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Wavelet array decomposition of images using a Hermite sieve
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Abstract. Generalized Hermite polynomials are used in a novel way to
arrive at a multi-layered representation of images. This representation,
which is centred on the creation of a new class of wavelet arrays, is (i)
distinct from what we find in the current literature, (ii) stable, and (iii) in
the manner of standard transforms, transforms the image, explicitly, into
matrices of coefficients, reminiscent of Fourier series, but at various scales,
controlled by a scale parameter. Among the other properties of the wavelet
arrays, (a) the shape of the resolution cell in the 'phase-space' is variable
even at a specified scale, depending on the nature of the signal under
consideration; and (b) a systematic procedure is given for extracting the
zero-crossings from the coefficients at various scales. This representation
has been successfully applied to both synthetic and natural images,
including textures.
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1. Introduction

Psycho-physical experiments have shown that biological vision employs multi-
channel processing for low-level analysis of sensory data. One of the possible reasons
for this type of decomposition is that the structures or details in the physical world
constituting the input to the sensory system have many different sizes. In natural
vision, unlike computer vision systems, the analysis, leading to information extraction
and recognition of object details, seems to be independent of image scale.

Motivated by this discovery due, among others, to Hubel & Wiesel (1962), some
recent investigations in the area of computer vision have dealt with the problem of
representation of an image in several frequency channels. Such 'scale-space'
representations have been the subject of current research.

Briefly, scale space representations and analyses are based on the idea that different
characteristics of a signal reveal themselves at different levels of resolution or,
equivalently, in several frequency channels. When the signal includes important
structures that belong to different scales, it is useful to reorganize the signal
information into a set of components of varying size. An important requirement in
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any such scheme is that a small perturbation of the representation should correspond
to a small modification of the original signal. At the same time, it is also desirable
to localize the spatial-spectral information in the image. The need for localization
of information in the spatial and frequency domains has led to signal decompositions
based on either windows or frequency channels. A further requirement is that the
representation should enable us to extract important properties from the image.

1.1 Image representation schemes

It is common practice that, given a sequence of increasing resolutions (fj)j6Z, the
details of a signal at the resolution r-; are defined as the difference of information
between its approximation at the resolution r} and its approximation at the lower
resolution ^_1.

A structure for implementing this scheme is called the pyramid (Burt & Adelson
1983), which is a sequence of images in which each is a filtered version of its predecessor.
Each image in the sequence is represented by an array which is half the size of its
predecessor. The filtered signal is represented at a reduced resolution and sample
densities. Assuming a 2-D function f(x, y) defined over a digital grid, one can define
the pyramidal structure as a collection of sub-sampled images connected by a mapping
transformation. Local operators of many scales but identical shape serve as the basis
functions. The operations include low and bandpass filters and window functions.
Implementation of such an approach includes blur (or reduce), expand (or make two
levels of the pyramid compatible in size), and difference (or subtract) operations.
However, a disadvantage of such a representation is that the elements of the image
sequence are correlated.

On the hand, an approach to the extraction of localized spectral information is the
use of Fourier analysis in a window of the signal. This results in a representation which
is intermediate between a spatial and a frequency description. In fact, a modification
was made by employing a Gaussian window in an attempt to minimize the uncertainty
associated with the spatial-spectral resolution, as exemplified by. the results of Marr
(1982), which involve the filtering of the original image with the Laplacian of a
Gaussian for various values of the variance parameter. In this case, the multiscale
representation is a multichannel representation in the frequency domain where a
channel corresponds to some specific bandwidth. However, the size of the resolution
cell in such a representation is fixed, and, therefore, the finer details in an image when
interspersed with coarse information, cannot be separated out satisfactorily.

2. Wavelet transforms

In order to overcome the above deficiency of the windowed Fourier transform, a
combined spatial-spectral representation a la Gabor (1946) or the so-called wavelet
transform has been proposed. As we know, the Gabor scheme uses a modulated
version of the Gaussian, but, unfortunately, the Gabor functions do not constitute
an orthogonal basis. More importantly, it is also known that they are not easily
amenable to an orthogonalization procedure for extracting the coefficients of the
signal in the Gabor space (Bastiaans 1980).

On the contrary, the wavelet transform is computed by expanding the signal into
a family of functions which are the dilations and translations of a unique function,
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0(x), called a wavelet. Grossman & Morlet (1984) decompose a function in L2(R)
using the family of functions (s*<j>(sx))seijr A wavelet transform is then interpreted
as a decomposition of the given signal into a set of frequency channels having the
same bandwidth on a logarithmic scale.

