
lEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 25, NO. 11, NOVEMBER 1995 1459

Convergence of Teams and Hierarchies of
Learning Automata in Connectionist Systems

M. A. L. Thathachar. Fellow, IEEE, and V. V. Phansalkar

Abstract- Learning algorithms for feedforward connectionist
systems in a reinforcement learning environment are developed
and analyzed in this paper. The connectionist system is made
of units of groups of learning automata. The learning algorithm
used is the LR-I and the asymptotic behavior of this algorithm
is approximated by an Ordinary Differential Equation (ODE)
for low values of the learning parameter. This is done using
weak convergence techniques. The reinforcement learning model
is used to pose the goal of the system as a constrained optimization
problem. It is shown that the ODE, and hence the algorithm
exhibits local convergence properties, converging to local solu-
tions of the related optimization problem. The three layer pattern
recognition network is used as an example to show that the system
does behave as predicted and reasonable rates of convergence are
obtained. Simulations also show that the algorithm is robust to
noise.

I. INTRODUCTION

N this paper, we consider connectionist systems which are I based on the Learning Automaton model [l]. A general
connectionist system consists of a (large) number of inter-
connected units. Various models can be used for the units.
The Learning Automaton has several features which make
it attractive as a basic computational unit in a connectionist
system. One is the simple form of computation required for
its operation. Another is the fact that as an inherently stochastic
unit, it is robust to noise. Also, there are a range of techniques
available to analyze such systems.

The learning automaton illustrates the concept of rein-
forcement learning. The main feature of this concept is the
availability of an evaluatory signal from the environment
which is indicative of the merit of the selected action. The
learning automaton updates its internal state using the evalu-
atory signal and then selects a new action. A proper updating
enables the automaton to improve its performance in some
sense over a period of time. In many learning problems, there
is additional information about the problem to be solved in
the form of a pattern or context vector. The main drawback
in using the original model of the Learning Automaton in
connectionist systems is its inability to accept such a vector.

There are two ways in which the Learning Automaton can
be incorporated in a connectionist system. One is to keep the
structure of the learning automaton intact and use groups of

Manuscript received July 11, 1992; revised February 13, 1994 and Decem-
ber IO, 1994. This work was supported in part by by the Indo-U.S. Grant
N-00014-J- 1324.

The authors are with the Department of Electrical Engineering, Indian
Institute of Science, Bangalore 560 012, India.

IEEE Log Number 9414028.

learning automata as the basic computing units. The second
method is to generalize the structure to allow for context vector
inputs. We deal with the first method in this paper. This method
has the advantage that the computational simplicity of the basic
Learning Automaton is preserved. It is possible to build a
system which consists of a single Learning Automaton, but
such a system would have an unacceptably slow learning rate
due to the large number of actions. To circumvent this problem,
systems with a number of Learning Automata formed into a
team or network of teams are considered. Such systems can be
used, for instance, wherever feedforward networks are used.
These reinforcement learning systems are gaining relevance in
diverse areas such as function optimization, learning control,
pattern recognition and robotics.

The Linear Reward-Inaction (LR- I) algorithm [l] is used
by the units described here. Weak convergence results are
used to obtain an Ordinary Differential Equation (ODE) whose
asymptotic behavior approximates the asymptotic behavior
of the algorithm, for low values of the learning parameter.
This ODE is analyzed along with the optimization problem
to show that the algorithm does converge to a local optimum
of the optimization problem. Since this is a local optimization
result, it is expected that the system functions as needed only
when the initial conditions are proper. Using examples from
pattern recognition it is seen that the correct solution is learned
when the initial conditions are properly chosen. Algorithms for
Learning Automata exhibiting global convergence properties
have been described in [2].

The rest of the paper is organized as follows. Section
I1 develops the algorithm and the notation required for the
analysis of the algorithm. Section I11 contains the analysis of
the algorithm leading to convergence results. In Section IV the
simulation results are presented. These consist of simulations
done on pattern recognition problems using a three layer
feedforward network. Section V contains the conclusions.
Partial results of this paper appeared in [3].

11. REINFORCEMENT LEARNING

We are concerned here with the Associative Reinforcement
problem, in which an input-output mapping has to be learned.
The basic setup to handle the Associative Reinforcement
problem can be divided into two parts, the Environment and
the Learning System. We consider here a Learning System
made up of a feedforward network of units. The Associative
Reinforcement system in this form is shown in Fig. 1 . The
functioning is as follows.

1460 EEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 25, NO. 1 I , NOVEMBER 1995

Environment I
I

Outpu? t ISRS
I I I

P
I 1

Vector

Fig. 1.
work of units interacting with environment.

Associative Reinforcement Learning System of a feedforward net-

At each instant, the environment generates a context
vector which is input to the learning system.
Based on its internal state and the context vector, the
learning system outputs an action.
The environment then generates an evaluatory signal
which indicates the appropriateness of the action to the
particular context vector. This signal is known as the
Scalar Reinforcement Signal (SRS) and a higher value of
the SRS implies better performance of the system. Two
of the main features of the SRS are that it is stochastic
in nature with unknown distribution and its instantaneous
value does not give any information about the relative
performances of the other actions. The best action can
be selected only after repeated trials of the system. Also,
each context vector has its own optimal action, and this
mapping of context vector into its optimal action is what
should be ideally learned by the learning system. This is
not always possible and what can be actually learned by
the learning system is discussed later.
The learning system then updates its internal state de-
pending on the context vector-action-SRS triple so as
to improve its performance with respect to an appropriate
performance index.

The formal model of the environment is described in Sub-
section 11-A. The learning system considered here is a feed-
forward connectionist network of units made up of Learning
Automata and is described in Subsection 11-B.

A. Environment

The context vector and SRS are obtained from an extemal
source which is assumed to be independent of the learning
system. This extemal source is the environment. The environ-
ment completely defines the problem which has to be solved
by the learning system.

