the states of CNTs are updated in a time incremental manner. Finally, the device current is obtained by using the Fowler–Nordheim equation for field emission and by integrating the current density over computational cells. A detailed analysis of the results reveals the deflected shapes of the CNTs in an ensemble and the extent to which the initial state of geometry and orientation angles affect the device current. Experimental results confirm these effects.

Item Type: Journal Article
Publication: Nanotechnology
Publisher: Institute of Physics
Additional Information: Copyright of this article belongs to Institute of Physics.
Department/Centre: Division of Mechanical Sciences > Aerospace Engineering(Formerly Aeronautical Engineering)
Date Deposited: 30 Mar 2010 12:25
Last Modified: 19 Sep 2010 05:57
URI: http://eprints.iisc.ac.in/id/eprint/26283

Actions (login required)

View Item View Item