Consider a one-dimensional signal in L2. Let <j> denote a function with sufficient
decay, say </>(x) ̂ c/(i+ x2), with

In what follows, (j)s(x) denotes the dilation of <£(x) by a factor Y and (jta
s(x) denotes

the translation of (j)s(x) by a factor 'a':

Such a function is called a wavelet. The wavelet transform of a signal is then given
by correlating / with <j>":

f00
Wf(s,a)= /(x)#(x)dx.

J — 00

The choice of <£ determines the compactness of the representation, and the inversion
is achieved by an appropriate inverse integral:

/(x)= (l/s)Wf(s,a)<l><(x)dads, (1)
Jo J -oo

with the constraint that

Jo

where $s(u) is the Fourier transform of <£s(x), and $s{u) is the Fourier transform of
&(x).

In practice, for computational ease, s and a are most commonly restricted to some
discrete subset, s = 2~m and a = 2~" with m, ne$f, generating a set of dyadic wavelets.
The Haar basis is a standard example for discrete wavelets.

2.1 Choice of the wavelet function

The choice of the wavelet function, 0, has been the subject of many investigations.
Some authors use a function which is similar to the Laplacian of the Gaussian (LoG),
and others have tried to generate wavelets by recursive procedures. Common to all
these attempts is the difficulty in generating orthogonal functions for a unique
representation of the given signal. For instance, Mallat (1989c) starts with an
orthonormal basis of L2(R) generated by the family of functions



304 y V Venkatesh, K Ramani and R Nandini

However, in practice, the standard procedure for computation is a decomposition
of the image using the so-called 'quadrature mirror' filters (Mallat 1989). In this
approach, the signal is represented using a finite set of resolutions in powers of 2.
The basic idea is to separate the higher and the lower halves of the spectrum of a
signal by using second-order bandpass and low pass filters. The image is then
sub-sampled corresponding to the lower half of the spectrum. This procedure is
applied iteratively. This is equivalent to dividing the spectrum in successive bands,
and extracting the details corresponding to these bands. Suppose, for instance, that
the original signal is at resolution 2J'. The result of the first band pass filtering will
give us the difference of information between resolution 2J and 2J'~1. The next band
pass filtering will give us information between 27'"1 and 2 j~2 and so on. For the sake
of completeness, a detailed algorithm is given in appendix A (§ Al).

Surprisingly, the problem of explicitly extracting the coefficients of representation
is not addressed in the literature. It may be noted that orthogonality, apart from
facilitating the computation of coefficients, guarantees their uniqueness also
(Daubechies 1988). In this context, other authors (see references in Mallat 1989c)
have dealt with discrete wavelets 0(x) with the property that ((2j)*</>(x))J.£Z constitute
an orthonormal basis of L2(R). It is found that creating such orthonormal bases of
L2 (R) is quite involved.

To summarize the results of the literature: (i) The procedure for the extraction of
the coefficients of representation using wavelets is not given explicitly, (ii) Practical
implementation using the so-called quadrature mirror filter expansion is not, strictly
speaking, a wavelet coefficient representation, (iii) Most of the schemes do not lead
to a unique representation, as, in fact, indicated by Daubechies (1990).

2.2 Features of wavelet analysis

As is well known, in Fourier analysis, for a signal that exhibits different behaviour
at different spatial regions, the Fourier coefficients involve integrals defined over the
entire spatial region acting as the domain of definition for the signal. Each of these
coefficients reflects the presence of some frequency "found somewhere in the signal.
For instance, in the reconstruction of f(x), in a region where / = 0, we find that
many coefficients do not vanish. Thus, it is not possible to localize the spectral content
in the signal.

Wavelet analysis, like Fourier analysis, is concerned with the relation between
properties of the coefficients and features in the signal. Unlike the Fourier transform,
however, wavelet transform may apparently be used to localize the spectral components
of the signal. In the discrete implementation, the support of the wavelet is chosen to
be a dyadic interval. As indicated above, the Haar basis is a standard example. A
window is dilated and shifted around the signal, f(x,y). The value of the shift gives
the physical location of the region under consideration, in the image. The wavelet
transform of the signal, along with the wavelet coefficients in that window as support,
is supposed to localize the frequency content in the signal. However, in this framework,
there do exist difficulties in the choice of the size of the windows and, more importantly,
in the amount of overlap permitted when the windows are shifted around.
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3. Results based on a new wavelet array transform

Motivation for the present work comes from the fact that, in practice, signals which
are spatially finite are not strictly finite in extent in the spectral domain. In view of
the finite field of view of biological vision systems, and in order to develop a consistent
mathematical theory, signals can be treated as though they are approximately infinite
in both the spatial and time domains.

