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Abstract

The design of a codebook consisting of codevectors is the
goal of Vector Quantization (VQ) schemes. This solution is
not unique and many variants of VQ have been proposed.
VQ suffers from computational and memory complexities
that increase with the size of codebook and codevector di-
mensions. The lack of a universal codebook that works
across different class of images necessitates the transmis-
sion of the codebook along with the codevector indices. This
paper proposes a novel method of vector quantization us-
ing reflections of triangular subcodevectors. This method
jointly reduces the memory and computational resources re-
quired for VQ. Numerical results are presented for the pro-
posed scheme in comparison to a traditional VQ method
and a method based on reflections.

1. Introduction

Several lossy and lossless schemes have been proposed
for image coding. These can be classified as transform
based and non-transform based schemes. Discrete Co-
sine Transform, Karhunen Loeve Transform and Discrete
Wavelet Transform are the popularly used transform based
schemes. These transforms decorrelate an image and the co-
efficients thus obtained are encoded to realize coding gains.

Among the non-transform methods, Vector Quantization
(VQ) and Scalar Quantization (SQ) are widely used [4]. VQ
encodes a sequence of samples while SQ encodes a sample.
VQ exploits both linear and non-linear dependencies in an
image and is preferred over SQ. VQ and SQ are commonly
used to encode the coefficients obtained after applying a
transform.

VQ is based on the principle of block coding. The goal
of VQ is to represent a set of image vectors using a repre-
sentative set of vectors known as codevectors. The design
of a codebook is a very challenging problem. VQ schemes
assume the availability of a codebook at both the receiving

and transmitting ends. Only the indices of the codevectors
are transmitted and hence VQ reduces the amount of data
required to represent an image.

There are many situations in which a codebook may have
to be transmitted along with the codevector indices. In
adaptive VQ the codebook is periodically communicated to
the receiving end [5]. An universal codebook that works
well across all classes of images does not exist [8]. This
requires the generation of a codebook for an image or a
class of images and transmission of it along with the in-
dices. Hence schemes have been proposed to reduce the
size of a codebook [2].

The computational and memory requirements of a VQ
scheme increase with the size of codebook and the dimen-
sions of codevectors. VQ has been outperformed by several
sub-optimal methods that minimize either of these two re-
sources. Hence, many variants of VQ have been designed
to reduce these costs [3, 1, 7].

This paper proposes a method to jointly reduce the size
of a codebook and computational complexity. This scheme
first divides a codevector into triangular subcodevectors
along the diagonal axes. The reflections of these subcode-
vectors about the diagonal axes are utilized to generate ori-
entations of a codevector.

2. Proposed Scheme

The reflections of a vector are valid vectors in most of
the situations. This is true in the case of image vectors also.
The vectors of an image exhibit redundancy between their
subvectors. The proposed scheme exploits this redundancy
to reduce the size of a codebook by using reflections of sub-
vectors.

Let M be a square vector of dimension n × n specified
as
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M =




a1,1 . . . a1,n

...
. . .

...
an,1 . . . an,n


 (1)

The proposed scheme divides M into four triangular sub-
vectors A, B, C, and D along the diagonal axes as
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a1,1 . . . a1,n

...
. . .

...
an,1 . . . an,n


 (2)

The reflections of these subvectors about the diagonal
axes are used to derive orientations of vector M. Orienta-
tions are generated by combining these reflections in clock-
wise or anti-clockwise directions. The reflections of sub-
vectors taken in any of these directions when arranged in a
cyclic order will result in four orientations.

Reflection of a subvector produces its mirror image. Ev-
ery reflection has a mirror line and in this case a diagonal
axis acts as a mirror line. The elements along a diagonal
axis belong to both the subvectors adjacent to it. In this pa-
per these elements are reflected such that the diagonal axis
is retained in one of the adjacent subvectors.

The elements of only one of the diagonal axis are in-
cluded in a subvector while generating its reflection and
the elements of the other diagonal axis are included in the
subvector adjacent to it in a given direction (clock-wise or
anti-clockwise). These orientations when applied to a vec-
tor four times would generate the original vector and form
a cyclic group of order four.

