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Unveiling the Kondo cloud: Unitary renormalization-group study of the Kondo model
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We analyze the single-channel Kondo model using the recently developed unitary renormalization-group
(URG) method and obtain a comprehensive understanding of the Kondo screening cloud. The fixed-point
low-energy Hamiltonian enables the computation of a plethora of thermodynamic quantities (specific heat,
susceptibility, Wilson ratio, etc.) as well as spectral functions, all of which are found to be in good agreement
with known results. By integrating out the impurity, we obtain an effective Hamiltonian for the excitations of the
electrons comprising the Kondo cloud. This is found to contain both k-space number diagonal (Fermi liquid) and
off-diagonal four-fermion scattering terms. Our conclusions are reinforced by a URG study of the two-particle
entanglement and many-body correlations among members of the Kondo cloud and impurity. The entanglement
between the impurity and a cloud electron, as well as between any two cloud electrons, is found to increase
under flow towards the singlet ground state at the strong-coupling fixed point. Both the number diagonal and
off-diagonal correlations within the conduction cloud are also found to increase as the impurity is screened
under the flow, and the latter are found to be responsible for the macroscopic entanglement of the Kondo-singlet
ground state. The URG flow enables an analytic computation of the phase shifts suffered by the conduction
electrons at the strong-coupling fixed point. This reveals an orthogonality catastrophe between the local-moment
and strong-coupling ground states and is related to a change in the Luttinger volume of the conduction bath under
the crossover to strong coupling. Our results offer fresh insight into the nature of the emergent many-particle
entanglement within the Kondo cloud and pave the way for further investigations in more exotic contexts such
as the fixed point of the overscreened multichannel Kondo problem.

DOI: 10.1103/PhysRevB.105.085119

I. INTRODUCTION

In this paper, we present a unitary renormalization-group
(URG) analysis of the single-channel Kondo model. The
model involves a quantum impurity interacting with a conduc-
tion bath. It can be derived from the particle-hole-symmetric
single-impurity Anderson model using a Schrieffer-Wolff
transformation that integrates out single-particle interactions
[1]. The model was initially developed to study metals with
magnetic impurities and was used by Kondo [2,3] to explain
the resistivity minimum that appears in these materials at
low temperatures. Since then, various methods have been
applied to determine the low-energy behavior of this model.
Notable attempts include the Coulomb gas approach by
Anderson and Yuval [4] and Anderson et al. [5] and pertur-
bative renormalization-group approach (poor man’s scaling)
by Anderson [6]. The latter method showed that the Kondo
exchange coupling J flows to larger values as we go to lower
energy scales, at least for small J . The full crossover from the
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local-moment phase at small J to the screened moment strong-
coupling phase at large J was later obtained by the numerical
renormalization-group (NRG) technique developed by Wil-
son [7,8], the Bethe ansatz solution by Andrei et al. [9] and
Tsvelick and Wiegmann [10], and the conformal field theory
(CFT) approach [11,12]. Another important strong-coupling
approach based on arguments of scattering phase shifts is that
of the local Fermi liquid theory [13,14] by Nozières. The low-
temperature properties were found to be universal functions
of a single energy scale, the Kondo temperature TK [7,15–
18]. All the predicted aspects of the Kondo effect, including
the existence of the Kondo cloud [19–23], were observed
experimentally in quantum dot systems [24–28]. Scanning
tunneling spectroscopy (STS) measurements have revealed
that the Kondo effect often depends on the neighborhood
of the impurities, in Cu and Co atoms [29,30]. It was also
shown [31], using quantum dots, that the out-of-equilibrium
Kondo effect also displays universality, the physics at low
temperatures being decided by only two energy scales, the
frequency and amplitude of the perturbation. The impurity
spectral function has been calculated using NRG [32], both at
T = 0 [33,34] and at T > 0 [35], as well as using diagram-
matic methods [36]. The electrical resistivity was found to
obey single-parameter scaling behavior in T/TK [37]. Noz-
ières went further and analyzed a more realistic model, the
multichannel Kondo problem, in which multiple conduction
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bath channels interact with quantum impurity at the center
[38]. Such a model was found, through methods such as the
Bethe ansatz, CFT, and bosonization, among others, to host
a non-Fermi-liquid low-energy phase [38–49]. The Kondo
effect also occurs in light quark matter which interacts with
heavy quark impurities through gluon-exchange interactions;
the scattering amplitude goes through a similar logarithmic
divergence, and renormalization-group calculations reveal a
Kondo scale in such systems [50,51]. The Kondo effect can
also be realized for other fermionic systems such as graphene
[52], Dirac-Weyl semimetals [53,54], and dense nuclear mat-
ter [50,55,56].

Obtaining the form of the effective Hamiltonian governing
the low-energy physics of the Kondo cloud and the many-
body singlet wave function has remained a challenge. In this
paper, we have analyzed the Kondo model on a tight-binding
lattice using the recently developed URG method [57,58].
This method has already been applied to a variety of problems
such as the two-dimensional (2D) Hubbard model [59,60], the
quantum kagome antiferromagnet [61], a generalized model
of electrons in two spatial dimensions with attractive U(1)-
symmetric interactions [62], the 1D Hubbard model [63], and
other generalized models of electrons with repulsive interac-
tions with and without translation invariance [58]. The method
involves applying unitary transformations [see Eq. (2)] on the
Hamiltonian that decouple high-energy electrons, creating a
family of unitarily connected Hamiltonians at progressively
smaller energy scales. The decoupled electrons lose their
quantum fluctuations in the process, becoming integrals of
motion (IOMs). This program leads to one of the main results
of this work: a unitarily transformed strong-coupling fixed-
point Hamiltonian. It is from this fixed-point Hamiltonian
that we obtain the effective Hamiltonian for the electrons that
comprise the Kondo cloud, by integrating out the impurity.
This effective Hamiltonian is found to contain both Fermi
liquid (diagonal) and off-diagonal four-fermion interaction
terms, shedding new light on the nature of the Kondo cloud
and the interactions within. It is seen that the flow towards the
strong-coupling fixed point is concomitant with the growth
of these off-diagonal terms, and this picture is made clearer
by the evolution of the spectral function calculated using the
effective Hamiltonians. For the purposes of benchmarking, we
have also computed several thermodynamic quantities (e.g.,
the impurity susceptibility, specific heat, Wilson ratio, etc.)
from this effective theory. These are described in Appendix D
and are found to be in good agreement with the results known
from the literature.

Another important result of this work involves studies of
the evolution of the macroscopic entanglement of the Kondo
cloud with the impurity spin and the many-body correlations
inside the Kondo cloud under renormalization towards strong
coupling. Experimental studies of entanglement and corre-
lations have been performed in double quantum dots [64].
For the purpose of studying the entanglement and many-body
correlations, we employ the entanglement renormalization-
group (RG) method developed recently by some of us in
Refs. [62,63,65]. These calculations are enabled by the fact
that the RG transformations are unitary and preserve the total
spectral weight. Thus iterative applications of the inverse of
these unitary transformations on the IR fixed-point singlet

wave function generate a family of wave functions under a
reversal of the RG flow towards the UV. The entanglement
and correlation measures are then calculated from this fam-
ily of wave functions and represent their RG evolution. The
correlations (diagonal and off-diagonal) as well as the mu-
tual information (among members of the cloud as well as
between the impurity and the cloud) are found to increase
towards the strong-coupling fixed point, and this is consistent
with the presence of the off-diagonal scattering term which
generates the correlation among the members of the cloud.
Our quantification of the many-particle entanglement through
the mutual information of the Kondo screening cloud and
the impurity and the study of its renormalization is com-
plementary to methods that have been used previously in
the literature. This includes the impurity contribution to the
entanglement of a region in the conduction bath (dubbed
the impurity entanglement entropy in Refs. [66–68]), the
entanglement entropy obtained by tracing out the impurity
[19,69,70], and the concurrence between the impurity and
the rest of the conduction bath [71]. Recent works have also
shown, using negativity as a measure of entanglement [72],
that the impurity is maximally entangled with the cloud [73].

The rest of the paper is outlined as follows. In Sec. II,
we introduce the Hamiltonian for the single-channel Kondo
model. We perform the URG analysis on the Hamiltonian in
Sec. III. Section IV constitutes results on the scaling of the
Kondo coupling, description of the low-energy stable fixed
point in terms of the effective Hamiltonian and ground-state
wave function, and the redistribution of spectral weight under
the RG flow. In Sec. V, we obtain the effective Hamilto-
nian for the Kondo cloud excitations and describe the salient
features. In Sec. VI, we study the entanglement features
and many-body correlations of the Kondo cloud. We end in
Sec. VII with a discussion of the results and some avenues
for future investigations. Appendix A shows the derivation of
the RG equation using the URG method. In Appendixes B
and C, we obtain a real-space effective Hamiltonian for
the low-energy excitations of the strong-coupling fixed-point
Hamiltonian and calculate the conduction electron scatter-
ing phase shifts close to the ground state. Appendixes D 1
and D 2 focus on calculating some thermodynamic quantities
(impurity susceptibility, impurity specific heat, and impurity
thermal entropy) in order to benchmark with existing results.