We employ generalized Hermite polynomials to represent the given image in multiple
channels, each channel corresponding to a specific value of the scale parameter a.
For each channel, the representation, in contrast with the results of the literature, is
explicitly a matrix of coefficients. Further, the number of channels is dependent on
the amount of residual error permitted in the representation of the image.

Before we can state the main results, we present below in §3.1 some mathematical
preliminaries, in §3.2, the proposed wavelet array, and, in §4, the properties of the
new wavelet array transform.

3.1 Mathematical background

Images, which are treated as 2-D functions, are assumed to be defined over (— oo, co) x
(—00,00) in both the spatial and spectral domains. In what follows, x and y are
independent (space) variables.

Let f(x, 3>)e L2(R) be a real-valued function of x, yeffl, with the Fourier transform,

F(j(a1,jco2)= \ f(x,y)exp(-jcolx,-jco2y)dxdy.

The two functions, /(x, y) and F(ja>1Ja>2), form a Fourier integral pair. The classical
uncertainty principle says that they cannot both have compact support (de Bruijn
1967, pp. 57-71; Donoho & Stark 1989).

The following concepts are needed in the determination of the size of a cell in the
phase-space. The uncertainty inequality can be obtained by defining the spatial and
spectral spreads of the function as follows.

The energy in a signal, f(x, y) is given by

\f(x,y)\2dxdy,
— cc

which is the same as,

pec

(1/47T2) \F(o31,o}2\
2dco1dco2.

J -oo

Then, the effective spreads around (x0,j;0) and (co10,co20) are defined by

(x-x0)
2(y-yo)

2\f(x,y)\2dxdy\\ (2)
J
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— 00 ̂  —CO

(3)

Using the Schwarz inequality, we obtain the standard 'uncertainty' inequality (de
Bruijn 1967):

Xe We ̂  1/2.

3.2 Choice of basis functions and their properties

Consider the generalized 1-D Hermite polynomials parametrized by a (Szego 1975),

Pn(z,cr) = {(-l)"exp(x2/2)^[exp(-x2)]j , (4)
I dX J x = (z\n )

for n = 051,2,... , which can, in turn, be used to generate (by tensor product) the 2-D
generalized Hermite polynomials, parametrized by 0^ and a2:

for m,n = 0,1,2,...,oo.
It is known (Lebedev 1972; Higgins 1977) that the PM's form a complete basis for

the class C of real functions, /(x), defined on the infinite interval (— oo, oo), which
are piecewise continuous in every finite sub-interval [ — a, a] and satisfy the condition

I (l+x2)exp(-x»/2(x)dx<oo. (6)
v —oo

For the 2-D basis representation, we use, in what follows, the vector notation, p,
to denote (at times, for convenience, when no explicit reference to a particular spatial
variable is required) the variables (x,y,ff1,a2) as a whole. The first few Hermite
polynomials are:

HM(p) = exp[- (x2^) - (v2/2(72)],

Hli0(p) = (2x/(c71)*)H0i0(p); H2i0(p) = ((4x>1) - 2)H0 0(p);

0(p); H0.2 (P) = ((4y2/c2) - 2)H0i0(p);

fl;u(P) = ((4*Vffi) ~ 2)(2y/(ff2)*)H0i0(p).
i

These generalized Hermite polynomials can be shown to satisfy the recurrence
relations,

These polynomials are orthogonal on — oo < x,y< oo. An important property of
these polynomials, which facilitates multi-scale/multi-channel decomposition of
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signals, is that they are Fourier transformable, and their transforms are given by

T1 ,a2) = (-7)m + n / /m ) i((y1ff1 ,co2ff2 ,(T1 ,o-2). (7)

The parameters crl,a2 control the effective width of the signaHn both the spatial
and frequency domains - the smaller the values of al and <r2, the smaller the spatial
width (and greater the spectral width), and vice versa, in the directions x and y
((D! and o>2) respectively.

In what follows, 2m n denotes summation with respect to m and n, each ranging,
unless otherwise indicated, from 0 to co. Let the L2-norm squares of these polynomials
be denoted by kmn, for m, n = 0, 1, 2, . . . , oo.

Now we define formally the series,

/(*, 30 = Z Jm,n #,„,„(?)> - °° < x, y < co, (8)
m,n

where the coefficients y are calculated from the relation,* mn J

m,n = 0 , l > . . . , oo . (9)

In practice, we use only a finite number, N, of terms. The coefficients ym n, as given
in (9), are obtained by the standard procedure of minimizing the mean square error.
As a result, the (approximate) image reconstructed from these coefficients will not
match with the original at all the individual points. However, theoretically, if infinite
terms are used in (8), and if the real function f ( x , y) defined on the infinite interval
is piecewise smooth in every finite interval [— a, a], and if the integral

I exp[- (x>i) - (y2/a2)lf
2(x,y)dxdy

— co «/ — oo

is finite, then the series (8) with coefficients calculated from (9) converges to /(x,y)
at every continuity point of f ( x , v) (Lebedev 1972; Higgins 1977).