This scheme when applied to a vector of dimension 4×4
results in four orientations as



����������������������

a1,1 a1,2 a1,3 a1,4

a2,1 a2,2 a2,3 a2,4

a3,1 a3,2 a3,3 a3,4

a4,1 a4,2 a4,3 a4,4






����������������������

a4,4 a2,1 a3,1 a4,1

a4,3 a3,3 a3,2 a1,3

a4,2 a2,3 a2,2 a1,2

a1,4 a2,4 a3,4 a1,1






����������������������

a1,1 a4,3 a4,2 a1,4

a3,4 a2,2 a2,3 a3,1

a2,4 a3,2 a3,3 a2,1

a4,1 a1,3 a1,2 a4,4






����������������������

a4,4 a3,4 a2,4 a4,1

a1,2 a3,3 a3,2 a4,2

a1,3 a2,3 a2,2 a4,3

a1,4 a3,1 a2,1 a1,1




(3)

The scheme derives additional orientations by swapping
reflections of two adjacent subvectors while retaining the
other two subvectors unchanged. The two orientations thus

generated when reflections about the first diagonal axis are
considered are



����������������������

a1,1 a2,1 a3,1 a1,4

a1,2 a2,2 a2,3 a2,4

a1,3 a3,2 a3,3 a3,4

a4,1 a4,2 a4,3 a4,4






����������������������

a1,1 a1,2 a1,3 a1,4

a2,1 a2,2 a2,3 a4,2

a3,1 a3,2 a3,3 a4,3

a4,1 a2,4 a3,4 a4,4




(4)

The swapping of reflections about the second diagonal axis
results in two orientations as



����������������������

a1,1 a3,4 a2,4 a1,4

a2,1 a2,2 a2,3 a1,3

a3,1 a3,2 a3,3 a1,2

a4,1 a4,2 a4,3 a4,4






����������������������

a1,1 a1,2 a1,3 a1,4

a4,3 a2,2 a2,3 a2,4

a4,2 a3,2 a3,3 a3,4

a4,1 a3,1 a2,1 a4,4




(5)

Two of the subvectors that are above and below a diago-
nal axis when combined together form upper and lower tri-
angular matrices respectively. Orientations can be obtained
by swapping the reflections of upper and lower triangular
matrices about the diagonal axes as


����������������������

a1,1 a2,1 a3,1 a4,1

a1,2 a2,2 a3,2 a4,2

a1,3 a2,3 a3,3 a4,3

a1,4 a2,4 a3,4 a4,4






����������������������

a4,4 a3,4 a2,4 a1,4

a4,3 a3,3 a2,3 a1,3

a4,2 a3,2 a2,2 a1,2

a4,1 a3,1 a2,1 a1,1




(6)

Additional orientations may be obtained by considering the
reflections of these subvectors about horizontal and vertical
axes.

It should be noted here that the subvectors in equations
( 4) and ( 5) are the same as those in equation ( 3). Hence the
deviations of an input image vector with these orientations
can be calculated with out any additional computational ef-
fort. Hence the computational complexity does not increase
with the size of the codebook when more than four orienta-
tions are considered.

It may be argued that any ordering of the elements in a
vector would result in a valid vector. This is not true for
image vectors as a random ordering of the elements would
destroy the inherent structure of a vector. The proposed
scheme imposes some structure in the codebook by trian-
gular symmetrization.

The orientations in equations ( 3), ( 4), ( 5), and ( 6) can
be stored in a look-up-table (LUT). An index to the LUT
when transmitted along with a vector designates a specific
orientation.

The basic procedure for the design of codebook can be
stated as:
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Encoding procedure

Given an input vector x, the codebook C = { c1, ..., ck },
and the orientations T = { T1, ..., Tr }

1. find the indices of optimal orientation (uopt) and code-
vector (iopt)
{uopt, iopt} = arg minu=1,...,r; i=1,...,k { d(x, Tu (ci))
}

Decoding procedure

Given the indices uopt and iopt, the codebook C = { c1, ...,
ck }, and the orientations T = { T1, ..., Tr }

1. reproduce the input vector as x̂ = Tuopt

(
ciopt

)

Figure 1. Encoding and decoding procedure

Given an input image X = { x1, ..., xN } where xi, i = 1,
..., N are of size n × n

1. Select r, the number of orientations and the orientation
operators T = { T1, ..., Tr }.

2. Select k, the number of clusters and a distortion thresh-
old ε ≥ 0. Set m = 0 and D−1 = ∞

3. Select k initial cluster centers C = { c1, ..., ck }

4. Determine minimum distortion partition P(C) =
{Si; i = 1, ..., k} : Tu(x) ∈ Si if d(x, Tu(ci)) ≤ d(x,
Tv(cj)) for all j, u, and v.