II. THE MODEL

The Kondo model [2,6] describes the coupling between a
magnetic quantum impurity localized in real space and a bath
of conduction electrons

Ĥ =
∑
kσ

εkn̂kσ + J

2

∑
k,k′

S · c†
kασαβck′β. (1)

We will consider a 2D electronic bath with a dispersion
εk = −2t (cos kx + cos ky) and with the Fermi energy set to
EF = μ. Here, J is the Kondo scattering coupling between the
impurity and the conduction electrons. An important feature
of the Kondo coupling is the two different classes of scattering
processes: one involving spin-flip scattering processes for the
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FIG. 1. The Kondo model is composed of a two-dimensional
conduction electron bath (Fermi liquid) coupled to a magnetic
impurity via a coupling of spin-flip scattering (solid arrows) and
non-spin-flip scattering (dashed arrows).

bath electrons (c†
k↑ck′↓ + H.c.), and the other involving non-

spin-flip (i.e., simple potential) scattering processes (Fig. 1).
In the antiferromagnetic regime J > 0, the spin-flip scattering
processes generate quantum entanglement between the impu-
rity spin and a macroscopic number of bath electrons (called
the “Kondo cloud”), resulting in the complete screening of the
impurity via the formation of a singlet spin state. It is clear
that the dynamical Kondo cloud corresponds to an effective
single spin-1/2, such that the screening is an example of
macroscopic quantum entanglement arising from electronic
correlations. It is the nature of this entanglement, and the
underlying quantum liquid that forms the Kondo cloud, that
we seek to learn more of.

III. URG THEORY FOR THE KONDO MODEL

In constructing an effective low-energy theory for the
Kondo singlet, we apply the unitary RG formalism [57–63]
to the Kondo model such that electronic states from the non-
interacting conduction bath are stepwise disentangled, starting
with the highest-energy electrons at the bandwidth and even-
tually scaling towards the Fermi surface (FS). While this
aspect is similar to Anderson’s poor man’s scaling [6], we
shall see that several other aspects of the unitary RG formal-
ism are different from those adopted in the poor man’s scaling
approach.

The electronic states are labeled in terms of the normal
distance � from the FS and the orientation unit vectors ŝ
(Fig. 2): k�ŝ = kF (ŝ) + �ŝ, where ŝ = ∇εk

|∇εk| |εk=EF . The vari-
ous ŝ represent the normal directions of the Fermi surface. The
states are labeled as | j, l, σ 〉 = |k� j ŝ, σ 〉, l := (ŝm, σ ). The
�’s are arranged as follows: �N > �N−1 > · · · > 0, where
the electronic states farthest from FS �N are disentangled
first, eventually scaling towards the FS. This leads to the
Hamiltonian flow equation [57]

H( j−1) = U( j)H( j)U
†
( j), (2)

where the unitary operation U( j) is the unitary map at RG
step j.

FIG. 2. Fermi surface geometry for a circular Fermi volume of
noninteracting electrons in two spatial dimensions.

U( j) disentangles all the electronic states |k� j ŝm , σ 〉 on the
isogeometric curve and has the form [57,59]

U( j) =
∏

l

Uj,l ,Uj,l = 1√
2

[1 + η j,l − η
†
j,l ], (3)

where η j,l are electron-hole transition operators following the
algebra

{η j,l , η
†
j,l} = 1, [η j,l , η

†
j,l ] = 1. (4)

The transition operator can be represented in terms of the
diagonal (HD) and off-diagonal (HX ) parts of the Hamiltonian
as follows:

η j,l = Tr j,l (c
†
j,l Hj,l )c j,l

1

ω̂ j,l − Tr j,l
(
HD

j,l n̂ j,l
)
n̂ j,l

. (5)

We note that in the numerator of the expression for η j,l , the
operator Tr j,l (c

†
j,l Hj,l )c j,l + H.c. is composed of all possible

scattering vertices that modify the configuration of the elec-
tronic state | j, l〉 [57]. The generic forms of HD

j,l and HX
j,l are

as follows:

HD
j,l =

∑
�ŝ,σ

ε j,l n̂k�ŝ,σ +
∑

α

	4,( j,l )
α n̂kσ n̂k′σ ′

+
∑

β

	
8,( j,l )
β n̂kσ n̂k′σ ′ (1 − n̂k′′σ ′′ ) + · · · ,

HX
j,l =

∑
α

	2
αc†

kσ ck′σ ′ +
∑

β

	2
βc†

kσ c†
k′σ ′ck′

1σ
′
1
ck1σ1 + · · · .

(6)

The indices α and β are strings that denote the quantum
numbers of the incoming and outgoing electronic states at
a particular interaction vertex 	n

α or 	m
β . The operator ω̂ j,l

accounts for the quantum fluctuations arising from the non-
commutation between different parts of the renormalized
Hamiltonian and has the following form [57]:

ω̂ j,l = HD
j,l + HX

j,l − HX
j,l−1. (7)

Upon disentangling electronic states ŝ, σ along an isogeomet-
ric curve at distance � j , the following effective Hamiltonian
Hj,l is generated:

Hj,l =
l∏

m=1

Uj,mH( j)

[
l∏

m=1

Uj,m

]†

. (8)
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Here, τ j,l = n j,l − 1
2 . We note that Hj,2n j+1 = H( j−1) is the

Hamiltonian obtained after disentangling all 2nj electronic
states on the isogeometric curve j at distance � j . Below, we
depict the different terms generated upon successive disentan-
glement of the states |k� j ŝl , σ 〉 on a given curve,

Hj,l+1 = Tr j,l (H( j,l ) ) + {c†
j,l Tr j,l (H( j,l )c j,l ), η j,l}τ j,l , τ j,l

= n̂ j,l − 1
2 ,

Hj,l+2 = Tr j,l+1(Tr j,l (H( j,l ) ))

+ Tr j,l+1({c†
j,l Tr j,l (H( j,l )c j,l ), η j,l}τ j,l )

+{c†
j,l+1Tr j,l+1(Tr j,l (H( j,l ) )c j,l+1), η j,l+1}τ j,l+1

+ {c†
j,l+1Tr j,l+1({c†

j,l Tr j,l (H( j,l )c j,l ), η j,l}c j,l+1),

× η j,l+1}τ j,lτ j,l+1,

Hj,l+3 = . . . terms with τ j,l , τ j,l+1, τ j,l+2 . . .

+ . . . terms with τ j,lτ j,l+1, τ j,l+1τ j,l+2, τ j,lτ j,l+2 . . .

+ . . . terms with τ j,lτ j,l+1τ j,l+2. (9)

Upon disentangling, the multiple electronic states placed in
the tangential direction on a given momentum shell at distance
� j generate a RG contribution from leading-order scattering
processes (terms multiplied by τ j,l , τ j,l+1 etc.) that scale as
Area/Vol = 1/L. Contributions from higher-order processes,
such as terms multiplied by τ j,lτ j,l+1 and τ j,lτ j,l+1τ j,l+2, scale
as (Area)2/Vol2 = 1/L2 and (Area)3/Vol3 = 1/L3 respec-
tively. Here, each factor of area arises from decoupling an
entire shell of single-particle states (τ j,l ) at every RG step,
and every factor of volume arises from the Kondo coupling.
Accounting for only the leading tangential scattering pro-
cesses, as well as other momentum transfer processes along
the normal direction ŝ, the renormalized Hamiltonian H( j−1)

has the form [57]

Tr j,(1,...,2n j )(H( j) ) +
2n j∑
l=1

{c†
j,l Tr j,l (H( j)c j,l ), η j,l}τ j,l . (10)

From the effective Hamiltonian obtained at the stable fixed
point Ĥ∗, we can compute the (un-normalized) density matrix
operator (ρ̂ = e−βĤ∗

) and thence the finite-temperature parti-
tion function as

Z = Tr[ρ̂] = Tr[e−βĤ∗
] = Tr[U †e−βĤ∗

U ] = Tr[e−βĤ ],
(11)

where β = 1/kBT , U = ∏ j∗
1 U( j), H is the bare Hamiltonian,

and j∗ is the RG step at which the IR stable fixed point is
reached. This indicates that the partition function is preserved
along the RG flow as the unitary transformations preserve the
eigenspectrum.

IV. CROSSOVER FROM LOCAL MOMENT TO
STRONG COUPLING

A. The ir fixed-point Hamiltonian and wave function

The unitary RG process generates the effective Hamilto-
nian’s Ĥ( j)(ω)’s for various eigendirections |�(ω)〉 of the ω̂

operator. Note that the associated eigenvalue ω identifies a
subspectrum in the interacting many-body eigenspace. The

form of Ĥ( j)(ω) is given by

∑
j,l,σ

ε j,l n̂ j,l + J ( j)(ω)S · s< +
j,n j∑

a=N,
m=1

J (a)Szsz
a,ŝ,m, (12)

where the label a indexes the isoenergetic shells that have
already been decoupled and hence run from the furthest
shell a = N to the most recently decoupled shell a = j. We
also defined s< = 1

2

∑
j1, j2< j∗,

m,m′
c†

j1,ŝm,ασαβc j2,ŝm′ ,β as the total

spin operator for the Kondo cloud and sz
l,ŝ,m = 1

2 (n̂l,ŝm,↑ −
n̂l,ŝm,↓). The derivation of the above equation is presented in
Appendix A. Here, the second term is the effective Hamilto-
nian for the coupling of the Kondo cloud to the impurity spin,
while the third encodes the interaction between the impurity
spin moment and the decoupled electronic degrees of freedom
that do not belong to the Kondo cloud (lying on radial shells
in momentum space indexed by the RG step j). Note that the
third term is an Ising coupling and involves only potential
scattering of the decoupled electrons and the impurity; hence
it does not cause any spin-flip scattering of the impurity spin.
Importantly, we will see later that Eq. (12) encodes the entire
T = 0 RG crossover. Employing Eq. (11), this enables a com-
putation of the entire RG crossover at finite T as well. The
Kondo coupling RG equation for the RG steps (Appendix A)
has the form

J ( j)(ω)

 ln � j
�0

= n j (J ( j) )2
[(

ω − h̄vF � j

2

)]
(
ω − h̄vF � j

2

)2 − (J ( j) )2

16

, (13)

where n j = ∑
ŝ 1 is the number of states on the isogeometric

shell at distance � j from the Fermi surface. We have assumed
that the conduction bath dispersion is linear near the Fermi
surface: ε j = h̄vF � j , vF being the Fermi velocity. Note that
the denominator  ln � j

�0
= 1 for the RG scale parametrization

� j = �0 exp(− j). We now redefine Kondo coupling as a
dimensionless parameter

K ( j) = J ( j)

ω − h̄vF
2 � j

(14)

and operate in the regime ω > h̄vF
2 � j . With the above

parametrization of Eq. (14), we can convert the difference RG
relation [Eq. (13)] into a continuum RG equation

dK

d ln �
�0

=
(

1 − ω

ω − 1
2 h̄vF �

)
K + n(�)K2

1 − K2

16

, (15)

where n(�) is the continuum counterpart of nj and represents
the number of electronic states on the isogeometric shell at
momentum �.