The above expansion can also be written in matrix form:

f ( x , y ) = P'(x,ff1)rV(y,a2), — oo<x,y<oo, (10)

where P'(x, crj is a row vector of 1-D Hermite polynomials, F is the coefficient matrix,
and P(y, cr2) is the column vector of 1-D Hermite polynomials. In other words, the
mth element of P(x, at) is Pm(x, a±\ the (m, n)th element of F is ymn, and the nth
element of ~P'(y, cr2) is Pn(y, a2\ with the prime denoting the transpose.

Assume that the given signal is expanded in terms of a finite number JV of the
generalized Hermite polynomials, using the scale parameters cr10 and a2Q. Then, from
(10), we have

2o)' ~^<X,y<CO, (11)

where the dimension of the vector of polynomials P(.,.) is JV 4-1.
As indicated above, in view of the fact that we have used only a finite number of

terms in the representation, and the coefficients are obtained from the standard
criterion of minimum mean square error, the error in the representation at scale
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( a io>C T2o)> at any P°int (x,y), is given by

(12)

where the error is explicitly shown as dependent on cr10 and cr20.
The Fourier transform of (12) gives

'cOi , j«2, <T I O , <720) = F(;coj, jcu2) - F approx(M ,;
where

— oo < (O1,co2 < °o,

where P* indicates the- Fourier transform of P.
It should be noted that a minimization of the mean-square error is responsible for

the inadequate representation of high frequency components in a finite expansion
of the signal. The point-by-point error is an indication of the extent of the loss of
frequencies higher than those of the expansion. Moreover, this error function is
orthogonal to the JV-dimensional vectors, P'(x, 0i0) and P(y, <r20). As a consequence,
an expansion of err (x,y, <r l 9 <r2) using a± and a2 smaller than <r10 and a20, respectively,
can take into account the frequencies not found in /a fm(x,y). Continuing in the
same manner, the error in the representation at scale (au,<r21), at any point (x,y),
is then given by

(15)

By combining (10)-(15), it can be shown that

f(x, y) =fappros(x> y) + errapprox(x, y, <T I O , <720) + errapprox(x, y, <7n , ff20) + • ••

+ errapProx(x> y> °IK> ^2i) + residual error. (16)

The residual error is the final error which for all practical purposes is beyond the
spectral reach of the cr's chosen in the multiple channels. See Figure la for the lattice
of a value decomposition in the x and y directions, and figure Ib for the block
diagram of the multi-layered reconstruction procedure. Appendix A (§ A3) explains
the notation used in figure Ib.

By virtue of the multi-stage decomposition (figure 1), the spectrum of /approx(x,y)
does not include that of errapprox(x,};5o-10,o-20), which in turn does not contain that
of erra prox(x, y , f f l i t a2i), and so on. This is equivalent to applying a sieve of Hermite
polynomials — hence the title of the paper - at every level. The spectral content
retained at each stage is controlled by the scale parameter, o^.o^-.

4. Properties of the new wavelet array transform

4.1 Stability of the representation

An image f(x,y) is expanded in terms of generalized Hermite polynomials at various
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Layer 0

. CK'1

T Residual error

C0,K Figure 1. (a) Sampling lattice
for the sigma values in the
x- and y-directions. (b) Multi-
layer decomposition of an image
using the lattice of sigma values.
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scales, denoted by a, as follows:

m,n

or

m,n ft, I

+ residueXtL(x,)»J<r10,<r20,...,(71£,ff2L), (17)

where K and L are the number of layers of crl and o2, respectively.
The first terra on the right hand side above, under the double summation symbol,

is the approximation to the original signal represented using (jK + l)(L+l) scales
(layers) each having (N + I)2 coefficients. The coefficients of the first layer are obtained
from

with <. ,.) denoting inner product. Assume a perturbation, 8yl^n in one of the
coefficients yl£n. The resulting signal, fc(x,y), due to this perturbation is given by

£>.;.(*. *<^,*2i)+ Z^^Wi^). (18)
m,n k,l m,n

The change in f ( x , y ) due to this perturbation can be written as

V(x,y) =f(*,y) -/e(x,y) - Z *ri,nH „,,„(*, y,*^^),
m,n

from which

\ nt,n

or

^l^XZlH^x^,^,.,^ )|, (20)
m,n

where Jt = max |<5y^ n|.
In view of the fact that the signal f(x,y) has been assumed to be in L2 and the

Hermite functions have a finite maximum for all m, n (finite), |<5/(x,y)| is bounded.
Hence, the representation is stable.

