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Abstract. We calculate helicities of solar active regions based on the
idea that poloidal flux lines get wrapped around a toroidal flux tube rising
through the convection zone, thereby giving rise to the helicity. We use
our solar dynamo model based on the Babcock–Leighton α-effect to study
how helicity varies with latitude and time.
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1. Introduction

Typically, solar active regions are known to have helicity associated with them and the
observational studies based on vector magnetograms (Seehafer (1990); Pevtsov et al.
(1995, 2001); Abramenko et al. (1997) and Bao & Zhang (1998)) indicate that the
preferred sign of this helicity is opposite in the two hemispheres (negative in northern
hemisphere and positive in the southern hemisphere), in spite of a very large statistical
scatter. Figure 2 of Canfield & Pevtsov (2000) is a typical plot showing a variation of
helicity with latitude, which any theoretical model has to explain.

Solar magnetic fields are believed to be produced by the dynamo process. One
possibility is that the dynamo process itself is responsible for the generation of helicity.
The other possibility is that the rising flux tubes, which eventually form active regions,
get the twist by interacting with the helical turbulence in the surrounding convection
christened the �-effect by Longcope et al. (1998). The two possibilities mentioned
above need not be mutually exclusive: both may be simultaneously operative. A careful
comparison between observational data and detailed theoretical models will be needed
to ascertain the relative importance of these two effects.

We present here calculations of helicity based on our two-dimensional kinematic
solar dynamo model presented in Nandy & Choudhuri (2002) and Chatterjee et al.
(2004).

The dynamo equation deals with the mean magnetic field (see, for example, Choud-
huri 1998, Ch. 16), whereas we want to find helicities of active regions which form
from flux tubes. To make a connection between these two, we have to look at the rela-
tion between dynamo theory and flux tubes. In a Babcock–Leighton dynamo poloidal
field A is created from decay of tilted active regions, the amount of tilt being given by
the Joy’s Law. Also in accordance with the Hale’s polarity rule, a bipolar active region
formed by a flux tube with positive Bφ would have the leading spot towards the equator
than the following spot. Decay of such a pair would thus mean clockwise lines of Bp

around active regions. When a new toroidal flux tube with positive Bφ moves upwards
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near the surface, the poloidal field gets wrapped around the toroidal flux tube. Due to
high magnetic Reynolds number the flux tubes are not able to cut through the poloidal
field lines thus giving rise to the helicity.

2. Estimating the value of helicity

For force free fields in the photosphere and the corona we may define helicity as

α = (∇ × B)z

Bz

, (1)

where z corresponds to the vertical direction, which is along the axis of the flux tube
for active regions on the surface. The parameter α (not to be confused with the dynamo
α-effect traditionally associated with the poloidal field generation mechanism) is a
measure of the handedness or chirality of the magnetic field. This twist parameter
is an indicator of how stressed the active region flux system is and it is known to
play an important role in the flaring and explosive activity of active region magnetic
fields (Canfield et al. 1999; Nandy et al. 2003). The typical observed value of the
twist parameter α from magnetoram data, calculated by several authors is about 2 ×
10−8 m−1.

To estimate the value of helicity theoretically, we have to keep in mind that the flux
of poloidal field BP through the whole SCZ gets dragged by the toroidal flux tube
rising under magnetic buoyancy (see Fig. 4 of Choudhuri 2003). If d is the depth of
the convection zone, the flux dragged by the tube is

F ≈ BP d. (2)

This flux F gets wrapped around the tube of radius a. In an ideal-MHD situation, this
flux F would be confined to a narrow sheath around the flux tube. In reality, however,
we expect that the turbulence around the flux tube would make this flux F penetrate
into the flux tube. Then the magnetic field going around the tube can be taken to be
of order F/a. The current density |∇ × B| associated with this field is of order F/a2

and is along the axis of the tube. If BT is the magnetic field inside the flux tube, then
it follows from (1):

α ≈ F/a2

BT

≈ BP d

BT a2
(3)

on substituting from (2) for F . We use BP ≈ 1 G, the depth of the SCZ d ≈ 2 × 108 m
and the field inside sunspots BT ≈ 3000 G. On taking the radius of the sunspot
a ≈ 2000 km and a ≈ 5000 km, we get α ≈ 2 × 10−8 m−1 and α ≈ 3 × 10−9 m−1

respectively. Thus, from very simple arguments, we get the correct order of magnitude.