The signal which evaluates the action is the SRS. This
is a real number and a higher value of the SRS indicates
better performance of the system. The SRS is assumed to be
stochastic in nature. Otherwise, at least when the number of
actions is manageably finite, each action can be tried once and
the action which returns the highest value of the SRS selected
as the optimal action. The system receives, along with the SRS,
a context vector which gives information about the state of the
environment. Associated with each state of the environment is
an optimal action. Thus the system has to learn a mapping
from the set of states of the environment to the set of actions,
associating with each state its optimal action. This mapping is
known as the optimal action mapping.

The environment is defined by the tuple (C, A , R, F, P,)
where,

1) C is the set of context vectors which give the learning
system information about the state of the environment.
C is usually a compact subset of R", for some n.

2) A is the finite set of actions, A = { a l , . . . , am}.
3) R is the set of values the SRS can take. Here R is

assumed to be the closed set [0,1], but can be any
compact set of R in general.

4) F = { F (a , c) : a E A , c E C} is a set of probability
distributions over R. F (a , c) is the unknown distribution
of the SRS when the state of the environment is c and
the action is a.

5) P, is an unknown probability distribution over C. The
state of the environment at any instant is described by
P, . Thus, at any instant IC, IC = 0 , 1 , 2 . . ., and for any
Bore1 set B c C,

Prob{c(k) E B } = P,(B).

When the F(a ,c) ' s are independent of time, the envi-
ronment is said to be stationary. For every a E A and
c E C define

d(a, c) = E("+)

where E("+) denotes expectation with respect to the
distribution F (a , c) . The optimal action for c is defined
to be that action which gives the highest value of d (a , c) .
There is an optimal action for each c. These optimal
actions are, in general, different for different c. The
optimal action mapping is denoted by O A where

d(OA(c) ,c) = maxd(a ,c) . (1)
aEA

It is assumed that P, is independent of time. More
complicated models, in which the present state of the
environment depends on past actionskontext vectors,
are not considered here. In many cases, what is needed
is classification of a finite set of vectors, and for this
purpose (1) can be assumed to hold.

B. Structure of the Learning System

The learning system consists of a feedforward network of
units, each unit composed of a structure of learning automata.
In the simplest case, each unit would have a set of weights as

THATHACHAR AND PHANSALKAR: CONVERGENCE OF TEAMS AND HIERARCHIES OF LEARNING AUTOMATA

Automaton 1

1461

Automaton 2 Automaton 3

r Subunit

X .
Second Level

. Action
S(Z9.)

Fig. 2. A unit consisting of two levels of subunits.

its actions and the output would be generated as a function of
the actions of the various automata in the unit and the context
vector input to the unit.

A single unit in the network is described by the tuple

1) X is the set of context vectors which are possible inputs
to the unit.

2) Y is the set of outputs or actions of the unit.
3) R is the same as in the definition of the environment. It

is the set of values the SRS can take. In this paper, R is
assumed to be a subset of the closed interval [0, 11. This
assumption is made in learning automata literature and
is needed to keep the probabilities in the closed interval
[O, 11 after updating.

4) p is the vector composed of the action probability vectors
of all the learning automata in the unit.

5) v is the vector made up of the actions of the learning
automata. v and p have the same dimension.

6) g is a vector of functions.
7) T is the learning algorithm which updates p .
A single unit is composed of a tree hierarchy of subunits.

Each subunit is made up of a team of learning automata. The
functioning of the unit and subunit is as follows. There is one
subunit in the first level of the hierarchy. This subunit chooses
an action which activates exactly one subunit in the second
level of the hierarchy. The action of this subunit activates
precisely one subunit at the third level and so on. The output
of the unit is the action of the final level subunit. Exactly one
path in the hierarchy is activated. Figures 2 and 3 show the
structures of a unit with two levels and a subunit with three
automata respectively.

Each subunit is composed of a number of learning automata
acting as a team. Each learning automaton in the subunit
chooses an action according to its action probability vector.
Let the subunit be capable of choosing from one of m actions.
There are m functions, say 91,. . . ,gm associated with this
subunit. The g;s of all the subunits in the unit make up the
vector function g associated with the unit. The ith action is

(X , y, R, p , v, 9, T) where

Fig. 3. A subunit consisting of three automata.

output by the subunit if

where x is the context vector input to the unit of which the
subunit is a part and cy is the vector of actions chosen by the
learning automata in the subunit.

In the case of a single unit interacting with the environment,
the context vector input to the unit and the context vector
from the environment are the same. However, in a network of
units the context vector input to each unit can be composed
of actions of other units and components of the context vector
from the environment as in Fig. 1. The output of the network
is a vector composed of the outputs of some prefixed units
in the network. This vector is an action which affects the
environment, that is, it belongs to the set A, A as defined
in the definition of the environment. In the case of a single
unit interacting with the environment, X = C and Y = A.

The ideal goal of the system would be to learn the optimal
action mapping as defined by (1). This may not be always
possible due to the structure of the network. A practical
solution is to maximize the expected value of the SRS as a
function of the internal state of the network, that is p . This
has to be done under the constraint that the action probability
vector of each automaton remains a probability vector. Let
the total number of automata in the network be N . pi is the
action probability vector of the ith automaton. Each automaton
is assumed to have m actions. Thus, p;(lc) is a m-dimensional
vector,

The optimization problem can be written as

maximize f(p) = E[' I p]

1 5 2 5 N
subject to p i j 2 0 1 5 i 5 N , 1 5 j 5 m

cjm_lpij = 1

The region in which p is allowed to take values is the feasible
region, denoted by 3. Hence,

(3)

Conditions for a point p to be a solution of the above
optimization problem are given by the Kuhn-Tucker conditions
[4], [5] . For the optimization problem (2) the First Order
Necessary conditions are as follows.