4.2 Size of the phase-space resolution cell

As opposed to the wavelet transforms of the literature, the shape of the resolution cell
depends on both the spatial spread and the frequency content of the image. The
relations derived below determine the size of the resolution cell in 'phase-space'
(Venkatesh et al 1991).

The effective spatial spread, Xspatial, in the x-direction is defined (as in (2)), by
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where

£(0,0) = f°° r f2(x,y)dxdy
1 — co •> — 00

= l7i.r I"" Hii.(x,y,cr1,«ra)dxdj;, (21)
"Ml J — co J — co

and £(1,0), to be evaluated around a chosen point in the spatial domain, is given by

£(1,0) = I I x2f2(x,y)dxdy.
J — oo J — oo

We employ the recurrence relation

which, when used in (8), gives

m,n

whence, we obtain

v — 00 v — 00 ' m'n

where
/•co /*oo

A=\ H2(x,y,al,a2)dxdy.m,nv

- co J — oo

From the above result, we obtain the effective spatial width in the x-direction as

+ l ' - i a x ^ l x ^ - (23)
m,n

Note that (23) is to be evaluated around a chosen point in the spatial domain. On
the other hand, for the computation of the effective spectral spread in the co-^ direction,
we use the recurrence relation for the Fourier transform of Hm M(p). For simplicity,
we replace the argument, (J(J°-L>Jc°2>(Ti>a2\ by (s)- We have

which satisfies the recursive relation

Multiplying both sides pf (8) by x, and transforming, we get

m,n

from which

— QO ~ QQ

POO

1da>2= IG^doJi
J — 00

\ja>1F(jwij(Q2')\
2d(01da>2= IG^doJidcoj, (25)
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where

m,n

On using the recurrence relation (24), we get

— CO « — CO

where

I — CO u — 00

Therefore, the effective spectral width, Xspecira{, in the o^ -direction is given by

" + D y - - ! . ] 2 x ^ l l i , , * * - (26)

Note that (26) is to be evaluated around a chosen point in the spectral domain.
It can be shown that

and that

— 00 — 00

Let

— CO — CO

From (24) and (26), after considerable simplification, the effective space-bandwidth
product (SBP), is obtained as

V . V
spatial spectral '

TV fc'2j—i i m,n m,n
m,n

S
1) i »7

j2 k2
' m,n m,n

and the space-bandwidth ratio (SBR) as

(27)

. (28)

nt,n
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nt,n
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From the last result, we conclude that the SBR is directly proportional to alt the
constant of proportionality being governed by the ratio of the two quadratic forms,
involving the coefficients, ym n, of the expansion.

The matrices of the quadratic forms inside the square root symbol, are independent
of o"! . If only two coefficients are considered, it can be shown that the ratio SBR = av .
However, in general,

where rmin and rmax are the minimum and maximum values of the square root of the
quadratic forms under the square root symbol. Similar expressions can be obtained
for the effective spatial widths in the y-direction, and for the corresponding effective
spectral widths in the frequency domain.

The area of the phase-space resolution cell is also dependent on the 7ffljn's. Many
possibilities arise. For instance, when a^ is large (and hence the spectral window is
in the low frequency part of the spectrum), and the coefficients, ym n's, are such that
the term inside the square root symbol of (28).is small, then the spectral width is also
small. On the contrary, when 0^ is small (and hence the spectral window is in the
high frequency part of the spectrum), the ym n's may assume values such that the term
inside the square root symbol of (28) is large. As a consequence, the spatial width
could be large in the high frequency part of the spectrum.

In the classical wavelet framework, the shape of the resolution cell (which is a
rectangular block with sides given by ^spatial and ^spectral) in phase-space depends
on the scale. The resolution in the spatial domain increases (decreases in the frequency
domain) with an increase in the scale parameter. The area within each resolution cell
is the same. In the new wavelet array framework, the shape of the resolution cell
does indeed depend on the value of <r1(. and a2J, i = Q,l,...,N and ; = 0, 1, . . . , M, but
the area is independent of the location in the scale-space. See figure 2 for an illustration.

4.3 Zero-crossings at various scales

The Laplacian of the Hermite polynomials at a fixed scale (cr1,cr2) is given by the
following expression (see § A2 of appendix A),

I(d2/dx2} + (d2/dy2)-]f(x,y) * £ Vm
m,n

- [(1/2(7^ + (l/2«r2) + (m/a, ) + (n

+ [m(m- l)MHm._2<n + [n(n - ;

(29)

The Laplacian of the various layers of the approximated signal can be obtained
merely by substituting the wavelet coefficients (at the corresponding layers). This
provides an elegant way of extracting the zero-crossings at different scales of the
representation.