Upon approaching the Fermi surface, � j → 0; hence (1 −
ω

ω−h̄vF �
) → 0, and n(�) can be replaced by density of states

on the Fermi surface n(0):

dK

d ln �
�0

= n(0)K2

1 − K2

16

. (16)

At this point, we observe an important aspect of the RG
equation: For K � 1, the RG equation reduces to the one-loop
form: dK

d ln �
�0

= K2 [6]. On the other hand, the nonperturbative
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FIG. 3. Schematic RG phase diagram for the Kondo problem.
The red dot represents the intermediate-coupling fixed point at K∗ =
4 for the case of the antiferromagnetic Kondo coupling. The blue
dot represents the critical fixed point at K∗ = 0 for the case of the
ferromagnetic Kondo coupling.

form of the flow equation obtained from the URG formalism
shows the presence of an intermediate-coupling fixed point at
K∗ = 4 in the antiferromagnetic regime K > 0 (Figs. 3 and 4).
Upon integrating the RG equation and using the fixed-point
value K∗ = 4, we obtain the Kondo energy scale (TK) and
thence the effective length of the Kondo cloud (ξK)

1

K0
− 1

2
+ K0

16
= −n(0) ln

�∗

�0
, (17)

�∗ = �0 exp

(
1

2n(0)
− 1

n(0)K0
− K0

n(0)16

)
, (18)

TK = h̄vF �0

kB
exp

(
1

2n(0)
− 1

n(0)K0
− K0

n(0)16

)
, ξK = 2π

�∗ .

(19)

At the IR fixed point in the antiferromagnetic regime the
effective Hamiltonian is given by

H∗ =
∑

|�|<�∗
h̄vF �n̂�,ŝ,σ + J∗S · s< +

j∗,n j′∑
j′=N,m=1

J j′Szsz
j′,m.

(20)

In the equation, m refers to the various normal directions ŝm

of the Fermi surface. In the above equation, the second term is
the effective Hamiltonian for the coupling of the Kondo cloud

FIG. 4. Red: renormalization of the dimensionless Kondo cou-
pling K towards the strong-coupling fixed point (K > 0) with RG
steps (ln � j/�0). The growth of the Kondo coupling to a finite value
of the intermediate-coupling fixed point is evident. Blue: decay of the
dimensionless Kondo coupling K to zero towards the local-moment
critical fixed point (K < 0) with RG steps (ln � j/�0). For these
plots, we chose ω = h̄vF � j .

to the impurity spin. The third encodes the Ising interaction
between the impurity spin moment and the magnetic moment
of the decoupled electronic degrees of freedom that do not
belong to the Kondo cloud (lying on radial shells in mo-
mentum space indexed by the RG step j, and corresponding
to the IOMs generated during the RG flow). As reported in
Appendix D, the fixed-point Hamiltonian has been used to
compute various thermodynamic quantities such as the im-
purity susceptibility, impurity specific heat, thermal entropy,
Wilson number, and Wilson ratio. The values obtained are
found to be in good agreement with those from other methods
such as the NRG or the Bethe ansatz [7,8,74,75].

We can now extract a zero mode from the above Hamil-
tonian that captures the low-energy theory near the Fermi
surface,

Hcoll = 1

N

∑
|�|<�∗

h̄vF �
∑

|�|<�∗
n̂�,ŝ,σ + J∗S · s<

+
j,n j′∑

j′=N,m=1

J j′Szsz
j′,m

= J∗S · s< +
j,n j′∑

j′=N,m=1

J j′Szsz
j′,m. (21)

In the first step, the first term vanishes as the sum over wave
vector � within the symmetric window �∗ around the Fermi
surface itself vanishes. Indeed, by taking the Ising coupling
between the impurity spin and the IOMs (sz

j′,m) to be a con-
stant, we observe that the Kondo-singlet state

|�∗〉 = 1√
2

(|↑d ,⇓〉 ⊗ |↓〉 − |↓d ,⇑〉 ⊗ |↑〉) (22)

corresponds to the ground state of the zero-mode Hamiltonian
at the IR fixed point [Eq. (21)]. In the singlet state written
above, |↑d〉 and |↓d〉 represent the configuration of the impu-
rity spin Sz, |⇑〉 and |⇓〉 represent the configuration of the
spin of the Kondo cloud sz

<, and |↑〉 and |↓〉 represent the
spin of the IOMs sz = ∑

j1> j∗,
m

n̂ j1,ŝm,ασ z
αβ . Signatures of such

a singlet ground state have been experimentally probed using
nuclear magnetic resonance (NMR) experiments in Cu nuclei
[76], using conductance measurements in carbon nanotubes
[77–79], and using STS measurements in quantum corrals
[80–83].

B. Kondo cloud size and effective Kondo coupling as
functions of bare coupling J0

In Fig. 5, we show the variation of the Kondo cloud size ξK

and effective Kondo coupling J∗ as a function of bare coupling
J (in units of t) in the range 5.7 × 10−5 < J < 5.4. All plots
below (including Fig. 5) are obtained for momentum-space
grid 100 × 100 and with RG scale factor � j = b� j+1 (b =
0.9999 = 1 − 1/N2, N = 100). The EF for the 2D tight-
binding band −W < Ek = −2t (cos kx + cos ky) < W (W =
4t) is chosen at EF = −3.9t , and the bare k-space cutoff is set
at �0 � 2.83. The variation of the renormalized Kondo cou-
pling J∗ with the bare J shown in Fig. 5 clearly indicates the
flow under RG towards saturation at a strong-coupling value
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FIG. 5. Red: Kondo cloud length ξK vs bare Kondo coupling J .
Blue: renormalized (ren.) Kondo coupling J∗ vs J (x axis in log
scale). The bare Kondo coupling J is chosen to lie within the range
5.7 × 10−5 < J < 5.4.

of J∗
sat ∼ 16. Similarly, the variation of the Kondo screening

length ξK with J in Fig. 5 shows a fall to an asymptotic value
of ξK ∼ 3 lattice sites at the strong-coupling fixed point. We
recall that Wilson’s NRG calculation for the Kondo problem
(for a bath of conduction electrons in the continuum with
linear dispersion and a very large UV cutoff D) shows that the
renormalized Kondo coupling J∗ → ∞ under flow to strong
coupling. This can be reconciled with our URG results by
noting that the value of J∗

sat increases upon rescaling the con-
duction bath bandwidth D to larger values (by rescaling the
nearest-neighbor hopping strength t). This is shown in Fig. 6,
where we see that J∗

sat increases from a value of O(1) (in units
of t) to O(109) as t is increased from O(1) to O(104). Thus
taking the limit of D → ∞ will lead to J∗

sat → ∞.
There is another aspect of this method that is worth point-

ing out: The size of the Kondo cloud emerges as a natural
length scale of the low-energy theory. The URG moves for-
ward by decoupling high-momentum states. Each momentum

FIG. 6. Variation of the renormalized Kondo coupling J∗ with
the hopping parameter O(1) < t < O(104) of the electronic bath
(and hence the bandwidth).

FIG. 7. Emergence of the Kondo length scale under URG. The
red dot represents the impurity site, while the wavelike structure
represents the shortest wavelength interacting with the impurity at
any given point of the RG. The leftmost image is closest to the
local-moment fixed point, while the rightmost image is closest to the
strong-coupling one.

state wave function �k is associated with a de Broglie wave-
length λk ∼ 1

k . At high energies (temperatures), all possible
wavelengths are interacting with the impurity. Under RG, the
shortest of these wavelengths get decoupled, and the impurity
interacts with only longer wavelengths. The shortest such
wavelength that is still interacting with the impurity at the
fixed point defines the Kondo length scale ξK (Fig. 7).

The members of the Kondo cloud then involve all states
with wavelengths starting from ξK and extending up to ∞.
From existing results as well as our own investigations (inset
of Fig. 8), it is clear that the width of the spectral function
increases with temperature. This width defines the relevant
energy scale ω(T ) [and hence a relevant length scale ξ (T ) ∼
ω−1(T )] for interactions with the impurity. Higher temper-
atures therefore lead to reduced ξ (T ). This means that at
sufficiently large temperatures, the relevant length scale ξ (T )
is shorter than the Kondo length scale ξK: ξ (T ) � ξK, which
means that the Kondo effect will not manifest at temperatures
T � TK: The RG flow is not able to filter out the low-energy
physics because of the thermal fluctuations. Similar insights
were obtained in Ref. [84] using a real-space renormalization-
group flow.