1462 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 25, NO. 1 1 , NOVEMBER 1995

Fact 1: Necessary conditions for p to be a local maximum
of (2) are that there exist X;j and pi such that

(4)

(5)
x i j 2 0 (6)

P i j 2 0 (7)

af - (p) + xij + pi = 0
a p i j

x - 0 ajPa3 -

c p i j = 1. (8)
j

These are the First Order Necessary Kuhn Tucker (FONKT)
conditions. These form the counterpart of the condition that the
gradient must vanish in unconstrained optimization. Second
order necessary and second order sufficient conditions also
exist, but will not be used in this paper.

C. Learning Algorithm

The algorithm used by the system is described below. p i (k)
is the action probability vector of the ith automaton at instant
k . The ith automaton has n(i) actions. Let wi be the vector of
actions of this automaton and a i (k) the action chosen by the
automaton at instant k . Then,

V i = (w,. . . , 'Uin(i)) t

for all automata i which belong to an activated subunit, that
is, a subunit which is in the activated path. All those automata
which do not belong to subunits in the activated path are not
updated. r (k) is the SRS from the environment in response
to the output of the system at instant k . b is the learning
parameter and 0 < b < 1. This is fixed for every automaton
but can vary from automaton to automaton without affecting
the results obtained.

111. ANALYSIS

In this section, the algorithm presented in the previous
section is analyzed. It is first approximated by an ODE
using weak convergence techniques and the resulting ODE
is analyzed to show that the ODE (and hence the algorithm)
converges to a solution of the optimization problem. To obtain
the approximating ODE, a preliminary lemma is needed.

Dejnition 1: The drift A p i j of the j th component of p;,the
action probability vector of the ith automaton, is defined as

APij = q P i j (k + 1) - P i j (k) I p (k) = P I .

Lemma 1: The drift A p i j for algorithm (9) is

where f (.) is as defined by (2).

Proof: The proof is quite lengthy and is therefore relegated

Remark 1: It is seen that A p i j is not directly a function of
to the Appendix. 0

the time step k . Thus A p i j can be written as

For each b > 0, { p (k) : k 2 0) is a Markov process whose
dynamics depend on b. Denote this dependence explicitly by
writing p b (k) . Define continuous time interpolations P b (t) of
P b W by

Pb(t) = p * (k) if t E [kb, (k + 1)b).

Algorithm (9) can be rewritten as

p * (k + 1) = p b (k) + b G b (p b (k) , Ob(k)) (1 1)

where the superscript b denotes dependence on the learning
parameter b. 8 is composed of the SRS, the actions of the
automata in the system, the outputs of all the units and the
subunits and the context vector from the environment. The
following theorem establishes the connection between the
algorithm and the ODE.

Theorem I : The sequence of interpolated processes
{ P b (.) : b > 0) converges weakly as b -+ 0 to z(.) , where
z (.) satisfies the ODE

(12)

Proof: The following conditions are satisfied by the algo-

1) { p (k) , 8 (k - 1) : k 2 0) is a Markov process.
2) The context vectors from the environment come from a

compact subset of R", for some s. The outputs of the
units and subunits are from finite sets. The SRS takes
values from the closed interval [0,1]. Thus, 8 (k) takes
values from a compact metric space S.

3) The function G(., .) defined in (1 1) is bounded, contin-
uous and independent of b.

4) Let B be a Bore1 subset of S , S as defined above. The
one step transition function TF(.) is defined as

dzij
- = S i j (Z) , z (0) = p (0) . d t

rithm (9), or equivalently (1 1).

TF(0, 1, B I PI
= Prob{O(k) E B I 8(k - 1) = 8 , p (k) = p } .

It is seen that TF(.) is independent of b, k and 8. Thus

TF(8,1, B I p) TF(B I p) .

5) TF(8,1, . I p) is its own unique invariant probability
measure [6], since it is independent of 8. Denote this
invariant probability measure by M (p) . As S is compact,
the set of probability measures { M (p) : p E F} is
trivially tight.

6) JG(p,B')TF(8,l,dO' I p) is independent of 8 and
continuous with respect to p .

THATHACHAR AND PHANSALKAR: CONVERGENCE OF TEAMS AND HIERARCHIES OF LEARNING AUTOMATA 1463

Then by [7, Ch. 5, Theorem 21, the sequence { P b (.) : b >
0) converges weakly, as b 0, to the solution of the ODE

where

s (z) = E*[G(z, e]
and E" denotes expectation with respect to the invariant
measure M (z) . Thus,

s (z) = G(z,O)TF(dB I z) .I
where s(.) is the vector whose components are the sij's as

From now on, the ODE will be represented in terms of p
rather than z . This is to facilitate comparison between the ODE
and the optimization problem. This is an abuse of notation as
p is a discrete time variable. The same variable will be used
to denote the continuous time variable for convenience.

The ODE (12) is not a gradient ascent as there are con-
straints on p . It can however be shown that f (p (t)) increases
monotonically along the ODE paths.

Lemma 2: Along the paths of the ODE (12), (df / d t) (q) 2
0. Moreover, (d f / d t) (q) = 0 iff q is an equilibrium point of
the ODE.