4.4 Layered decomposition

The decomposition in terms of layers of different scales has the desired property of
capturing independent spectral information, by adjusting the scale parameter G. By
virtue of the multi-stage decomposition, the spectrum of the first-level approximation
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Figure 2. Resolution cell in
the standard wavelet framework
(a), and in the new wavelet
array framework (b).

does not include that of the second level, and the second-level approximation is
distinct from that of the third level, and so on.

This can be verified by using the principal component analysis of the Fourier
transform of the multiple layers of reconstruction. The eigenvalues of the covariance
matrix are an indication of the extent to which the individual layers contribute to the
overall reconstruction. The results of computation agree with the above observations.
However, we now demonstrate by a different procedure that the outputs of the various
layers are indeed independent.

Let the output signals of the layers marked 0 to K and 0 to L, parametrized,
respectively, by <TIO to aiK and a20 to <r2L, be given by

Z CH„,„(*, * ffi*'Gw)> * = 0,1,..., K and / = 0,1,..., L.
m,n

Assume that the outputs of the layers (ij) and (r,s), with i,r = 0,1,2,..., K and
j, s = 0, 1, 2, . . . , L, are not independent. Then for all (x, y), we should have

(30)
m,n m,n

(where C is a constant of proportionality) from which we get

Z ̂ P^x.
m,n

y«nPMjfl(x,y,a l r,a2s) }exPr - f^l
J L \2ff l r

+
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or

m,n

X2 V2

_ j__L_ i mi,, , +~ , I ' W2o-1

where Pn(. ,.) are the polynomials associated with #„(.,.),

and

Simplifying (31), we get

which after simplification, and recalling that
po,o(x>y>(Tii>ff2j)=]-> ^.ofo-V^if.*!;^2*/^)*' etc-

gives

IX*m/ = 0, • (32)
rn,n

where, for instance.

> 0,

= Z ClftB
m,n

The polynomial (32) has only distinct contours whereas (30) is to be satisfied over
the entire region. Therefore, the outputs of layers r and s, with r, s = 0, 1, . . . , L, are
independent.

5. Comparison with the implemented results of the literature

In the proposed scheme, as implemented, each layer of the Hermite expansion is
restricted to a 13 x 13 matrix of coefficients, and 7 layers have been used. For
simplicity, only the diagonal in the lattice of figure la has been computationally
implemented.

The original image and the reconstructed image along with the residual error and
the Fourier transform magnitude are shown in figure 3 (plates 1-3). In figure 4
(plates 3 & 4), the results of the reconstruction are shown for a texture image. Table
1 gives the coefficient matrices of the various layers for the reconstructed image.

In figure 3 (plates 1-3), it is observed that sharp boundaries (like a step edge around
the eyeball in the girl image) which contain very high frequency components are not
perfectly reproduced. This is to be expected as we are using a truncated expansion
in terms of number of Hermite polynomials and a finite number of scales.

Further computation has been done, prompting us to the plausible conclusion that
for a decrease in the residual error, an increase in the size of the coefficient matrix
is not as effective as an increase in the number of layers.



Table 1. Typical values for the coefficient matrices of the layers; size of the coefficient matrix: 14 x 14.

(0) Coefficient matrix of layer 0
The actual element

170759
10502
25588

394 -
4903
-277

450
-29

32
0
0
0
0
0

-399
7704

-424
-1380
-448
-89

8
_2

g
0
0
0
0
0

values have
34158

1565
9057

-250 -
1355

26
96

6
5
0
0
0
0
0

been
8588
955

1331
-279

85
-64

12
1
1
0
0
0
0
0

multiplied
4820

-106
1109

-104
121

-18
8
0
0
0
0
0
0
0

by 1000 and truncated.
469

-46
100

-12
13

-4
0
0
0
0
0
0
0
0

358
-16

87
-3

9
-1

0
0
0
0
0
0
0
0

14" 14
6 1
8 5
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0

0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

(1) Coefficient matrix of layer I
The actual

0
0

-8
-4
48
15

-97
-22

82
14

-31
-4

4
0

element

0
0

-4
-3
26
10

-52
-15

44
10

-16
-3

2
0

values have
-7

0
-4
— 1

18
6

-37
-9
31
6

-12
-2

2
0

been
-4

0
0
0
2
2

_4
-4

3
2

-1
0
0
0

multiplied
47

' -2
6
0
2
0

-3
0
2
0
0
0
0
0

by 1000000 and
17
3
2

-1
o'
0
0
0
0
0
0
0
0
0

-94 -

truncated.