FIG. 8. Impurity spectral function as a function of ω/D at
various values of J , starting from weak coupling and extending
up to strong coupling. D is the half bandwidth and is set to 1.
The inset shows the spectral function at various temperatures. The
width increases with increasing temperature (see final paragraph of
Sec. IV B).
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C. Redistribution of spectral weight under RG flow

The presence of a unitarily transformed effective Hamilto-
nian at each stage of the RG allows one to map the journey
in terms of changes in the distribution of the total spectral
weight. In this section, we will compute the impurity spectral
function at various values of the running coupling J , following
the expression [85,86]

Aσ
d = − 1

π
Im〈{Oσ , O†

σ }〉, Oσ = J

2
(S−σ c0,−σ + Szc0,σ ),

(23)

where 〈· · · 〉 indicates a thermal average, { , } indicates an
anticommutator, and c0,σ = ∑

k ckσ .
In order to plot the spectral function (Fig. 8), we chose vari-

ous values of J to mimic the crossover from the local-moment
to the strong-coupling fixed points. The spectral function is
normalized by dividing by the total area under the curve. The
evolution of the spectral functions shows the increase in the
spectral weight at the zero-energy resonance at the cost of that
at higher frequencies. This transfer of spectral weight occurs
because the high-frequency excitations are slowly getting in-
tegrated out and consumed into the IOMs, while the Kondo
cloud gets distilled into purely low-energy modes proximate
to the Fermi surface. This should be contrasted with the
sharpening of the Abrikosov-Suhl resonance in the spectral
function of the bare Hamiltonian as obtained from other meth-
ods (e.g., NRG), which corresponds to the excitations of the
local Fermi liquid.

The inset of Fig. 8 also shows the change in the spectral
function when temperature is introduced. The broadening of
the central peak implies a decrease in the relevant length scale
and hence a destruction of screening for T � TK. This was
also shown in Ref. [85].

V. EFFECTIVE HAMILTONIAN FOR EXCITATIONS OF
THE KONDO CLOUD

In this section we will study the effect of the renormalized
Kondo coupling on the self-energy of the electrons comprising
the Kondo cloud. We integrate out the decoupled electronic
states to obtain the effective Hamiltonian H∗ of the impurity
+ electronic cloud system. In this Hamiltonian we have ad-
ditionally kept the electronic dispersion to study the effect of
electronic density fluctuation due to the interelectronic inter-
action mediated by the impurity spin,

H∗ = H∗
0 + J∗

2

∑
j1, j2< j∗,

m,m′

S · c†
j1,ŝm,ασαβc j2,ŝm′ ,β , (24)

where H∗
0 = ∑

|� j |<�∗,σ ε j n̂ j,ŝ,σ . In order to study the in-
terelectronic interaction, we need to isolate the quantum
impurity from the Kondo cloud. This can be done by first re-
casting the many-body eigenstate |�〉 of H∗ in the |↑d〉 , |↓d〉
basis of the impurity and the associated configuration of the
rest of the electronic states. We will then perform a pertur-
bative expansion in the small parameter t2

J , from which we
obtain the effective k-space Hamiltonian for the Kondo cloud.
This is justified by the fact that the Kondo coupling can be

made arbitrarily large by performing the expansion as close to
the strong-coupling fixed point as desired.

At the ground state, the wave function will be a singlet
composed of the impurity spin and the composite spin formed
by the conduction electrons at the origin (|⇑〉 , |⇓〉): |�〉 =
a0 |↑d〉 |⇓〉 + a1 |↓d〉 |⇑〉. With this ground state in mind, we
can rewrite the eigenvalue relation H∗

K |�〉 = EGS |�〉 as a set
of two coupled equations:

a0

(
H∗

0 + J∗

2
sz

)
|⇓〉 + a1

J∗

2
s− |⇑〉 = a0EGS |⇓〉 ,

a0
J∗

2
s+ |⇓〉 + a1

(
H∗

0 − J∗

2
sz

)
|⇑〉 = a1EGS |⇑〉 . (25)

By combining these two equations and eliminating |⇑〉, we
obtain the effective Hamiltonian for excitations in the sub-
space of states |⇓〉:

[
H∗

0 + J∗

2
sz + s−

(J∗ )2

4

EGS + J∗
2 sz − H∗

0

s+

]
|⇓〉 = EGS |⇓〉 .

(26)
From here we obtain the form of the effective Hamilto-
nian accounting for the leading-order density-density and
off-diagonal four-fermion interaction terms, by expanding the
denominator in powers of H∗

0 /J .

H∗
0 + J∗

2
sz + s−

(J∗ )2

4(
EGS + J∗

2 sz
)(

1 − 1
EGS+ J∗

2 sz
H∗

0

) s+

≈ H∗
0 + J∗

2
sz + s−

(J∗ )2

4

EGS + J∗
2 sz

(
1 + 1

EGS + J∗
2 sz

H∗
0

+ 1

EGS + J∗
2 sz

H∗
0

1

EGS + J∗
2 sz

H∗
0

)
s+ + O((H∗

0 )3)

≈ H∗
0 + J∗

2
sz + s−

(J∗ )2

4

EGS + J∗
2 sz

s+ + s−
(J∗ )2

4(
EGS + J∗

2 sz
)2 H∗

0 s+

+ s−
(J∗ )2

4(
EGS + J∗

2 sz
)2 H∗

0
1

EGS + J∗
2 sz

H∗
0 s+

≈ H∗
0 + J∗

2
sz +

(
1

2
− sz

) (J∗ )2

4

EGS + J∗
4

+ s+
(J∗ )2

4(
EGS + J∗

2 sz
)2 (s−H∗

0 + [H∗
0 , s−])

+ s+
(J∗ )2

4

(EGS + J∗
2 sz )2

H∗
0

1

EGS + J∗
2 sz

(s−H∗
0 + [H∗

0 , s−]).

(27)

In the second and third terms, we can substitute sz = − 1
2 , be-

cause sz |⇓〉 = − 1
2 . We will also substitute the singlet binding

energy − 3J∗
4 as the ground-state energy EGS because J � εk

at the strong-coupling fixed point, and H∗
0 = E∗

0 as the kinetic
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FIG. 9. The electronic Kondo cloud (dashed rectangle) coupled
to the impurity spin (red dot and arrow). The blue dots represent
momentum+spin states inside the Kondo cloud, while the black dots
represent states outside the Kondo cloud (that is, among the IOMs).
The ground-state singlet is formed by the impurity (red dot) and the
Kondo cloud members (blue dots).

energy part of the ground state |⇓〉:

Heff = −3J∗

4
+ E∗

0 + s+
(J∗ )2

4(
EGS + J∗

2 sz
)2

(
s−H∗

0 + [H∗
0 , s−]

+ H∗
0

1

EGS + J∗
2 sz

(s−H∗
0 + [H∗

0 , s−])

)
. (28)

This effective Hamiltonian has the expected structure; there
are constant pieces that represent the diagonal part of the
Hamiltonian, and then there are terms that scatter within the
subspace. We will henceforth drop the constant terms and
keep only the excitations within the subspace. After simplify-
ing the terms and retaining at most four-fermion interactions,
we obtain the following effective Hamiltonian:

Heff = 2

(
H∗

0 + 1

J∗ H∗
0

2
)

+
∑
1234

V1234c†
k4↑c†

k3↓ck2↓ck1↑, (29)

where V1234 = (εk1 − εk3 )[1 − 2
J∗ (εk3 − εk1 + εk2 + εk4 )]. The

first, second, and third terms represent a kinetic energy [see
defintion of H∗

0 below Eq. (24)], a density-density correla-
tion [see Eq. (D8) below], and a spin-fluctuation-mediated
electron-electron scattering process, respectively. The pres-
ence of the off-diagonal scattering term is expected because
the ground-state singlet is highly entangled and integrating
out the impurity from this singlet should lead to scattering
among the conduction electron states. In other words, it is
this off-diagonal interaction that is a signal of the strongly
screened local moment.

VI. MANY-BODY CORRELATIONS AND
ENTANGLEMENT PROPERTIES OF THE KONDO CLOUD

In order to study the effect of the off-diagonal terms
[Eq. (29)] on the constituents of the Kondo cloud, we perform
a reverse URG treatment (shown in Fig. 10) starting from
the Kondo model ground state |�∗〉 at the IR fixed point
[Eq. (22)]. For this, we employ the entanglement RG method
developed recently by some of us in Refs. [62,63,65]. For
the present study we take a toy model construction of the
ground-state wave function |�∗〉 [Eq. (22)] at the IR fixed
point; the Kondo impurity couples to 12 electronic states |kσ 〉,
of which three are occupied and nine are unoccupied. The net
spin of the electrons comprising the Kondo cloud is oppositely
aligned to that of the Kondo impurity. The Kondo cloud sys-
tem is a tensor product with 14 separable electronic states.

FIG. 10. The upper row represents the Hamiltonian RG flow via
the unitary maps, while the lower row represents the reverse RG flow
on the ground-state wave function obtained at the Kondo IR fixed
point. The reverse RG reentangles decoupled electronic states with
the Kondo singlet. This will result in generation of the many-body
eigenstates at UV scales.