Proofi In this proof, IC is used as a subscript and has nothing
to do with the IC used in algorithm (9) as a discrete time step.
Using the chain rule

defined by (10). 0

by substituting for S , ~ (.) using (10). By noting that there are
precisely two terms in which q z J q 2 k is the multiplying factor,
the above expression for (d f l d t) can be simplified. For the
remainder of the proof let d,, = (d f) / (dp , ,) (q) . Then,

$(q) = q2,q2k[(dZJ - d,k)d,, + (d ,k - d z l) d z ~]
W r k < J

i , j , k < j

since the qi j ' s are all nonnegative, being probabilities. It is
further seen that for (d f / d t) (q) = 0, each term in the above
summation should be zero. Thus (d f / d t) (q) = 0 iff

qijqik(dij - d i k) 2 = 0 vi,j,

This implies that (d f / d t) (y) = 0 iff

q i j q i k (d i j - d i k) 1 0 VZ,j, IC (13)

since x2 = 0 is equivalent to 5 = 0. Summing the above
equation over k, for fixed i and j ,

qijqik(di j - d ik) = 0.
k

The LHS of the above equation is the expression for (d q i j l d t) .
Thus, y is an equilibrium point of the ODE. It is trivially true
that (d f / d t) (q) = 0 if 4 is an equilibrium point of the ODE.
Thus, (d f / d t) (q) = 0 iff q is an equilibrium point of the
ODE. 0

Remark 2: It is seen that f (p (t)) is a strictly increasing
function o f t along the solutions of the ODE. This is a property
like absolute expediency [11 but while absolute expediency
holds at every step, the above lemma shows that a similar
property holds for algorithm (9) with high probability for small
enough learning parameter b. It has recently been shown that a
different kind of system is absolutely expedient if the learning
parameter b is small enough [8]. This system is not used in a
network but is a game of units with a different payoff structure.
No asymptotic analysis is carried out there but it should be
possible to derive asymptotic results there using techniques
similar to those presented here.

The next lemma shows the relationship between the equilib-
rium points of the ODE and the points satisfying the FONKT
conditions for the optimization problem.

Lemma 3:

1) If q satisfies FONKT conditions of the optimization
problem (2) given in Fact (1) then q is an equilibrium
point of the ODE (12).

2) If y is an equilibrium point of the ODE (12) and does
not satisfy the FONKT conditions, then q is unstable.

Proof:
1) Let dij (a f / a p i j) (q) . If qij = 0 or qik = 0 then

q . . . (d . . - d . z J q z k 23 zk) = 0.

Let both q i j and q i k be strictly positive. Then the
FONKT conditions imply Xi jq ; j = Xikqik = 0. From
this it is seen that X i j = Xik = 0. Then we get d i j+p i =
dik + pi = 0. From this we obtain dij = dik = -pi.
Thus, again we get q i j q i k (d i j - d i k) = 0. This condition
therefore holds for all i, j and IC when q satisfies the
FONKT conditions. Summing over I C , for any fixed i, j

From (lo), it is seen that the above condition is s i j (q) =
0 which is the same as (d q i j l d t) = 0. Thus, as the above
argument is for any i and j , q is an equilibrium point
of the ODE.

2) IC is again used as a subscript and dij = (a f / a p i j) (q) .
Since q is an equilibrium point of the ODE, using the
proof of Lemma 2,

q . . . (d . . - d . t ~ q z k Z J zk) = 0

for all i, j , I C . The FONKT conditions are given by
Fact (1). Since y E F, the feasible region, (7, 8)
are automatically satisfied. By choosing X i j such that
X i j = 0 whenever q i j > 0, (6) is also satisfied. Let

Ai = { j : q i j > 0) .

I T

1464 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 25, NO. I I , NOVEMBER 1995

Since q E F, Ai # 8. For all j E Ai, X i j = 0 so as to
satisfy (4). Thus, for all j E Ai, (4) reduces to

d i j + pi = 0

That is,

For all j $! Ai, the Xi j ’ s can be calculated according to

There are two ways the FONKT conditions can be
violated. One is if at least one of the X i j ’ s is strictly
negative, violating (6). The second is if the d;j ’s differ
on Ai, so that the pi cannot even be calculated. These
two cases are considered separately.

Case I : In this case, it is assumed that pi is well defined,
but that there exists a X i j < 0. Without loss of generality,
let A11 < 0. It will be shown that q is unstable. Shift the
equilibrium point q to the origin by the transformation

E = p - q .

Then,

Case 2: In this case, it is assumed that p1 cannot be defined
uniquely. Thus, there exist i,j in A1 such that (af/ap,i)(q) #
(af/aplj)(q). But, since both q1i and q1j are greater than
zero, (13) implies that (af/aplj)(q) and (af / a p l i) (q) have
to be equal for q to be an equilibrium point of the ODE. Thus,
this case cannot arise when q is an equilibrium point. This

0
If q satisfies the FONKT conditions, the above lemma does

not say anything about its stability or otherwise. For the
algorithm to be useful, the equilibrium points which are stable
should correspond to solutions of the optimization problem
and vice-versa. It may not be possible to prove such a result
in such generality, but partial results have been obtained [9].
These results also indicate that the correspondence between
the equilibrium points which are stable and solutions of the
optimization problem would be violated only in pathological
cases. The partial results are fairly technical in nature and
to simplify the analysis, the following assumption is made.
This is a fairly strong assumption, but it has been made so
that the main argument of the paper does not get obscured
by technicalities. The interested reader is refereed to [9] for
detailed partial results.

Assumption 1: Any maximum of the optimization problem
(2) is an isolated maximum.

Lemma 4: The following are true under Assumption 1.
1) If q is a locally asymptotically stable equilibrium point

of the ODE (12), it is an isolated maximum of the
optimization problem (2).

completes the proof of the lemma.

2) If q is an isolated maximum of the optimization problem,

Pro08
it is a stable equilibrium point of the ODE. dell - dPll

d t d t Pll
- - -

For all j E AI, qlj > 0 and q13 = 0 otherwise. Since All
has been defined by (15), it has been assumed that 1 $2 Al.
Thus q l l = 0 and

To prove instability we consider a linear approximation and
hence only the constant contribution from the summation
term of the above equation is needed. Thus, to a linear
approximation, and noting that q l j = 0 for all j 6 AI,

Substituting for dll using (15) and for dlj, j E Al, using (14),

(16)

As A11 has been assumed to be negative, -A11 is positive.