25 80
6 -5 -5

-13 -
0

-2
0
0
0
0
0
0
0
0
0

-3 10
1 0
0 1
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

17
3
2

-1
0
0
0
0
0
0
0
0
0
0

-30
2

-3
0
0
0
0
0
0
0
0
0
0
0

-5
_ J

0
0
0
0
0
0
0
0
0
0
0
0

5 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

(2) Coefficient matrix of layer 1
The actual

0
0

-6
3

30
-10
-47

14
31

— 9
-8,

3
0
0

element

0
0
0

— 1
0
5
4

— 5
-7

2
4
0

-1
0

values have
-9

3
-3
-5
23
17

-38
-20

25
11

-7
-3

0
0

been
-11
-2
-3
-1

3
7

— 5
-8

3
4
0

-1
0
0

multiplied
47

-16
-8
-1

1
1
0
j
0
0
0
0
0
0

by 1000000 and

33
8
7

-2
-1

0
1
0
J

0
0
0
0
0

-76 -
29 -
14 -
1

-1
0
0
0
0
0
0
0
0
0

truncated.

40 51
10 -21
-9 -12
3 -1
0 0
0 0
0 0
0 0
0 0
o a
0 0
0 0
0 0
0 0

22
5
5

-1
0
0
0
0
0
0
0
0
0
0

-15
7
4
0
'0
0
0
0
0
0
0
0
0
0

-5
-1
_ 1

0
0
0
0
0
0
0
0
0
0
0

1 0
-1 0

0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

(3) Coefficient matrix of layer 3
The actual

0
_5
-7
49
33

-122
-56
119
42 '

-54
-16

11
3

-1

element
0
0

40
2

-161
-5
221

3
-129

0
34
0

— 4
0

values have
-2

10
20

-4
-17

13
26

-11
-17

4
5
0
0
0

been
-13
-5
-6
-2

-15
12
24

-11
-15

4
4
0
0
0

multiplied
10

-39
-69

— 5
1
3
0

-1
0
0
0
0
0
0

by 1000000 and

30
14
24

-5
-1
-2

0
1
0
0
0
0
0
0

-12 -
51 -
94 -
6

-3
-2

2
0
0
0
0
0
0
0

truncated.

28 6
14 -28
23 -55
6 -3
1 1
0 1
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

11
6

10
-2

0
0
0
0
0
0
0
0
0
0

-1
6

14
0
0
0
0
0
0
0
0
0
0
0

-2
1

-2
0
0
0
0
0
0
0
0
0
0
0

0 0
0 0

-1 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

-. :a

a
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The implementation scheme of Mallat (1989c) avoids a direct expansion in terms
of coefficients, and invokes an indirect relation with the 'quadrature mirror filters'.
There are many disadvantages with such an implicit wavelet scheme. One of them,
for instance, is that the quadrature mirror filters cannot be used directly to obtain
the zero-crossings of the decompositions. In distinct contrast, the proposed wavelet
array scheme offers an explicit representation in the form of a coefficient matrix
(at all levels) from which the zero-crossings can be obtained directly by synthesis.

As has been shown above, the outputs of the various layers in the proposed scheme
are independent. In practice, the orthogonalization of the outputs of the layers shows
that the redundancy in them is not considerable. This shows that the new scheme
possesses, in addition to the multilayered structure, data compression properties
also. However, a direct comparison with the discrete cosine transform (DCT), in this
regard, cannot be made as the primary feature of the proposed representation is
multiresolution decomposition. Besides, the DCT does not have the wavelet structure,
and hence shares with the standard Fourier transform the disadvantages of
'non-localization'.

6. Conclusions

Representations suitable for localization of information in 2-D signals have been
reviewed. A new and elegant method of signal representation based on wavelet arrays
has been proposed. To this end, the use of generalized Hermite polynomials, which
are orthogonal, provides a compact representation of the 2-D signal in terms of a
matrix of coefficients. The novelty of the results lies in the fact that the traditional
assumption of compact support in the spatial or frequency domain has been dispensed
with. However, at the same time, an upper bound on the uncertainty is specified.

There do remain many problems which are unresolved.

• What is the correct or optimum sampling strategy in the (a1, a2) space and how
is it related to the frequency content of the image? For instance, with a texture
gradient, it has been found that the reconstruction is unsatisfactory with the
sampling lattice used for other images.

• Given a physical point (xp,yf\ what is the frequency content of the image in
its neighbourhood?

» Conversely, where do we find, in the physical image, regions with a prescribed
frequency content?