This construction is represented in Fig. 9. At each URG step
Uj,↑Uj,↓, two electronic states |k j,↑〉, |k j↓〉 are disentangled
in reaching the IR fixed point. Upon performing reverse RG,
at each step two electrons are reentangled into the eigenstates
via the inverse unitary maps U †

j,↑U †
j,↓ (Fig. 10); in total we

perform seven reverse RG steps. This reverse RG program is
numerically implemented using PYTHON. Since the forward
RG is driven by the unitary transformation U = 1√

2
(1 + η −

η†), the inverse transformation is 1√
2
(1 − η + η†). The η have

already been described in Appendix A. The inverse transfor-
mation for reentangling an electron of spin σ and energy εq

can therefore be written as

U −1
qσ = 1√

2

[
1 − J2

2

1

2ωτqσ − εqτqσ − JSzsz
q

(Ô + Ô†)

]
, (30)

where Ô = ∑
k<�∗

∑
α=↑,↓

∑
a=x,y,z Saσ a

ασ c†
kα

cqσ . The wave
functions for the reverse RG are generated by repeat ap-
plication of this inverse unitary operator on the fixed-point
ground-state |�∗〉. The total operator to reentangle the energy
states εq1 , εq2 , . . . , εqN is

|� j〉 =
qN∏

q=q1

U −1
q↑ U −1

q↓ |�∗〉 . (31)

We use the wave functions generated under the reverse RG
to compute the mutual information between (a) an electron in
the Kondo cloud and the impurity electron and (b) two elec-
trons within the cloud. The mutual information (MI) measures
the total amount of quantum and classical correlations in a
system [87]. The MI between two electrons is given by

I (i : j) = −Tr(ρi ln ρi ) − Tr(ρ j ln ρ j ) + Tr(ρi j ln ρi j ), (32)

where ρi or ρ j and ρi j are the one- and two-electron re-
duced density matrices, respectively, obtained from the wave
functions obtained at each step of the reverse RG simula-
tion. In Fig. 11, we present the RG flow of both types of
mutual information mentioned above. The red curve in the
top panel of Fig. 11 represents the plot for the maximum
mutual information I (e : e) [Eq. (32)] between any two of
the electrons comprising the Kondo cloud and shows that
the maximum entanglement content or quantum correlation
increases under RG flow from UV to IR. This implies that the
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FIG. 11. Top: the RG flows for the maximum mutual information
between the impurity (imp) and electron (black curve) and diagonal
correlations (red curve). Bottom: the RG flows for the off-diagonal
(black curve) and diagonal correlations (red curve).

electrons within the Kondo cloud are not simply a separable
state in momentum space as expected of a local Fermi liquid.
This is a strong indication of the fact that the two-particle
off-diagonal (c†

k4↑c†
k↓ck2↓ck1↑) scattering term in Eq. (29) is

playing a role in the electronic entanglement within the Kondo
cloud. Furthermore, the black curve in the top panel of Fig. 11
shows that the maximum mutual information between the
Kondo impurity and any one member of the electronic cloud
also increases under RG and to a higher value compared with
that between electrons. This originates from the maximally
entangled singlet state that is formed between the impurity and
the electronic cloud (as can also be observed from the ln 2 en-
tanglement entropy obtained by tracing out the impurity spin
from the singlet state). In this manner, the Kondo impurity
mediates the entanglement between electrons (red curve) in
the Kondo cloud.

In order to understand this further, we also study (i) the
maximum density-density correlations maxk,k1〈n̂k↑n̂k1↓〉
[red curve in the bottom panel of Fig. 11] and (ii)
the maximum two-particle off-diagonal correlations
maxk,k1〈c†

k↑c†
k1↓ck2↓ck3↑〉 [black curve in the bottom panel

of Fig. 11] between electrons within the Kondo cloud. The
plots show clearly that both the correlations grow under RG

FIG. 12. Variation of 4TKχ with T/TK, for individual spin sub-
spaces as well as the total. TK corresponds to the Kondo temperature.
The inset shows the difference in the contributions to χ coming from
the singlet and the triplet zero states. The dashed line shows the
maximum in χ and passes through TK.

from UV to IR, finally reach the same value at the IR fixed
point. On the other hand, the large values of the off-diagonal
correlations reinforce our observation of a nonzero mutual
information content between the cloud electrons. This implies
that the electronic cloud contains, in general, interaction
terms beyond the Fermi liquid density-density interaction
leading to nonzero entanglement content.

VII. CONCLUSIONS

The Kondo problem [2] is one of the oldest and most
well-studied problems of electronic correlations in condensed
matter physics [6,7]. The unitary RG analysis of the Kondo
Hamiltonian leads to a zero-temperature phase diagram re-
vealing a strong-coupling fixed point for an antiferromagnetic
Kondo coupling. At the IR fixed point, we obtained the
effective Hamiltonian, the ground-state wave function, and
the energy eigenspectrum. This enabled the computation of
various thermodynamic quantities such as the impurity sus-
ceptibility, specific heat coefficient, Wilson ratio, Wilson
number, and thermal entropy, all of which are found to be in
good agreement with those obtained from NRG studies [8]. It
is also noteworthy that we were able to capture the entire RG
(crossover) flow at finite temperatures from the complete ef-
fective Hamiltonian [Eq. (D1)] obtained upon reaching the IR
stable fixed point [as seen, for instance, for the susceptibility
χ (T ) in Fig. 13 in Appendix D]. As the URG relies purely on
unitary transformations, the eigenspectrum is preserved under
the RG flow, and thence so is the partition function. Thus, at
each RG fixed point, the effective Hamiltonian equation (D1)
enables the construction of the density matrix for a given
temperature scale kBT , such that one can compute the finite-
temperature partition function [Eq. (11)].

Furthermore, we found that the effective Hamiltonian for
the Kondo cloud [Eq. (29)], obtained by integrating out
the impurity spin, contains a density-density repulsion (cor-
responding to a Fermi liquid) as well as a four-fermion
interaction term. In order to better understand the roles of
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FIG. 13. Variation of the Wilson number W = 4TKχsat with bare
Kondo coupling J0. TK corresponds to the Kondo temperature. See
discussion in text.

the two types of electronic correlations, we performed a
comparative study of the RG evolution of four-point number
diagonal and number off-diagonal correlators. By using the
singlet IR ground-state wave function obtained from the URG
analysis, we also studied the RG evolution of the mutual
information (an entanglement-based measure) between (a) the
impurity and an electron in the cloud and (b) two electrons
in the cloud. The results show strong interelectronic as well
as electron-impurity entanglement upon approaching the IR
fixed point. This is in agreement with the presence of both
types of two-particle correlators at the IR ground state. We
find that both the number diagonal and number off-diagonal
correlators reach the same value at the IR fixed point, indicat-
ing that the electronic configuration within the Kondo cloud
is not simply a local Fermi liquid. The large entanglement
within the Kondo cloud is an indication of the spin singlet
it forms together with the impurity spin. This is an exam-
ple of quantum mechanics at the macroscale: Impurity-bath
correlations drive many-particle entanglement between bath
electrons, signaling the emergence of a collective spin that
binds with the impurity. Given that the Kondo problem repre-
sents a simple model for a single qubit coupled to a fermionic
environment, our insights can spur further investigations into
more complex qubit-bath interactions relevant to the realiza-
tion and workings of present-day quantum computers in noisy
environments.

The calculation of impurity susceptibility in Appendix D 1
defines the Kondo temperature as that energy scale below
which only the singlet state contributes to the susceptibil-
ity and the other states in the entangled four-dimensional
Hilbert space of the impurity spin and the total conduction
electron spin drop out. The subsequent calculation of the

wave-function renormalization Z = 1 in Appendix C backs up
the presence of a local Fermi liquid phase at the fixed point.
In this way, the low-energy physics of the Kondo model can
be captured in great depth purely from the URG fixed-point
Hamiltonian. An important point can now be highlighted. The
physics of the emergent Kondo cloud Hamiltonian (Sec. V)
is found to be in good agreement with that of the local Fermi
liquid. This includes various thermodynamic quantities (e.g.,
the impurity susceptibility, specific heat, thermal entropy, etc.)
and the Wilson ratio (see Appendixes D 1 and D 2). We have
found that the k-space Kondo cloud effective Hamiltonian
describes an extended real-space object composed of electron
waves with extent greater than ξK. On the other hand, the local
Fermi liquid is found to reside at a distance ξK from the im-
purity. Thus it appears tempting to conclude that there exists
a holographic bulk-boundary relationship between the Kondo
cloud system and the local Fermi liquid. We speculate that the
emergent change in the Luttinger volume [see Eq. (C11)] of
the conduction bath at the strong-coupling fixed point corre-
sponds to the winding number topological quantity [88] that
signals such a holography. We do not know at present whether
the effective theory for the Kondo cloud found by us can
be related to a bulk gravity theory obtained from an anti–de
Sitter and conformal field theory (AdS-CFT) treatment [89].
We leave this for future work.

