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ABSTRACT 
The power spectrum of a two-dimensional (2-D) space-time 
data set is computed using a 2-D extension of the Continu- 
ous Morlet Wavelet Transform. By means of this method, 
the power spectra: in 4-D space (spatial scale-time period- 
space-time) can be estimated. This method is very useful in 
analyzing waves as it enables us to track the variation of fre- 
quency and amplitude of a wave with time and space. The 
method has an added advantage that we can obtain the pre- 
dominant spatial scales over a particular kgion,  the tempo- 
ral scales associated with them and their time of occurrence. 
An example of it’s application to study the features of pole- 
ward propagation of monsoons over the Indian longitudes 
and the pacific is given. This method can be extended for 
application to multi-dimensional datascts. 

1. INTRODUCTION 

Conventional 2-D spectral analysis methods utilizing a sim- 
ple Fourier transform or the Maximum Entropy Method [ I ] ,  
decompose a signal into a two-dimensional wavenumber- 
frequency space. These methods yield no information re- 
garding the time evolution or the regional variation of the 
spectral properties. 

Continuous wavelet transforms have been used as an ef- 
fective data analysis tool for one-dimensional data series. 
The greatest advantage of using wavelet transforms on a 
time series is the simultaneous localization in the frequency 
and time domains. [2] laid down the practical mathematical 
framework for applying wavelet analysis to a one-dimensional 
time series. 

Methods combining the wavelet analysis with the tradi- 
tional Fourier analysis like the one proposed in [3] also suf- 
fer from asimilar setback. They either provide wavenumber- 
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frequency information with localization in space or in time. 
We cannot obtain localization in both time and spatial do- 
mains simultaneously using such techniques. The 2-D ex- 
tension of the continuous wavelet transform [4] is capable 
of providing this information. 

2. MATHEMATICAL FORMULATION 

The complex Morlet Wavelet was used for the two-dimensional 
analysis. The Morlet mother wavelet (&,(7j ) )  is given by the 
equation: - 

The Morlet wavelet transform of a signal at a particular 
scale is given by the convolution of the signal with a scaled 
version of the mother wavelet. The term ”scale” has been 
synonymously used for the ”Fourier wavelength” through- 
out. The scaled version is normalized to have unit energy. 
The value W O  = 8.0 has been used throughout the analysis. 
The Morlet wavelet is ideal for analysis of geophysical data 
because : 
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It can be easily visualized as a wave because of it’s 
osciIlatory nature and has a neat closed form expres- 
sion, 

It captures both the maxima and minima similarly, 
unlike real wavelets, enabling better comparison of 
the power associated with various spectral compo- 
nents. 

The phase information obtained could be used for ve- 
Iocity studies. 

The one-sided nature of it’s Fourier transform enables 
us to use the time-reversed representation of the wavelet 
to capture negative-frequencies. 
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wavelet are assumed to be periodic. The computed trans- 
form suffers from edge defects and the co-efficients at the 
edges of the series are corrupted by the periodic wrapping. 
The maximum reliable period for a 1-D transform at a given 
position "n" of an "N' length series is given by ([2]>: 
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As a result, we often need to use data series of longer length 
to obtain reliable results over the regions of interest. 

3. METHODS 

The 4-D spectra can be manipulated in different ways to 

nomenon represented by the data, A few analysis methods 
are briefly explained. 

Fig' Figure depicting the method Of choosing scales obtain characteristic information about the geophysical phe- 
for obtain specific spectral details of progressive and retro- 
progressive waves. 

The convolution with data is camed out in the frequency 
domain to save on the computation and the Fourier trans- 
form ofthe scaled wavelet in the discrete time domain 
be given by 

3.1. Identification of dominant Spatial Scales 

This method involves the identification of dominant spatial 
scales at different points i n  space. The 4-D spectra is aver- 
aged over a time period of interest and a range of time scales 
like synoptic (5-10 days) and intra-seasonal (10-70 days) to 2 4 4 n - o . 2 5 e  -('"""yu)' 

&(SW,) = & u(swk)  ('1 obtain spatial scale v/s space plots. 

where u ( s q )  represents the step function. y r z  t 2  

Let f(x, t )  represent the two-dimensional data set with P(S,,4 = ~ ~ I w ( S I , S t , 2 , t ) 1 2  (5 )  
"2'' representing the spatial domain and "t" representing s i 1  tl 

the time domain. The one-dimensional wavelet transform 
was computed over the spatial domain at each time instant. 
Let the ?/(sr, 2, t )  represent the resultant three-dimensional 
transform. Here "sz" represents the spatial scale under con- 
sideration. 

where stl to st2 represents the range of time scales of 
interest and tl to i2 represents the time interval of interest. 
n e s e  plots are also called a time-averaged scalograms. 

3.2. Time evolution of the dominant spatial scaIes 

The 4-D spectra (w(s,, s t ,  x,  t ) )  was obtained after ap- 
plying the wavelet transform over the time domain as well. 
The corresponding mathematical expression is given by:- 

The progressive and retro-progressive spectral compo- 
nents can be specifically identified by assigning appropriate 
values to the scale parameters, "s," and "st". Fig. I shows 
the importance of the sign of the scales chosen for analysis. 

* 

The 4-D spectra is averaged over a region of interest in  the 
spatial domain and over a range of pertinent spatial scales to 
observe the time-evolution of the geophysical phenomenon. 
Mathematically, i t  can be defined as 

3.3. Correlation between different phenomenon 

The 4-D spectra can also be used to identify characteristic 
relations between two phenomenon. This method also en- 
ables us to identify the relations between the4 different spa- 
tial and time scales characterizing both the phenomenon. 