3. Results from dynamo simulation

In section 4 of Chatterjee et al. (2004) we have presented a particular dynamo model
which we refer to as our standard model. We now present helicity calculations based
on this standard model.
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Figure 1. Theoretical butterfly diagram of eruptions from our standard dynamo model. Erup-
tions with positive and negative helicities are denoted by ‘+’ and ‘o’ respectively.

A flux eruption takes place in our model whenever the toroidal field at the bottom
of the SCZ exceeds a critical value. Whenever an eruption takes place in our dynamo
simulation, we calculate the poloidal flux F through SCZ at the eruption latitude by
integrating Bθ from the bottom of SCZ (r = Rb) to the top (r = R�), i.e.,

F =
∫ R�

Rb

Bθdr.

The value of F calculated at the eruption latitude at the time of eruption gives the
amplitude of helicity associated with the eruption. If the sign of F is opposite to
the sign of the toroidal field B at the bottom of SCZ, then the helicity is taken as
negative (otherwise it is positive). Figure 1 shows the simulated butterfly diagram,
indicating active regions of positive and negative helicity. During the solar maximum,
the helicity is negative in the northern hemisphere and positive in the southern, as we
expect. However, at the beginning of a cycle, there is a short duration when the sign
of helicity is ‘wrong’, i.e., opposite of the preferred helicity. We find that 67% of the
eruptions in our simulation have ‘correct’ helicity.

Figure 2(a) is a plot of helicity associated with eruptions at different latitudes. This
is the theoretical plot that has to be compared with observational plots like Fig. 2 of
Canfield & Pevtsov (2000). We notice that the theoretical plot has considerably less
scatter compared to the observational data.

To see the variation of helicity with the cycle, Fig. 2(b) and Fig. 2(c) present plots
of helicity for eruptions during 4 years of solar maximum and 4 years at the beginning
of the cycle respectively. The straight lines represent the least-square fits. For ‘correct’
helicity (negative in north and positive in south), the gradient dα/dλ of the straight
line has to be negative, as we see in Fig. 2(b) corresponding to solar maximum (λ is
the latitude). The gradient, however, is positive at the start of the cycle. To find out how
this gradient varies with the cycle, we divide the cycle period into 16 equal intervals
and then find the gradient dα/dλ for each of the intervals by using eruptions during
that interval. Figure 3 shows how the gradient dα/dλ varies with the solar cycle. If the
�-effect makes a significant contribution in the production of helicity, then the variation
with the cycle may be less pronounced compared to what we find in our model without



90 Piyali Chatterjee

Figure 2. Helicity α (plotted along the vertical axis in arbitrary units) for eruptions at different
latitudes, denoted by open circles: (a) for an entire solar cycle; (b) for 4 years during the maximum
and the declining phases of the solar cycle; (c) for the first 4 years of the solar cycle. The solid
lines in (b) and (c) are least-square fits to the model results.

Figure 3. dα/dλ as a function of time covering the equivalent of two sunspot cycles. To find
out the values of time which correspond to maxima or minima, look at Fig. 1 which has the same
horizontal axis.

this effect, since the �-effect is cycle-independent (Longcope et al. 1998). Since it is
in principle possible to determine from observational data how dα/dλ actually varies
with the solar cycle, a plot like Fig. 3 provides a powerful tool for comparison between
theory and observations. There is some indication in the existing data that dα/dλ may
be varying in accordance with our model; but the data are noisy and the results from
different instruments often diverge widely, so it is difficult to draw firm conclusions at
this point in time (Pevtsov, private communication).
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4. Conclusion

Two clear theoretical predictions follow from our model.

(1) Since the helicity goes as a−2 as seen from (3), the smaller sunspots should
statistically have stronger helicity (i.e., higher values of twist α).

(2) At the beginning of a cycle, helicity should be opposite of what is usually observed.

The alternative model for the generation of helicity, the �-effect proposed by
Longcope et al. (1998), also makes the prediction (1), but not (2). Since helicity is
imparted to the flux tubes by helical turbulence of SCZ in this model, the helicity is
not expected to vary with the solar cycle. A careful analysis of any possible variation
of helicity with the solar cycle would be the best way of ascertaining relative contribu-
tions of the �-effect and the dynamo (the process studied in this paper) in generating
helicity.
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