Future studies need to be performed to investigate the na-
ture of the correlated metal comprising the Kondo cloud. This
work also opens up the prospect of performing a similar study
on other variants of the Kondo problem, such as the multi-
channel Kondo model [38–49]. The current method can allow
one to investigate the critical properties of the overscreened
multichannel Kondo intermediate-coupling fixed point. The
low-energy effective Hamiltonian of such models should be
helpful in identifying the microscopic origins of the non-
Fermi-liquid phase of such a fixed point. Entanglement studies
of the zero mode will also be helpful in identifying the
breakdown of screening, and such studies will lay bare the
distinction between various variants of the Kondo impurity
models.
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APPENDIX A: CALCULATION OF EFFECTIVE HAMILTONIAN FROM URG

Starting from the Kondo Hamiltonian equation (1) and using the URG-based Hamiltonian RG equation (10), we obtain the
renormalized Hamiltonian:

Ĥ( j) =
n j∑

m=1,
β=↑/↓

(J ( j) )2τ j,ŝm,β

2
(
2ωτ j,ŝm,β − ε j,lτ j,ŝm,β − J ( j)Szsz

j,ŝm

) ×
[

SaSbσ a
αβσ b

βγ

∑
( j1, j2< j),

n,o

c†
j1,ŝn,α

c j2,ŝo,γ (1 − n̂ j,ŝm,β )

+ SbSaσ b
βγ σ a

αβ

∑
( j1, j2< j),

n,o

c j2,ŝo,γ c†
j1,ŝn,α

n̂ j,ŝm,β

]
+

n j∑
m=1,

β=↑/↓

(J ( j) )2

2
(
2ωτ j,ŝm,β − ε j,lτ j,ŝm,β − J ( j)Szsz

j,ŝm

)
× [

SxSyσ x
αβσ

y
βαc†

j,ŝm,αc j,ŝm,βc†
j,ŝm,βc j,ŝm,α + SySxσ x

αβσ
y
βαc†

j,ŝm,βc j,ŝm,αc†
j,ŝm,αc j,ŝm,β

]
. (A1)

The first term in Eq. (A1) corresponds to the renormalization of the Kondo coupling and describes the s-d exchange interactions
for the entangled degrees of freedom

H1
( j) =

n j∑
m=1,

β=↑/↓

(J ( j) )2τ j,ŝm,β(
2ωτ j,ŝm,β − ε j,lτ j,ŝm,β − J ( j)Szsz

j,ŝm

) ∑
( j1, j2< j),

n,o

S · c†
j1,ŝn,α

σαβ

2
c j2,ŝo,β

= 1

2

n j∑
m=1,
β=↑/↓

τ j,ŝm,β (J ( j) )2
[(

2ωτ j,ŝm,β − ε j,lτ j,ŝm,β

) + J ( j)Szsz
j,m

)]
(ω − ε j,l

2 )2 − (J ( j) )2

16

∑
( j1, j2< j),

n,o

S · c†
j1,ŝn,α

σαβ

2
c j2,ŝo,β

= 1

2

⎡
⎢⎢⎣

n j∑
m=1,
β=↑/↓

(J ( j) )2
[(

ω
2 − ε j,l

4

)]
(
ω − ε j,l

2

)2 − (J ( j) )2

16

+ 1

2

n j∑
m=1

(J ( j) )3Szsz
j,m(τ j,ŝm,↑ + τ j,ŝm,↓)(

ω − ε j,l

2

)2 − (J ( j) )2

16

⎤
⎥⎥⎦ ∑

( j1, j2< j),
n,o

S · c†
j1,ŝn,α

σαβ

2
c j2,ŝo,β

= n j (J ( j) )2
[(

ω − ε j

2

)]
(
ω − ε j,l

2

)2 − (J ( j) )2

16

S ·
∑

( j1, j2< j),
n,o

c†
j1,ŝn,α

σαγ

2
c j2,ŝo,γ . (A2)

In the second-to-last step of the calculation, we have used the result τ 2
j,ŝm,↑ = 1

4 , where τ j,ŝm,↑ = n̂ j,ŝm,↑ − 1
2 . In obtaining the

last step of the calculation we have assumed ε j,l = ε j for a circular Fermi surface geometry. Furthermore, we have replaced
τ j,ŝm,↑ and τ j,ŝm,↓ by their eigenvalues, τ j,ŝm,↑ = −τ j,ŝm,↓ = 1

2 , i.e., the resulting decoupled electronic wave vector | j, ŝm〉 carries a
nonzero spin angular momentum. This configuration promotes the spin scattering between the Kondo impurity and the fermionic
bath. The second term in Eq. (A1) corresponds to the renormalization of the number diagonal Hamiltonian for the immediately
disentangled electronic states | j, ŝm, σ 〉:

H2
( j) =

n j∑
m=1,

β=↑/↓

(J ( j) )2(
2ωτ j,ŝm,β − ε j,lτ j,ŝm,β − J ( j)Szsz

j,ŝm

)[SxSyσ x
αβσ

y
βαc†

j,ŝm,αc j,ŝm,βc†
j,ŝm,βc j,ŝm,α (A3)

+SySxσ x
αβσ

y
βαc†

j,ŝm,βc j,ŝm,αc†
j,ŝm,αc j,ŝm,β

]
(A4)

=
n j∑

m=1,
β=↑/↓

(J ( j) )2(
2ωτ j,ŝm,β − ε j,lτ j,ŝm,β − J ( j)Szsz

j,ŝm

)Sz σ
z
αα

2

[
n̂ j,ŝm,α (1 − n̂ j,ŝm,β ) − n̂ j,ŝm,β (1 − n̂ j,ŝm,α )

]
(A5)

=
n j∑

m=1

(J ( j) )2(
2ωτ j,ŝm,β − ε j,lτ j,ŝm,β − J ( j)Szsz

j,ŝm

)Szsz
j,ŝm

, (A6)

where we have used n̂ j,ŝm,α (1 − n̂ j,ŝm,β ) − n̂ j,ŝm,β (1 − n̂ j,ŝm,α ) = n̂ j,ŝm,α − n̂ j,ŝm,β in the last step, and the spin density for the state
| j, ŝm〉 is given by sz

j,ŝm
= 1

2 (n̂ j,ŝm,↑ − n̂ j,ŝm,↓). In obtaining the above RG equation we have replaced ω̂( j) = 2ωτ j,ŝm,β . We set the

electronic configuration τ j,ŝm,↑ = −τ j,ŝm,↓ = 1
2 to account for the spin scattering between the Kondo impurity and the fermionic

bath. The operator ω̂( j) [Eq. (7)] for RG step j is determined by the occupation number diagonal piece of the Hamiltonian HD
( j−1)

attained at the next RG step j − 1. This demands a self-consistent treatment of the RG equation to determine the ω. In this
fashion, two-particle and higher-order quantum fluctuations are automatically encoded into the RG dynamics of ω̂. In this paper,
however, we restrict our study by ignoring the RG contribution in ω. The electron and hole configurations (|1 j,ŝm,β〉 and |0 j,ŝm,β〉
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respectively) of the disentangled electronic state (and associated with energy ±ε j,l ) is accounted for by the fluctuation energy
scales ±ω. From the above Hamiltonian RG equation (A2), we can obtain the form of the Kondo coupling RG equation (13)

J ( j) = n j (J ( j) )2
[
ω − ε j,l

2

]
( ε j,l

2 − ω
)2 − (J ( j) )2

16

. (A7)

It is easy to generalize this method to the more general anisotropic Kondo model with distinct transverse (J⊥) and Ising (Jz)
couplings:

JzS
z
∑
kk′

1

2
(c†

k↑ck′↑ − c†
k↓ck′↓) + 1

2
J⊥S+ ∑

kk′
c†

k↓ck′↑ + 1

2
J⊥S− ∑

kk′
c†

k↑ck′↓. (A8)

We now briefly sketch the calculation.
(i) Since the denominator involves the diagonal Szsz part of the Hamiltonian, only the Ising coupling Jz will enter the

denominator of the RG equation.
(ii) The Ising coupling Jz will be renormalized only by scattering processes that involve one S+ operator and one S− operator,

so that the corresponding scattering vertices that renormalize Jz are of strength J⊥2.
(iii) On the other hand, the transverse coupling J⊥ will be renormalized only by processes that involve one S± operator and

one Sz operator, so that the corresponding vertices are of strength JzJ⊥.
With these modifications, the final result of Eq. (A2) becomes

n j (ω − ε j

2 )(
ω − ε j,l

2

)2 −
(

J ( j)
z

)2

16

⎡
⎢⎣(J ( j)

⊥ )2
∑

( j1, j2< j),
n,o,α

Szσ z
ααc†

j1,ŝn,α
c j2,ŝo,α + J ( j)

z J ( j)
⊥

⎛
⎜⎝ ∑

( j1, j2< j),
n

S+c†
j1,ŝn,↓c j2,ŝo,↑ + H.c.

⎞
⎟⎠
⎤
⎥⎦. (A9)

The RG equations for the Ising and transverse couplings can now be read off from the renormalized Hamiltonian:

J ( j)
z = n j (J

( j)
⊥ )2

[
ω − ε j,l

2

]
(
ω − ε j,l

2

)2 − (J ( j) )2

16

,

J ( j)
⊥ = n jJ

( j)
z J ( j)

⊥
[
ω − ε j,l

2

]
(
ω − ε j,l

2

)2 − (J ( j) )2

16

.

(A10)

These coupled RG equations have the same RG invariant as the Berezinskii-Kosterlitz-Thouless (BKT) RG equations [90,91] as
well as the 1D Hubbard model RG equations [63]:

J ( j)
z

J ( j)
⊥

= J ( j)
⊥

J ( j)
z

⇒ J ( j)
⊥

2 − J ( j)
z

2 = const. (A11)

One can also show that the anisotropy in the couplings is irrelevant by writing the RG equation for the anisotropy parameter
κ = J ( j)

⊥ − J ( j)
z .

