ePrints@IIScePrints@IISc Home | About | Browse | Latest Additions | Advanced Search | Contact | Help

Ab initio study of energetics of X-H center dot center dot center dot pi (X = N, O, and C) interactions involving a heteroaromatic ring

Samanta, Uttamkumar and Chakrabarti, Pinak and Chandrasekhar, Jayaraman (1998) Ab initio study of energetics of X-H center dot center dot center dot pi (X = N, O, and C) interactions involving a heteroaromatic ring. In: Journal of Physical Chemistry A, 102 (45). pp. 8964-8969.

[img] PDF
Ab_Initio_Study.pdf - Published Version
Restricted to Registered users only

Download (110kB) | Request a copy
Official URL: http://pubs.acs.org/doi/pdf/10.1021/jp981501y

Abstract

The possibility of the pi-face of a heterocyclic ring acting as a hydrogen-bond acceptor has considerable significance in the structure and binding of cofactors and nucleic acids to proteins. This interaction has been modeled using ab initio calculations on various complexes of pyridine with water, ammonia, methane, and benzene. Both Hartree-Fock (HF) and MP2/6-31G(d,p) calculations, including counterpoise corrections, have been carried out on a number of representative geometries. In addition to the expected hydrogen-bonded structure involving the nitrogen lone pair, a number of other orientations in which X-H is placed above the pi-face are also found to be energetically favorable. The maximum stabilization is found directly above the pyridine nitrogen for water and ammonia, whereas for methane it is shifted to a point halfway toward the ring center. The corresponding complexation energies are 2.9 (X = O), 1.8 (N), and 0.8 (C) kcal mol(-1), which are 0.45, 0.56, and 0.71, respectively, of the values obtained when the interaction is in the conventional hydrogen-bonded geometry. Bifurcated structures, with the XH2 group above the pyridine ring but displaced from the center toward the nitrogen, are also found to be fairly stabilized. A herringbone structure with two of the benzene C-H bonds facing the pyridine ring is computed to have a stabilization energy of 2.7 kcal mol(-1), which is greater by 0.4 kcal mol(-1) than that for the linear C-H...N hydrogen-bonded geometry involving the nitrogen lone pair. The interaction energies with the pi-face are of comparable magnitude for benzene and pyridine. The computed relative energetics for various geometries should be useful in developing potential functions for modeling the binding of cofactors and nucleic acids with proteins.

Item Type: Journal Article
Publication: Journal of Physical Chemistry A
Publisher: American Chemical Society
Additional Information: Copyright of this article belongs to American Chemical Society.
Department/Centre: Division of Chemical Sciences > Organic Chemistry
Date Deposited: 22 Jan 2009 06:27
Last Modified: 19 Sep 2010 04:58
URI: http://eprints.iisc.ac.in/id/eprint/17866

Actions (login required)

View Item View Item