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Abstract - Algebraic structure of codes closed un- 
der a rb i t r a ry  abelian group G of permutat ions is in- 
vestigated result ing in  insight into Dual of G-invariant 
codes and Self-dual G-invariant codes. For special 
types of the groups, these codes give cyclic, abelian,  
quasi-cyclic and quasi-abelian codes. Karlin’s de- 
coding algori thm for systematic  one-generator quasi- 
cyclic codes is extended for systematic  quasi-abelian 
codes wi th  any number  of generators. 

I. SUMMARY 
For any abelian group G with exponent v relatively prime to 
q = p” ( p  is a prime), if r is the smallest positive integer 
such that Fq’ contains a primitive v-th root of unity, then a 
map 11, : G x G + Fq* can be chosen (see [l]) such that (i) 

11,(z’, y ) , V y  E G )  (j z = z’ and 
11,h Y Z )  = 11,(2, YMzl 2) (4 11,(Z,Y) = dJ(Y1.) (iii) (11,(z, Y )  = 

x € G  i f y # 1  

Using this map, the DFT of any element a = E z E G a x z  E 
FqG is defined as A E FqpG with A, = E,,, $(z, y)a,. 

Let a finite set I index the coordinate positions of a code 
over Fq and G C P e r m ( I )  be an abelian group with exponent 
v relatively prime to q.  Let I1 ,. . . , It be the orbits of I under 
the action of G. If Gk = {g(’) = glr, E Perm(1k ) lg  E G} 
for k = l , . . . , t ,  then it is easy to check that l G k l  = 141 ( 1 . 1  
denotes the cardinality of the set inside). So, the coordinates 
of the code can be indexed by elements of 6 = U;,,Gi instead 
of I such that g(h(‘)) = g(k)h(k).  The DFT of any a E FS is 
defined as A E F S ,  where 

a 

a 

A, = 11,’lc(Y, z ) a x  Vy E Gk, V k .  
X E G k  

Here 11,k is 11, (as discussed in the last paragraph) for Gk. 
This DFT satisfies the conjugacy constraint:  A,* = 
A:. If b = g(a),  i.e. if b, = a g ( k ) - l ,  t/z E Gk, V k ,  
then B, = @k(g(‘)),y)A,Vy E Gk, V k .  We define the cy- 
clotomic coset, residue class and cyclotomic residue 
class of x E 6 as respectively [zlq e {z, x q , z q 2  , .  . .>, 2 = 

{XI E G\(g,z1) = ( 9 , ~ )  €or each g E G} and ( x ) ~  (21 E 
61 for some non negative I ,  (g, ~ 1 ) ~ ’  = ( 9 , ~ )  Vg E G}, where 

( h , z )  $~k(h(’),z) whenz E Gk. Suppose, IZI = e,  and 
l[zlq1 = r,. For any subset 
X = { z 1 , z 2 , . . . , z k }  C E, AX denotes the ordered tuple 
( A 2 1 , A x Z , ~ ~ ~ , A Z k )  where an arbitrary fixed order in X is 
assumed. 
Theorem 1.1 Let  G be a n  abelian group of permutations with 
order relatively pr ime  to  q .  T h e n  a code is G-invariant i f  and 
only if (a) for any  x E G, Am takes values from a subspace 
of F;& and (ii) if  XI)^, . . . , (21~)~ are the distinct cyclotomic 
residue classes of 6,  then Am,, . . . , Amk are unrelated. 

a 

Then clearly, I ( Z ) ~ I  = e x r x .  

Corollary 1.2 If C(li)q denotes the subcode of C containing 
all the codewords with all the transform components outside 
(xi)¶ zero, then C = e,”=, C(5i)q. 
Theorem 1.3 Let  G be such that E ... lGtl mod 
p .  For a G-invariant code C ,  a vector b E F,“ i s  orthog- 
onal t o  C i f  and only i f  f o r  all a E C ,  EyEi:AABBy-1 = 
0 V cyclotomic residue classes (x)q.  

We classify the cyclotomic residue classes into three categories: 
(i) (z)¶ with x = 2-l (Type  A): In this case, r, = 1. (ii) 
(z)¶ with z # 2-l E ( z ) ~  (Type  B): In this case, r5 is even 

and z-l = zq 
Let N(q,  I ) ,   NE(^, I )  and N H ( Q ,  1) denote respectively 

the number of subspaces of Fi,  the number of self dual 
and Hermitian self dual codes of length 1 over Fq. Sup- 
pose, different types of cyclotomic cosets are: Type A: 

pz - 
and (iii) ( z ) ~  with z-l 6 (z)¶ (Type  C) .  

(xi)‘, . . . , (xil)‘ ,  Type B: (y l ) ¶ ,  . . . , ( y i 2 ) q ,  and Type C: 

Theorem 1.4 Let  G be such that lGll ... - = lGtl 
( Z l ) ¶ ,  (2;’)“ ’ ’ , (Zig)Q1 (zz<l)q. 

mod p .  Number of self dual G-invariant  codes over Fi 
is n:;, NE(qTTi, e,;) n;Ll N H ( q r y j ,  e y j )  n:=l N ( q T * k ,  e z k ) ,  
where the empty product is 1 by convention. 
Theorem 1.5 A G-invariant binary self-dual code C i s  Type 
11 if and only i f  its binary component Ce is Type II .  
For 7-quasi-cyclic codes of length n, the distinct cyclotomic 
residue classes corresponds to the distinct q-cyclotomic cosets 
in Zl. With this correspondence, the theorems 1.4 and 1.5 give 
all the results of [2] regarding self-dual quasi-cyclic codes as 
special cases. The results can easily be extended to  the general 
case (i.e. when JG11 E ... IGt( mod p does not necessarily 
hold true). 

Quasi-abelian codes [3] on an abelian group G can be de- 
fined as submodules of (FqG)’ for some t .  Karlin’s decoding 
algorithm [4] for systematic one-generator quasi-cyclic codes 
is extended for systematic quasi-abelian codes with any num- 
ber of generators. Moreover, for a G-invariant code, if the 
subspaces from which Ai: take values (see Theorem 1.1) are 
known, then a set of parity check equations over Fqr can be 
derived and used to get a lower bound on the minimum Ham- 
ming distance for the code using BCH-like argument [5 ] .  De- 
tails is omitted due to lack of space. 

. 
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