1) Let q be locally asymptotically stable. There exists a
neighborhood N b of q such that if p (0) E Nb, p (t) + q .
Consider any u E N b - q. Let p (0) = u. As p (t) + q,
(d f / d t) (u) > 0, else u would be an equilibrium point
of the ODE and p (t) would not converge to q . Thus,
f (u) < f (q) , using Lemma 2 . That is for all u E Nb-q,
f (u) < f (q) . Thus q is a strict local maximum. If
there is any other maximum of f in N b - q, that point
would satisfy the FONKT conditions and would thus
be an equilibrium point of the ODE (12), by Lemma 3.
This is not possible as q is locally asymptotically stable
with at least N b as its attractive bowl. Thus there is no
maximum of f in N b - q and therefore q is an isolated
local maximum of f .

2) Let q be an isolated local maximum of the optimization
problem. There is a neighborhood N b of q such that
f (p) < f (q) for all p E N b - q. On Nb, define a
Lyapunov function

V(P) = f (s) - f (P)

V (q) = 0 and V > 0 on N b - q. Along the ODE (12)

Thus the linearized differential (16) for €11 is unstable and by Lemma 2. Thus by [10, Theorem 3.3, Ch. VIII], q is
0 hence q is unstable for the ODE (12). a (locally) stable attractor of the ODE.

THATHACHAR AND PHANSALKAR: CONVERGENCE OF TEAMS AND HIERARCHIES OF LEARNING AUTOMATA 1465

Remark 3: As (d f l d t) >_ 0, it is easily seen by an applica-
tion of LaSalle's Theorem [l l] that the solutions of the ODE
converge to the set E where

k . Then,

Prob{aij(k) = vi jS} = p i , , (k)

which is exactly the set of equilibrium points of the ODE by
L~~~~ 2. nus, every solution of the ODE converges to the
set E . Combining this with Lemma 4, we can say that the ODE
(and hence the algorithm) solves the optimization problem;
that is, solutions of the ODE converge to local maxima of the
optimization problem.

where us(.) is the unit step function.
Let V , be the ith second layer unit. It has connections with

.(i) first layer units. Thus, it can learn a convex set bounded
by at most .(i) hYPeTlmes. V , is ComPosed of a team of .(i)
learning automata and the jth automaton of V , is Bij. Each
B;j has two actions, 0 and 1. Let z z j (k) be the action of Bij.
qij is the probability associated with action 1 of Bij. Then,

Iv. THREE LAYER NETWORK FOR PATTERN RECOGNITION

In this section, the three layer network for pattern recogni-
tion 1121, [13] is considered as an application of the algorithm
described in the previous sections. After showing how a pattern
recognizer can be described in terms of a connectionist system
of units considered so far, specific examples are taken up for
simulation to verify the results of the previous section.

One of the standard ways of implementing pattern classifiers
is by using discriminant functions [14]. Any surface which
divides the feature space (assumed compact) can be approxi-
mated by a piecewise linear function [12], [13]. Any piecewise
linear surface can be implemented using linear threshold units
in a three layer network. In such a network, the first layer units
leam hyperplanes. Units in the second layer perform the AND
operation on the outputs of selected units in the first layer
and thus learn convex sets with piecewise linear boundaries.
The final layer performs an OR operation on the second layer
outputs. The formal notation for the three layer network is
developed below.

Prob{zij(k) = 1) = 1 - Prob{z;j(k) = 0) = q i j .

Let u i (k) be the output of V,. a ; (k) is the AND of all those
inputs which are connected to V , and are activated, that is
z i j (k) = 1. The output of the third layer unit is the OR of
all the second layer outputs. There is no learning involved in
the third layer. This is because two class pattern recognition
problems are considered. In general, there would be more than
one unit in the third layer and each unit would have to leam
the connection weights from the second layer units. Denote
the output of the network by z . z = 1 denotes class 1 and
z = 0 class 2. P(e) is the probability of misclassification,

P(e) = {Prob(classl)Prob(z = 0 I classl)
+ Prob(classO)Prob(z = 1 1 class0)).

The error signal is r, where

r = { 1
0

if z is classified correctly
if z is classified incorrectly

The first layer is composed of M units. The network is thus
capab1e Of learning a surface with The second
layer has N units. Thus at most N separate convex pieces can
be learned. The feature vector is z (k) where

z (k) = (Zl(k), ' . . ,G"t.

used as the SRS to the network. The probability of
misclassification, if the internal state is p and the feature vector
is z, is

P(e I P)
= (Pr(c1ass I)Pr(z = 0 1 p , z E class 1)

Denote by Ui the ith first layer unit. z m (k) 1. The
number of features measured is (m - 1) and xm is an extra
component to facilitate thresholding. Thus, the space in which
the classification is done is Em-'. Each Ui implements
a hyperplane in Rm-' which can be represented by a m
dimensional real vector, the mth component representing the
threshold value. Therefore a first layer unit is composed of m
automata and each automaton learns one of the components
of the vector defining the hyperplane. Denote by Aij the jth
automaton of Ui. p ; j (k) is the action probability vector of Aij

at instant k and p i j s (k) its sth component. vuzj is the vector of
actions of Aij . As each automaton has to leam a component
of the weight vector, w i j is composed of real scalars. This
discretization of weights does not necessarily cause a loss in
performance, as actions can be finely discretized to allow for
the learning of the optimal discriminant function. Let aij (k)
be the action of Aij and yi(k) the output of Vi, both at instant

+ Pr(c1ass O)Pr(z = 1 I p , z E class 0))
= (Pr(c1ass 1)Pr(r = 0 I p , z E class 1)

+ Pr(c1ass O)Pr(r = 0 1 p , z E class 0))

= 1 - E[' I p] .

Thus, P(e 1 p) = 1 - E[r 1 p] and therefore minimizing
the probability of error with the given setup is the same as
maximizing E[r I p] .

The units in these networks fall into the category analyzed
in this paper since each unit is a team of automata which
is a simpler version of the units described in the previous
sections. Thus, all the results of the previous sections hold
for this network. Examples along with simulation results of
the three layer networks are presented below. The examples
considered are with overlapping samples and are hence not
perfectly separable. The solutions given correspond to the
minimum probability of misclassification.