The authors thank the reviewer (s) for some helpful suggestions which led to the
present improved version of the paper. The authors are grateful to Professor T Kailath,
Stanford University, Stanford, California, for his support, encouragement and keen
interest in the work.

Appendix A

Al. Implementation of the quadrature-mirror filter

The quadrature-mirror can be implemented (Mallat 1989c) using a pyramidal
structure. A brief algorithm is given below.
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Let Ss be the original signal" at resolution 1). Let C/n/2 be the low pass filter with
a cutoff frequency n/2 and Gn/2 be the high pass filter with a cutoff frequency of n/2.

Decomposition:

- Filter SJ by Gn/2 to get Wj.
- Expand Wj by a factor of 4 by interpolating between samples.
- Filter SJ by C/n/2 to get S j ~ l .
- Filter SJ~ 1 by Gn/2 to get Wj~l.
- Expand WJ~ : by a factor of 2 by interpolating between samples.
-Filter S^1 by C/n/2 to get SJ~2.
- Filter S j~2 by Gn/8 to get W"'~2.
- Filter SJ'~2 by Un/8 to get S j~3. Sample S-7'"3 by 2 by omitting one point between

samples,
- Filter SJ"2 by Gn/8 to get Wj~2.
- Filter SJ~2 by l/n/8 to get SJ~3. Sample SJ~3 by 2 by omitting one point between

samples.

This completes 4 levels of resolution.

Reconstruction:

- Expand SJ'~4 by a factor of 2 to get SJ
s~p

4.
-Filter S^~p

4 by f/n/8 and filter W}~* by Gn/8. Add up the results to get S j ~ 3 .
~ Expand SJ'~3 by a factor of 2 to get SJ

e;p
3.

-Filter S^~p
3 by l/n/8 and filter WJ~2 by Gn/8. Add up the results to get SJ~2.

- Reduce Wj~ x by a factor of 2 to get Wj~A
l .

-Filter Sj~2 by !7n/4 and filter W^1 by Gn/4. Add up the results to get SJ~*.
- Reduce WJ by a factor of 4 to get Wj

nd.
-Filter S7'"1 by L/n/2 and filter WJ

nA by Gn/2. Add up the results to get Sj.

In the above algorithm for reconstruction, there is no reference to the extraction of
the wavelet coefficients. Further, image properties/features (like the zero-crossings)
of the original image cannot be directly extracted from the filter outputs,

A2. Zerocrossings at various scales

From (8), we get

In what follows, we omit, for simplicity, the arguments (x, y.a^, o2} in the Hm n's.
From the recursive relation,

-H

we derive

d2 1 x2 \ 2x



and

Therefore,
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H m'"+1

J_
ffl

Further, from the recursive relation,

we have

^^,n =Similarly,
V2Hm,n = (

Therefore,
+2 + (a2/2)(2n + 1)H^ + n(n -

Using this in (30), we get for any layer,

ri r ~ I I

(A3)

= Z Vm,nHm,n>
m,n

where

I 1 m

(A4)

2)(m
>m + 2,n '

From (32) the Laplacian of the approximated signal can be obtained in the various
layers, merely by substituting the wavelet coefficients for the corresponding layers.
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A3. Notation for figure 1

Hk'' is an (N + 1) x (N + 1) matrix.

m,n = 0, 1,2,.. . , t f ; fc = 0,1,2,... ,£;/ = (), 1,2,. ...L.

'*' denotes inner product for coefficient extraction and 'x' denotes matrix
multiplication of the type (11) for reconstruction. Ck>l is an (AT + 1) x (N + 1) matrix
of coefficients at the (fc,l)th layer and errM(x,)>) is the error at the end of the (fc,/)th
layer as a summation of outputs of the previous layers.
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Figure! (a-e) Plate 1

(b)

^ '̂î .l.̂ ^^«C^*?^:-' .&! fc.«li'. •-;!-:'-^;V:Vi'.
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Figure 3. (f-i)

(f)

Plate 2
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( j )

it-

Figure 3. (a) Original image, (b) Reconstructed image (using 7 layers), (c) Residual
error (at the end of 7 layers). Fourier transforms of layer 0 output (d), layer 1
output (e), layer 2 output (f), layer 3 output (g), layer 4 output (h), layer 5 output
(i), and layer 6 output (j). Note that in figures (d) to (j), the outputs on the left
hand side are real and those on the right are imaginary.

Figure 4. (a) (Caption on p. 324)
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(b) Plate 4

(c)

Figure 4. (a) Original image, (b) Reconstructed image (using 7 layers) and
(c) residual error (at the end of 7 layers).

*it