κ = n jJ
( j)
t

(
J ( j)
⊥ − J ( j)

z
)[

ω − ε j,l

2

]
(
ω − ε j,l

2

)2 − (J ( j) )2

16

. (A12)

Dividing this equation by the RG equation of J ( j)
z gives

κ

J ( j)
z

= − κ

J ( j)
⊥

. (A13)

Since both J ( j)
z and J ( j)

⊥ are positive in the strong-coupling regime, we find that κ/κ < 0. This relation implies that if κ

is initially positive (negative), the renormalization is negative (positive), and κ flow towards zero. This shows that all strong-
coupling flows enforce the irrelevance of the anisotropy parameter κ .

APPENDIX B: EFFECTIVE HAMILTONIAN FOR THE
LOCAL FERMI LIQUID

The central resonance in the impurity spectral func-
tion can be attributed to quasiparticle excitations arising
from the local Fermi liquid component of the effective

Hamiltonian. Here, we will derive an effective Hamiltonian
for low-energy excitations in the singlet subspace of the
fixed-point theory and hence expose the local Fermi liquid
component.

To consider the local states as ground states, we will drop
the kinetic energy part and start with the following zeroth

085119-12



UNVEILING THE KONDO CLOUD: UNITARY … PHYSICAL REVIEW B 105, 085119 (2022)

Hamiltonian:

H∗
loc = J∗ �Sd · �s︸ ︷︷ ︸

H0

−t∗ ∑
σ,〈0,l〉

c†
0σ cl,σ + H.c.

︸ ︷︷ ︸
V

(B1)

The four ground states of H0 are∣∣φ(0)
i

〉 = |χi〉︸︷︷︸
site 1

⊗ 1√
2

(|↑,↓〉 − |↓,↑〉), i ∈ [1, 4],

{χi} = {0,↑,↓, 2}, E = −3J∗

4
. (B2)

In the singlet part, the first entry is the configuration of the
zeroth site, while the second entry is the configuration of the
impurity site.

Since V and V 3 take |φ(0)
2,4〉 to a completely orthogonal

subspace, the first- and third-order corrections are 0. The
second-order shift in the ground-state energy for a state φ(0) is
given by

E (2) =
∑

i �=φ(0)

| 〈φ(0)|V |i〉2

E (0)
φ − Ei

. (B3)

This second-order shift for both the up-spin and double-
occupied states [and hence the down and empty states, using
SU(2) and particle-hole (p-h) symmetries] comes out to be

E (2) = − 4t2

3J∗ , (B4)

so that the effective Hamiltonian at second order is simply
a constant. We move on to the fourth-order correction. The
general formula is quite formidable, so we only write down
the terms that are not outright zero for this problem:

E (4) =
∑

i(0) �=φ,

j(0) �=φ,

k(0) �=φ

Vφ,kVk, jVj,iVi,φ

Eφ,k Eφ, jEφ,i
− E (2)

φ

∑
m(0) �=φ

|Vm,φ|2
(Eφ,m)2 ,

(B5)

where Vx,y = 〈x(0)|V |y(0)〉 and Ex,y = E (0)
x − E (0)

y . At fourth

order, |φ(0)
2 〉 is first excited to |0, 2,↑〉 or |2, 0,↑〉 and then to

the spin-triplet subspace. The total effective Hamiltonian up
to fourth order (and up to a constant energy shift) is

H eff
loc = −4α

t4

J∗3

∑
σ

n̂1σ + 8α
t4

J∗3 n̂1↑n̂1↓. (B6)

The presence of the repulsive correlation term means that
electrons that want to occupy the first site will face a repul-
sion from an electron already present there and the effective
Hamiltonian behaves like a local Fermi liquid [13] on the first
site.

APPENDIX C: SCATTERING PHASE SHIFT OF
CONDUCTION ELECTRONS AT STRONG COUPLING AND

WAVE-FUNCTION RENORMALIZATION

In general, the conduction electrons will suffer a phase shift
as they scatter off the impurity. We will obtain an explicit form
for this phase shift in terms of the fixed-point coupling J∗,
by writing down a simple Hamiltonian that models the low-
energy theory. We will drop the states of the triplet subspace

and retain only the singlet state and the double and hole states
of the zeroth site. In order to avoid any two-particle terms,
we will drop the impurity site because it is already frozen in
the singlet. Also, since the double and hole states are at zero
energy, they will drop out of the Hamiltonian, and we will
model the zeroth site in the form of a single spin. We define
|0σ 〉 as the state where the zeroth site has a single electron
of spin σ and |00〉 and |02〉 as the states with zero and two
electrons on the zeroth site, respectively. Then,

spectrum of zeroth site →
⎧⎨
⎩

state energy
|0σ 〉 − 3J∗

4|00〉 , |02〉 0.

(C1)

The total simplified Hamiltonian can therefore be written
completely in terms of the single-particle states |0σ 〉 and |kσ 〉.
|kσ 〉 is the conduction electron state of momentum k and spin
σ . This Hamiltonian preserves the spin of the zeroth site and
the conduction electrons separately, and the Hamiltonian for a
particular spin is

Hσ = ε0 |0σ 〉 〈0σ | +
∑

k

[−t (|0σ 〉 〈kσ | +H.c.)+εk |kσ 〉 〈kσ |],

(C2)

where ε0 = − 3J∗
4 is the effective on-site energy of the ze-

roth site. The matrix elements of the retarded single-particle
Green’s function for spin σ , Gσ , satisfy the equation

∑
β (ω −

Hσ )αβGβγ = δαγ , where α, β, and γ represent matrix ele-
ments between any pair of states among 0σ and {kσ } and δ is
the Kronecker delta [92]. Solving the equations for Gσ

00 gives

Gσ
00(ω) = 1

ω − ε0 − �(ω)
. (C3)

�(ω) = ∑
k

t2

ω−εk
= ∫

dε
t2ρ(ε)
ω−ε

is the self-energy of the zeroth
site of the bath because of hybridization with the rest of the
bath through the hopping term t . The imaginary part is given
by �I (ω) = −πρ(ω)t2. Since ε0 � t2, we can drop the real
part of the self-energy in the denominator. The T matrix of
the conduction electrons can now be calculated using this
impurity Green’s function [93]:

T σ
kk′ (ω) = t2G00(ω) = t2 ω − ε0 + i�I

(ω − ε0)2 + �2
I

. (C4)

From scattering theory, it can be shown that the phase shift
δFL

kσ of the conduction electron state |kσ 〉 is given by the phase
of Tkk [94]:

tan δFL
kσ (ω) = �I

ω − ε0
= −πρ(ω)t2

ω + 3J∗
4

. (C5)

Note that there is an additional phase shift that we have not
accounted for; when we removed the zeroth site from the
lattice, all the wave functions got shifted by a distance of
a: ψk (x) ∼ sin(kx) → sin(kx − ka). This is equivalent to a
phase shift of δ0

kσ = ka. The total phase shift is therefore

δtot
kσ (ω) ≡ δ0

kσ + δFL
kσ (ω) = ka + tan−1 −πρ(ω)t2

ω + 3J∗
4

. (C6)

Furthermore, following the arguments involving the Friedel
sum rule given in Ref. [95], we know that the total scattering

085119-13



ANIRBAN MUKHERJEE et al. PHYSICAL REVIEW B 105, 085119 (2022)

phase shift in the ground state of the single-impurity Anderson
model (SIAM) at the Fermi surface is equal to π times the
impurity occupation nd . The Kondo model corresponds to the
local-moment regime of the SIAM and possesses a value of
nd = 1. It then follows that

δtot
kF

(0) = π × nd = π. (C7)

Furthermore, we know that since kFσ = 1/2a for a half-filled
one-dimensional Fermi volume (for an s-wave Kondo ex-
change coupling), the phase shift δ0

kF
is given by

δ0
kF

=
∑

σ

δ0
kF σ =

∑
σ

kFσ a = π = δtot
kF

(0). (C8)

Substituting δ0
kF

= δtot
kF

(0) into Eq. (C6) then indicates that
the scattering phase shift for the Landau quasiparticle δFL

vanishes identically at the Fermi surface, and the total phase
shift is determined purely by δ0

kF
.

The phase shift can also be connected to the overlap inte-
gral between the ground states |�0〉 and |�〉 before and after
adding the local interaction, respectively. The local interaction
can take the form of either the Kondo coupling between the
impurity and the Kondo cloud, or a hopping between the
zeroth site and the rest of the conduction bath. In the former
case, the ground-state |�0〉 is that of a decoupled conduction
bath, and |�〉 corresponds to the ground state of the conduc-
tion electrons in the presence of a strong Kondo coupling. In
the latter case, |�0〉 is the ground state of a conduction bath
from which the zeroth site (i.e., the site strongly coupled with
the impurity) is removed, and |�〉 is that of the same system
but with a small hopping between the zeroth and first sites of
the conduction gas.

Following Anderson’s orthogonality theorem [96], its ex-
tension by Yamada and Yosida [97], and the generalized
Friedel sum rule due to Langer and Ambegaokar [98], the
square of the overlap integral (often called the wave-function
renormalization) is given by

Z ≡ | 〈�|�0〉 |2 = N− 1
π2 δkF (0)2

, (C9)

where N is the total number of conduction electrons and δkF (0)
is the phase shift produced by the local perturbation at the
Fermi surface. In the thermodynamic limit, this expression
simplifies to

Z (N → ∞) = 1 if δkF (0) = 0, and 0 otherwise. (C10)

For the first case of the local interaction mentioned above (i.e.,
for the Kondo coupling), we obtain the wave-function overlap

(Zimp) in terms of the total phase shift: Zimp = N− 1
π2 (δtot

kF
(0))2 →

0 in the limit N → ∞. This shows the orthogonality catas-
trophe between the ground states of the conduction bath in
the local-moment and strong-coupling phases. Furthermore,
following Ref. [99], the orthogonality catastrophe reflects a
change in the Luttinger volume (NL) of the conduction bath:

NL = δkF (0)

π
= 1. (C11)

This increase in the number of electrons inside the Fermi
volume is nothing but the “large Fermi surface” effect seen

in heavy fermionic systems [100–103]. Here, the effect is
infinitesimal because of the local nature of the impurity.