2.1. Cone of influence 

AII convolutions are performed in the Fourier domain to 
speed up the computations. Hence, the data as well as the 

(s:, si ,  s:, s:, 2, t )  = I q ( s z ,  1 st', z, t).w;(s:, s t ,  2 3, t)l 
(7) 
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The function C,, ,w2 can be averaged over different di- 
mensions of interest .and c haractenstics of the relationship 
between two datasets can be studied. 

3.4. Time scale vls Spatial scale 

This method of averaging is produces results very similar to 
the 2-D Fourier transform. In case ofa Fourier transform, a 
global average of the spectrum alone can be obtained. Using 
this method, we an obtain such spectrum over a region in 
space and a time interval, thus providing localization in both 
the domains. 

In the case, where X I ,  22, t l  and t Z  are chosen such 
that they span the entire dataset, differences are noticed in 
the spectra generated by the conventional Fourier transform 
and the 2-D wavelet method. [5]  demonstrated the differ- 
ence between Global Wavelet Spectra and the Conventional 
Fourier Spectra at low and high frequencies. [6] also noticed 
the problem of loss of frequency localization at high fre- 
quencies and time localization at low frequencies, and sug- 
gested that this could induce the difference between Global 
Wavelet Spectrum and Fourier spectrum. Sudden changes 
in data can also cause spectral smearing. These can how- 
ever be identified in the timekpace domain because of their 
short duration. 

4. STUDY OF NORTHWARD PROPAGATIONS - AN 
APPLICATION 

[7] first showed that poleward movement of organizedcloud 
bands occurred over the Indian longitudes with a time pe- . 
rid of approximately 45 days. [SI showed that similar phe- 
nomenon also occurs in the West Pacific. We analyzed this 
phenomenon using two-dimensional wavelets and obtained 
similar results. 

The 2-D wavelet analysis was used to determine the 
space-time characteristics of propagations over a given lon- 
gitude. 2-D latitude-time data segments were constructed 
from Daily Precipitation dataset (l'xl") from the GPCP 
database (1997 on wards). The data sets spanned from March 
1st of a year to the 28th February of the next. The data 
from 80"s to 80°N was used to provide sufficient number 
of points in  the latitude domain to keep our region of interest 
well within the cone of influence. The time-averaged spec- 
trum ( p ( s , , x ) )  for the period from June-September were 
computed for the data sets. 

4.1. Dominant spatial scales 

When the analysis was performed at intervals of 10" of 
longitude, it was observed that significant power occurs at 
9O'E and 150"E in June to September every year. Some 
power is also observed at the 70°E and 80'E. This activity 
is at least 95% significant (compared with an AR-1 model 
at 244 d.o.f ( Shanker and Nanjundiah (2004)) with a 32" 
spatial scale andis observed just to the north of the equator 
(Fig. 2) .  This is a typical characteristic of Poleward pro- 
pogations of monsoons in Bay of Bengal and the Pacific. 
Such characteristic features are not observed at other longi- 
tudes. 

4.2, Time-frequency analysis 

Space averaged scalogram ( Q ( s t ,  t ) )  for the dominant 32" 
scale was obtained over the region (1O'N - 20"N). 30-45 
day cycles are observed in the scalograms for all the years 
(Fig. 3). Significant power is also observed in 15-day cy- 
cles in early June which corresponds to the onset of mon- 
soons.Such 15-day cycles have been observed by [9 ] .  The 
32" spatial scale dominates in all years, the time-evolution 
for this scaIe is different in all years indicating inter-annual 
variability of intra-seasonal variations. 

Analysis of the temporal scales at 150'E shows a struc- 
ture quite different from that over the Indian longitudes. The 
45-day scale scale seems to persist right from June to Octo- 
ber. The 15-24 day cycles also seem to be significant in all 
the years. In addition to the information about the temporal 
scales, the 2-D wavelet method also provides us information 
about the spatial scales which the other methods fail to do. 

5. CONCLUSIONS 

2-D wavelet analysis is a very useful method in achieving 
time and space localized spectral information. The method 
ctearly helps us identify various local features in the spectra. 
The method can be extended to multi-dimensional data sets. 
When used in combination with effective multi-dimensional 
local search algorithms, wavelet analysis can become a very 
powerful tool for identifying signature characteristics of wave- 
like phenomenon. 

Analysis of the latitude-time data set shows that around 
30" spatial scale is prominent with a dominant temporal 
scale of 45 days in the region 10"N to 20"N over the In- 
dian latitudes(maximum at 9O"E) and the pacific(maximum 
at 150"E). These are the typical features of poleward prop- 
agations of the monsoons over the Indian Iongitudes and 
the pacific. Such prominent spatial scales are not seen over 
other longitudes. Moreover i t  was also observed that though 
the dominant spatial scales remain the same every season, 
significant inter-seasonal variability is observed in the time 
scales. 
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Fig. 2. The figure shows the time averaged scalogram for 
the period (a) Jun-Sep, 1997 and (b) Jun-Sep, 1999 of rain- 
fall data spanning latitudes B O O N  to 80’s and averaged over 
the region 85”E to 95”E. The 32” spatial scale is promi- 
nent in  the period June-September of every year. Activity is 
strong i n  the region 10”N to 20”N. The cone of influence 
(region affected by periodic wrapping of data) has also been 
shown. 

Thus two-dimensional wavelet is a simple yet effective 
tool to obtain information on spatial and temporal scales and 
their localization in time and space, making it very effective 
in characterizing wave-like structures. 
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