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 25, NO. 1 1 , NOVEMBER 1995

Unit Automaton

C1

Actions 1 Optimal Action
1 2 3 4 I S e t l l Set2

Fig. 4. Optimal regions for example 1

Ul
Ul
uz
u2

Example 1: In this example, the feature vectors from the
environment arrive uniformly from the set [0,1] x [O, I]. Each
feature vector has a non zero probability of belonging to either
of two classes 1 and 2. In some regions of the feature space,
the probability of belonging to class 1 is higher and vice versa
in other regions. The problem of pattern recognition is thus
one of overlapping classes and reduces to the classification of
such regions. Using the terminology of Fig. 4, in region A

Prob{z E classl} = 1 - Prob{z E class2) = 0.9

and in region B

Prob{z E classl} = 1 - Prob{z E class2) = 0.1

Thus the optimal class is 1 in region A and is 2 in region
B. The discriminant function to be learned is

[221 - 2 2 > 01 AND [- X I + 2x2 > 01
where IC = (21 , ~ 2) ~ is the feature vector. In this example, no
extra component is added since it is assumed known that the
threshold is zero.

The network is made up of two first layer units, U1 and
U2. There is one fixed second layer unit. The second layer
unit performs the AND operation on the first layer unit
outputs. Each first layer unit has two automata, each with four
actions. These are the discretized values of the weights used
to represent the hyperplanes. Table I gives details about these
units. Aij is the jth automaton of unit Ui. It should be noted
that there are two sets of indices, (2,4,4,2) and (4,2,2,4), at
which the global optimum is attained.