5. Calculate the average distortion, Dm = D({C, P (C)})

6. if Dm−1−Dm

Dm
≤ ε, stop with C and P (C) specifying

the final quantizer. Else continue.

7. Set ci =
∑pi

i=1
Tu(x)

pi
, for all i : Tu(x) ∈ Si and pi is

the number of elements in Si. Set m = m + 1 and go
to step 3.

The encoding and decoding procedures for the scheme are
summarized in Fig. 1.

The orientations in equations (3) to (6) can be further
applied on one another to generate additional orientations.
Hence this scheme can be utilized to reduce the size of a
codebook to any desired level depending on the choice of
orientations. Further, the orientations in equations (3) to (6)
are not commutative. If Tu and Tv denote orientations u
and v respectively, then Tu(Tv(M)) �= Tv(Tu(M)).
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Figure 2. PSNR vs. BPP for RCVVQ, RVQ and
LBG schemes

3. Numerical Results

The proposed scheme (RCVVQ) has been tested using
many standard test images. The eight orientations listed
in equations (3) to (5) have been used in the experiments.
The performance of the proposed scheme is compared to
that of Linde, Buzo and Gray (LBG) scheme [6] and Re-
flected VQ (RVQ) [2]. The performance has been quantita-
tively and qualitatively assessed using Peak Signal to Noise
Ratio (PSNR) and visual comparison of original and re-
constructed images respectively. The codebooks for these
schemes have been initialized with vectors randomly taken
from an input image.

Let M × N and m × n be the dimensions of an image
to be vector quantized and the codevector respectively and
B denote the Bits Per Pixel(BPP). If k and r are the number
of the codevectors and orientations respectively used in the
proposed scheme, a traditional VQ scheme (such as LBG)
can use a codebook consisting of k × r codevectors at the
same bit rate.

The ratio of the memory required to transmit the code-
book to the total memory required to transmit the codebook
and codevector indices defined as Codebook Storage Ratio
(CSR) is used as a metric to quantify the saving achieved.
The CSRs for LBG and proposed schemes are given in
equations( 7) and ( 8) respectively.

CSRLBG =
k × r × m × n × B

M
m × N

n × log2(k × r) + k × r × m × n × B
(7)

CSRproposed =
k × m × n × B

M
m × N

n × log2(k × r) + k × m × n × B
(8)

PSNR vs. BPP plots in Fig. 2 suggest that the proposed
scheme offers quality equal to that of RVQ. The PSNR for
both these schemes is comparable to that of LBG and it fast
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(a) Original Image (b) RCVVQ Scheme (c) RVQ Scheme (d) LBG Scheme

Figure 4. Comparison of original and reconstructed images at 0.5 BPP using codevectors of dimen-
sion 4 × 4
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Figure 3. CSR vs. BPP for RCVVQ, RVQ and
LBG schemes

approaches that of LBG with an increase in BPP. However,
a comparison of CSR for these schemes in Fig. 3 proves that
it increases at an exponential rate for LBG while it increases
at a much slower rate for the proposed and RVQ schemes.
Hence it can be concluded that the scheme offers signifi-
cant saving in memory with out substantially degrading the
quality of an image.

Further, the computational complexity of the proposed
scheme is half of that of LBG and RVQ schemes as the devi-
ation of an input image vector with orientations ( 4) and ( 5)
can be computed by using the deviations of the respective
subvectors with those in ( 3). This reduction in complex-
ity becomes very significant when the size of a codebook
and dimensions of codevectors are large. A comparison of
the reconstructed images in Fig. 4 shows that the proposed
scheme performs equally well as LBG and RVQ schemes.

4. Conclusions

A novel method of VQ using reflections of triangular
subcodevectors has been proposed. The proposed method
reduces the memory required for a codebook significantly
by generating orientations of codevectors. The computa-
tional complexity of the proposed scheme is half of that of
traditional VQ schemes. Results presented for various data
sets suggest that the quality of the proposed scheme equals
that of RVQ and approaches that of LBG with an increase
in BPP.
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