In the second case (i.e., with the zeroth site as the local
perturbation), the relevant phase shift is δFL

kF
(0) = 0, and the

overlap integral then pertains to the quasiparticle residue of

the local Fermi liquid: ZFL = N− 1
π2 (δFL

kF
(0))2 = 1. Furthermore,

from Ref. [94], the Wilson ratio R of the local Fermi liquid is
given by

R = 1 + sin2

(
δkF (0)

2

)
= 1 + sin2

(π

2

)
= 2. (C12)

APPENDIX D: CALCULATION OF THERMODYNAMIC
QUANTITIES

1. Impurity contribution to the magnetic susceptibility

The complete effective Hamiltonian for the impurity spin
S, the Kondo cloud spin s, and the electrons that comprise the
local Fermi liquid has the form

H2 = ε∗
∑
m,σ

n̂∗,m,σ + J∗S · s + J∗Sz
∑

m

sz
∗,m. (D1)

The Hamiltonian H2 has several conserved quantities, which
we depict below:

[H2, Sz + sz] = 0, [H2, sz
∗,m] = 0 ∀ 1 � m � n j, (D2)

such that [H∗, Sz
tot] = 0, where Sz

tot = Sz + sz + ∑
m sz

∗,m.
Therefore the eigenvalues of |sz

∗,m =↑ / ↓〉 are good quantum
numbers; this is simply an outcome of the URG method. For
the purposes of computing the impurity magnetization and
susceptibility, we keep only the effective impurity–Kondo-
electron-cloud Hamiltonian from H2 above:

H∗
K = J∗S · s + BSz, (D3)

where we have introduced a local magnetic field B that cou-
ples to the impurity magnetic moment through a Zeeman
coupling.

We can now obtain the impurity magnetization and sus-
ceptibility from the effective Hamiltonian H∗

K . The four-state
eigenspectrum of H∗

K is given by

E1,2 = 1

2

(
−J∗

2
±

√
B2 + J∗2

)
, E3,4 = 1

4
J∗ − 1

2
B. (D4)

The partition function for this Hamiltonian (with β = 1
kBT ) is

given by

Z (B) = 2e−β J∗
4 cosh

(
β

B

2

)
+ 2eβ J∗

4 cosh

(
β

2
(
√

B2 + J∗2)

)
.

(D5)

The susceptibility is then given by

χ = lim
B→0

d

dB

(
kBT

Z (B)

dZ (B)

dB

)
=

β

4 + 1
2J∗ eβ J∗

2 sinh( β

2 J∗)

1 + eβ J∗
2 cosh( β

2 J∗)
.

(D6)
In the plot of 4χTK (Fig. 12), the red and blue curves

represent the contributions to the total susceptibility com-
ing from the Sz = 0 and Sz �= 0 sectors, respectively. The
black curve is the total susceptibility itself. The inset shows
a further resolution of the Sz = 0 sector into the S = 0 and
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FIG. 14. Variation of T χ with T/TK. TK corresponds to the
Kondo temperature. See discussion in text.

S = 1 contributions. We can now make several important
observations based on Eq. (D6) and the plot. Firstly, at low
temperatures T � TK, almost the entirety of the contribution
comes from the singlet state. Near TK, the singlet contribution
starts dropping, while the Sz �= 0 contributions start to pick up.
In this way, the Kondo temperature scale TK arises out of the
interplay between symmetry-preserved and symmetry-broken
sectors. Coming down from high temperatures, TK can be
thought of as that temperature beyond which the susceptibility
contribution from the symmetry-broken states vanishes.

Secondly, the saturation value of 4TKχ as β → ∞ (i.e.,
T → 0) is given by

χsat = χ (T = 0) = 1

2J∗ . (D7)

We find that the Wilson number W = 4TKχsat takes the form
2TK
J∗ . For values of J∗ � 16.612t and TK � 3.433t we obtain

W = 0.413. This is in good agreement with the value for W
obtained from NRG [8] and the Bethe ansatz solution of the
Kondo problem [9,10]. This is shown in Fig. 12. Furthermore,
we show the variation of W with the bare Kondo coupling J
in Fig. 13. The figure clearly shows the saturation of W to the

FIG. 15. Variation of γimpTK with T/TK. TK corresponds to the
Kondo temperature. The saturation to a constant value at low tem-
peratures shows the Fermi-liquid-like behavior. The inset shows the
impurity specific heat Cimp.

FIG. 16. Variation of the Wilson ratio R with T/TK. R saturates to
a value of 2.009 as T → 0. TK corresponds to the Kondo temperature.

value mentioned above as J flows to the strong-coupling fixed
point.

Thirdly, the 4TKχ -vs-temperature curve shown in Fig. 12
has a nonmonotonic behavior, i.e., we find a maximum ob-
tained from the transcendental equation dχ

dβ
= 0. We confirm

from our numerical studies that the temperature correspond-
ing to the maximum value of TKχ tends to TK as J flows
to strong coupling. Furthermore, we find that the maximum
value of TKχ does not vary with the bare J in the range
O(10−5) < J < O(1). As discussed before, this maximum
emerges as we go to lower temperatures and indicates that
temperature at which the contributions from the |↑,↑〉 and
|↓,↓〉 drop out. Thus the nonmonotonic behavior in χ can
be directly attributed to the corresponding nonmonotonic be-
havior in the contribution coming from these states. We note
that the impurity susceptibility obtained from NRG treatments
of the Kondo problem appears to resemble that obtained by
us for the Sz = 0 sector (red curve in Fig. 12) rather than
the total susceptibility. We do not presently understand the
reason for this discrepancy. However, it is also interesting to
note that a similar nonmonotonic behavior of the impurity
susceptibility is obtained from a Schwinger boson large-N
mean-field approach to the fully screened Kondo model [104].

Finally, we find that the saturation value of T × χ for
β → 0 is given by the universal value kBT χ (T = ∞) = 1

4 ,
as shown in Fig. 14. The saturation value at high T arises
from the twofold degenerate impurity and reflects the physics
of the (almost isolated) local impurity spin moment, while
the vanishing value of T χ originates from the formation of
the singlet between the Kondo cloud and the impurity spin
[second term in Eq. (D1)].

2. Impurity contribution to specific heat and thermal entropy

In order to study the thermodynamic properties of the
Fermi liquid, we restrict our attention to the density-density
terms only. From the density terms we obtain the low-
excitation-energy functional accounting for the quasiparticle
interaction

E = E0 +
∑

k�ŝ,�<�∗
εkδnkσ +

∑
k,k′

εkεk′

J∗ δnkσ δnk′σ ′ . (D8)
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FIG. 17. Impurity contribution to thermal entropy in units of ln 2.
TK corresponds to the Kondo temperature. The high-temperature
value of ln 2 is indicative of a doubly degenerate local moment,
while the zero-temperature value of 0 shows that the ground state
is a nondegenerate singlet.

This leads to the renormalized one-particle dispersion, where
the self-energy term has the following form:

ε̄� = ε� + ��,�� =
( ∑

�′,ŝ,σ ′

ε�ε�′

J∗ δn�′,ŝ,σ ′

)
for � < �∗.

(D9)
Note that as � → 0, �� → 0. Next, we compute the specific
heat Cimp [≡ C(J∗) − C(0)] of the impurity from the Fermi

distribution of the renormalized quasiparticles

Cimp =
∑
�,ŝ,σ

1

T 2

[
(ε̄�)2eβε̄�

(eβε̄� + 1)2
− (ε�)2eβε�

(eβε� + 1)2

]
, (D10)

where C(J∗) is the specific heat for the electronic system with
the Kondo impurity and C(0) is the specific heat for the free
electronic system without coupling to the Kondo impurity.
The specific heat coefficient is given by γimp = Cimp

kBT .
We computed the impurity specific heat using the same

set of parameters as used in the computation of the suscep-
tibility and plotted γimpTK in Fig. 15. It is seen that γimpTK

rises from 0 at high temperatures T > 102TK and saturates
at a value γimp(0) = 1

4J∗ for T < 10−2TK. The Wilson ratio
R is defined as the ratio of the susceptibility χimp and the
specific heat coefficient γimp. It is found that R saturates to
a value R = χ/γimp = 2.009 for T � TK (Fig. 16). We also
calculated the impurity thermal entropy from the zero-mode
Hamiltonian using the expression

Simp(T ) = −1

2

∂F

∂T
= 1

2

[
ln Z + β

Z

∑
i

εie
−βεi

]
. (D11)

Z and εi are the partition function and energy eigenvalues of
the zero-mode Hamiltonian, and the factor of 1/2 comes from
the fact that since the impurity and the conduction bath site are
symmetrical in the zero-mode Hamiltonian, the impurity con-
tribution to the entropy will be half of the total contribution.
This is shown in Fig. 17. At high temperatures, the impurity
behaves like a doubly degenerate free spin, contributing an en-
tropy of ln 2. At lower temperatures, the impurity is screened
within the unique singlet ground state, leading to a vanishing
residual entropy.
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