The value of the learning parameter was fixed at 0.005 for
all the automata. Twenty simulation runs were conducted with
the initial conditions being equal, that is, a probability of 0.25
for each action. The network converged to one of the two sets
of optimal actions in every run. The average number of steps
to reach a probability of 0.98 for the optimal action of every
automaton was 10,922. The number of samples generated was

~~~~~~~ ~ 

All -2 -1 1 2 4 2 
Aiz -2 -1 1 2 2 4 
A21 -2 -1 1 2 2 4 
Azi -2 -1 1 2 4 2 

Fig. 5.  Optimal regions for example 2. 

500 and a vector from this set was chosen at random at each 
instant. Thus, it is not necessary to have a large number of 
samples. The algorithm can be used with a fixed number of 
classified samples. The average number of steps with a new 
sample being generated at each instant was 10,425. 

Example 2: In this example, feature vectors from the en- 
vironment arrive uniformly from the set [0,1] x [0,1]. The 
discriminant function to be learned is shown in Fig. 5. In 
region A,  

Prob{z E classl} = 1 - Prob{z E class2) = 0.8 

and in region B 

Prob{z E classl} = 1 - Prob{z E class2) = 0.2. 

The discriminant function to be learned is 

[XI - .75 > 01 OR {[XI - .25 > 01 AND [52 - .5 > 01) 

and the feature vector is z = ( ~ 1 , ~ 2 , ~ ~ ) t  where 5 3  e 1 is 
added for thresholding. 

The network is composed of three first layer units U1, U2 

and U3. It has two second layer units VI and V2. The structure 
is shown in Fig. 6. Both the second layer units get inputs 
from all the three first layer units. 

Each first layer unit automaton has five actions which are the 
discretized values of the weights which are used to represent 
the hyperplanes. Each first layer unit has three automata since 
z has three components. Table I1 gives details of the first layer 
units and Table I11 details of the second layer units. 



Fig. 6. Structure for example 2. 

Algorithm 
BPM 
BPM 

TABLE I1 
DETAILS OF THE FIRST LAYER UNITS OF EXAMPLE 2 

Structure Noise(%) Error' Steps 
9 3 1  0 2.0 66,600 
9 3 1  20 - No mnvereence 

Thirty three simulation runs were conducted. For conve- 
nience, a new sample vector was generated at each instant. 
Convergence to the optimal set of actions was observed in 
thirty cases. The average to reach a probability of 0.99 for 
all the optimal actions was 62,600 steps. This excludes the 
three wrong convergences. Since the results in section 3 are 
local convergence results, an initial bias toward the optimal 
actions was required. For the first layer automata, the initial 
probability of the optimal action was set at 0.6 and for the 
second layer at 0.7. The learning parameter for the first layer 
was set at 0.005 and 0.001 for the second layer. 

Example 3: In this example, a simplified version of the iris 
data [14] was considered. This is a three class four feature 
problem. The three classes are iris-setosa, iris-versicolor and 
iris-virginica. Of these, setosa is linearly separable from the 
other two. As two class pattern recognition is being considered 
in this section, setosa was ignored and the problem was 
reduced to classify versicolor and virginica. 

The data consists of 50 samples from each class with 
the correct classification. Simulations were conducted using 
the LR-I algorithm and the standard Backpropagation with 
Momentum (BPM) algorithm. 

The network used for the LR-I case consisted of 9 first layer 
units and 3 second layer units. Each first layer automaton had 
9 actions which were {-4, -3, -2, - 1 , O ,  1,2,3,4}. Uniform 
initial conditions were used. 

BPM 
BPM 
BPM 

TABLE Ill 
DETAILS OF THE SECOND LAYER UNITS OF EXAMPLE 2 

0 

9 3 1  40 - No convergence 
8 8 8 1  0 2.0 65,800 
8 8 8 1  20 - No convermxtce 

Unit I Automaton [ Optimal Action 
K I  B, , I 1 

Bzi ANY 

TABLE IV 
SIMULATION RESULTS FOR IRIS DATA 

I -  I I - I BPM 1 8 8 8 1  I 40 I - I No convergence 
I Ln-r I 9 3 1  I 0 I 0.1 I 78.000 _. - 

LR-I I 9 3 1  I 20 I 0.1 I 143,000 
LR-I I 9 3 1  I 40 I 0.15 I 200,000 

RMS error for BPM and probability of misclassification for LR-I .  

THATHACHAR AND PHANSALKAR: CONVERGENCE OF TEAMS AND HIERARCHIES OF LEARNING AUTOMATA 1467 

I I 

BPM was used with standard feedforward neural networks 
of 3 and 4 layers (excluding the input layer which just feeds 
the feature vector to various units). The 3 layer network had 9 
and 3 units in the first two layers and one unit in the last layer. 
The 4 layer network had 8 units in the first three layers and 
one unit in the fourth layer. Initial conditions were generated 
randomly. 

Simulations were conducted for perfect data (0% noise) and 
noisy cases. Noise was introduced by changing the known 
classification of the feature vector at each instant by a fixed 
probability. Noise levels of 20% and 40% were considered. 
Thus with 40% noise each sample had a probability of 0.6 
of correct classification and 0.4 of wrong classification as 
opposed to 1 and 0 in the noise free case. 

The learning parameters used for the LR-I network were 
0.005 in the first layer and 0.002 in the second layer. 

The momentum term for the BPM algorithm was set at 0.9 
and various values of the learning parameter were considered 
and the best results are reported. The results are summarized 
in Table IV. The averages are over 10 runs each. It should 
be noted that the error for the BPM is the RMS Error while 
that for the LR-I is the probability of misclassijication. They 
cannot be compared, but the pegormances would be about the 
same at the given values. 

Simulation results show that in the noise-free case BPM 
algorithm does converge faster. However, it fails to converge 
even when 20% noise is added. The learning automata model 
is slower in the noise free case, but continues to converge 
even with 40% noise and there is only a gradual degradation 
of performance in terms of speed and probability of correct 
classification. The superior performance of the connectionist 
system of learning automata in the noisy situation is evident. 

Remark4: Example 1 converges to the global maximum 
without any bias in favor of the global set of actions while 



1468 IEEE TRANSACTIONS ON SYSTEMS. MAN, AND CYBERNETICS, VOL. 25, NO. 11, NOVEMBER 1995 

Example 2 requires a bias. This is because Example 2 is more 
complicated than Example 1. Both the examples have local 
maxima, but those in Example 1 are better separated than those 
in Example 2. Also, if the entire system were to be reduced 
to a single automaton, Example 1 would consist of 44 = 256 
actions while Example 2 would consist of 5’ x 23 M 15 x lo6 
actions. Since the results in this paper are local convergence 
results, initial conditions have to be sufficiently close to the 
global maximum for convergence to the global maximum. This 
is shown by Example 2 where the problem requires a bias for 
convergence. A simpler problem, such as Example 1, requires 
little or no bias. 

In Example 3, it is seen that the standard BPM algorithm 
does not converge in the noisy case whereas the Learning 
Automata network does. In the no noise case, BPM does 
perform better, which is to be expected. Only a few simulations 
are reported and these are indicative of the results which can 
be expected. Also, the simulations depend on the structure of 
network used for simulation. This problem is not considered 
here. 

V. CONCLUSION 

In this paper, a model for connectionist systems based on 
teams of learning automata has been developed and analyzed. 
The model is fairly general and many different problems fit 
into this framework. 

The three layer network for pattern recognition has been 
analyzed as an example of such a connectionist system and 
simulations show that these do have the local convergence 
properties as shown by analysis. It is also seen that the 
algorithm converges even if it has only a finite number of 
samples to work with. Since the proofs in this paper are local 
convergence results, global convergence cannot be expected in 
all cases. If, however, the problem is characterized by maxima 
which are well separated, global convergence is possible. Also, 
it is seen that this algorithm is robust to noise and works well 
in noisy cases where the BPM algorithm fails to converge. 

Even though the learning automaton as a single unit does 
not have the capability to handle context vectors, it is seen 
that the problem can be circumvented using teams of learning 
automata. The simplicity of the scheme is also preserved. The 
results of this paper can be directly extended to the case where 
each unit is composed of a feedforward network of subunits 
instead of the tree hierarchy considered here. 

Convergence is established by replacing the discrete sto- 
chastic algorithm by an ODE whose long term behavior 
approximates the algorithm for low values of learning param- 
eter. This technique can be extended to the case where the 
actions are from a compact set instead of a finite set. It can 
also be applied to analyze many other discrete connectionist 
algorithms. 

APPENDIX 

Proof of Lemma 1: 

Let pij  be the probability of choosing an action by the 
zth automaton of the network. This automaton is assumed 

to belong to a subunit denoted by SU. S U  belongs to the 
unit denoted U .  x is the context vector from the environment. 
Context vectors from the environment arrive according to the 
probability distribution Pe. 

p is the vector composed of the action probability vectors 
of all the automata. x’ is the context vector to unit U under 
consideration. To calculate the drift A p i j ,  condition first on 
the context vector x from the environment and then x’, the 
context vector to unit U .  The unit U can then be studied in 
isolation, since the effect of other units on U is only through 
x’. Since the system is a feedforward network, the units in the 
same and later layers do not affect the functioning of the unit 
U .  &( . ,p i x )  is the probability distribution of x’, conditioned 
on p and x. Q is independent of p i j ,  since the unit U has no 
effect on x’, once p and x are known. In fact, the conditioning 
need not be on the entire p ,  but only on those components of p 
which are the action probability vectors of automata belonging 
to units in layers before unit U .  Conditioning on x and x’(al1 
conditioning is at the instant IC), 

x Q(dx’ I P ,  x ) P e ( d x ) .  

In unit U ,  condition further on that path which activates the 
subunit SU. The path is considered only until SU is activated. 
Call this portion of the path d. The other paths can be ignored, 
since p i j  ( k  + 1)  = p i j  ( k )  if SU is not activated. Thus 

Apij = / / ~ b i j ( k  + 1) - p i j ( k )  I p ,  x, X I ,  r’] 

x Pr[r’  I P, x’lQ(dx’ I P, x ) P , ( d ~ ) .  

The probability of choosing d is independent of x since x 
affects U only through 2’. It is also independent of p i j  since 
d is the path only until SU is activated. Condition further on 
the action of the automaton which has pij  as one of its action 
probability vector components. The action probability vector 
of the automaton under consideration is pi. vi, is the action 
corresponding to the probability pi,. Thus 

A P i j  = / / T P i q { E I p i j ( k +  1 ) -P i j ( k )  lP,x,x’,r’>”iq] 

x P r b ’  I P ,  x’l)Q(dx’ I P ,  x ) P , ( d ~ ) .  

As the LR-I algorithm is used for updating, using (9) in the 
above equation, 

A P i j  = / / b i j  CPi,{E[T I p ,  2,  x’, d, “ i j ]  
Q 

- E[. I P ,  2, x’, r’, vi,]> 
x Pr[n’ I P, x’lQ(dx’ I P ,  x ) P e ( d x ) .  (17) 

We need to calculate ( a f l a p i j )  and compare it with (17). For 
this, condition f(p) on x and then x’, 

J J  

In the unit U ,  consider all the paths 7r that can be activated. 
If the path which is activated does not contain SU, then 



THATHACHAR AND PHANSALKAR CONVERGENCE OF TEAMS AND HIERARCHIES OF LEARNING AUTOMATA 1469 

where 77 is independent of p i j .  For all q, E[r  I p ,  z, z’, r’, viq] 
is independent of p i j  because the automaton has already cho- 
sen its action. As mentioned before, Q ( .  I p ,  z) is independent 
of p i j .  Therefore, differentiating (18) with respect to p i j ,  

Comparing (17) and (19), we have 

completing the proof of Lemma 1. 

REFERENCES 

[I ]  K. S. Narendra and M. A. L. Thathachar, Learning Automata: An 
Introduction. 

[2] M. A. L. Thathachar and V. V. Phansalkar, “Learning the global 
maximum with parameterised learning automata,” to appear in IEEE 
Trans. Neural Networks. 

[3] -, “A feedfonvard network of learning automata for pattern clas- 
sification,” in Proc. Int. Joint Con$ Neural Networks, Singapore, Nov. 
1991. 

[4] G. P. McCormick, “Second order conditions for constrained minima,” 
SIAM J. Appl. Math., vol. 15, pp. 641-652, May 1967. 

[5] W. Zangwill, Nonlinear Programming: A Unified Approach. Engle- 
wood Cliffs, NJ: Prentice-Hall, 1969. 

[6] Y. V. Prohorov and Y. A. Rozanov, Probability Theory. Berlin: 
Springer-Verlag, 1969. 

[7] H. J. Kushner, Approximation and Weak Convergence Methods for 
Random Processes. 

Englewood Cliffs, NJ: Prentice-Hall, 1989. 

Cambridge, MA: MIT Press, 1984. 

[8] K. S. Narendra and K. Parthasarathy, “Learning automata approach to 
hierarchical multiobjective analysis,” IEEE Trans. Syst. Man Cyber., vol. 
21, no. 1 ,  pp. 263-273, 1991. 

[9] V. V. Phansalkar, “Learning automata algorithms for connectionist sys- 
tems-Local and global convergence,” Ph.D. Thesis, Dept. of Electrical 
Engineering, Indian Institute of Science, 1991. 

[lo] N. P. Bhatia and G. P. Szego, Stability Theory of Dynamical Systems. 
Berlin: Springer-Verlag, 1970. 

[ 11) K. S. Narendra and A. Annaswamy, Stable Adaptive Sysfems. Engle- 
wood Cliffs: Prentice Hall, 1989. 

[I21 W. S. Meisel, Computer Oriented Approaches to Pattern Recognition. 
New York: Academic Press, 1972. 

[I31 R. P. Lippmann, “An introduction to computing with neural nets,’’ IEEE 
ASSP Mag., pp. 4-22, Apr. 1987. 

[I41 R. 0. Duda and P. E. Hart, Pattern Classification and Scene Analysis. 
New York Wiley, 1973. 

man of the Division 
uositions at Yale Univc 

M. A. L. Thathachar (SM’79-F’91) obtained the 
Bachelor’s degree in electrical engineering from 
the University of Mysore in 1959, the Master’s 
degree in power engineering and the Ph.D. degree in 
control systems from the Indian Institute of Science, 
Bangalore, in 1961 and 1968, respectively. 

He was a member of the faculty of the Indian 
Institute of Technology, Madras from 1961 to 1964. 
Since 1964, he has been with the Indian Institute 
of Science, where he is currently Professor in the 
Department of Electrical Engineering and the Chair- 

of Electrical Sciences. He has held visiting faculty 
:rsitv, New Haven. CT, Concordia University. Montrkal, 

Qu6bec, Canada, and Michigan State University, East Lansing. -His current 
research interests include learning automata, neural networks, and fuzzy 
systems. 
Dr. Thathachar is a fellow of the Indian National Science Academy, 

the Indian Academy of Sciences, and the Indian National Academy of 
Engineering. 

V. V. Phansalkar obtained the Bachelor’s degree 
in electrical engineering and the Master’s in sys- 
tems and control, both from IIT Bombay, in 1983 
and 1985, respectively. He obtained the Ph.D. in 
electrical engineering from IISc Bangalore in 1992. 

He was a project associate in the Department 
of electrical engineering, IISc from March 1992 
to June 1994, and a Visiting Scientist at Citibank, 
Bombay, in July and August 1994. He is presently 
a member of the faculty at the V.E.S. Institute of 
Technology, Bombay. His current research interests 

include neural networks, learning automata, and applications of probability. 

1 -  1 -  - 


