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Abstract: Mycobacterium tuberculosis has been infecting millions of people worldwide over the years,
causing tuberculosis. Drugs targeting distinct cellular mechanisms including synthesis of the cell
wall, lipids, proteins, and nucleic acids in Mtb are currently being used for the treatment of TB.
Although extensive research is being carried out at the molecular level in the infected host and
pathogen, the identification of suitable drug targets and drugs remains under explored. Pranlukast,
an allosteric inhibitor of MtArgJ (Mtb ornithine acetyltransferase) has previously been shown to
inhibit the survival and virulence of Mtb. The main objective of this study was to identify the
altered metabolic pathways and biological processes associated with the differentially expressed
metabolites by PRK in Mtb. Here in this study, metabolomics was carried out using an LC-MS/MS-
based approach. Collectively, 50 metabolites were identified to be differentially expressed with a
significant p-value through a global metabolomic approach using a high-resolution mass spectrometer.
Metabolites downstream of argJ were downregulated in the arginine biosynthetic pathway following
pranlukast treatment. Predicted human protein interactors of pranlukast-treated Mtb metabolome
were identified in association with autophagy, inflammation, DNA repair, and other immune-related
processes. Further metabolites including N-acetylglutamate, argininosuccinate, L-arginine, succinate,
ergothioneine, and L-phenylalanine were validated by multiple reaction monitoring, a targeted mass
spectrometry-based metabolomic approach. This study facilitates the understanding of pranlukast-
mediated metabolic changes in Mtb and holds the potential to identify novel therapeutic approaches
using metabolic pathways in Mtb.

Keywords: bacteria; antagonist; untargeted metabolomics; targeted metabolomics; mass spectrometer

1. Introduction

Mycobacterium tuberculosis (Mtb), a devastating pathogen, majorly infects the lungs,
causing tuberculosis (TB), which accounts for one of the top ten leading causes of death
worldwide. Approximately, every year 10 million patients are infected annually with Mtb
of which 1.4 million deaths are being reported according to the latest WHO 2019 report.
Incidence of multidrug-resistant (MDR) and extremely drug-resistant (XDR) strains has
become a major cause of concern in treating TB, where the success rate for treatment of
MDR-TB was 57%, while XDR-TB was 39% and drug vulnerable TB was 85% (WHO,
2019) [1]. Various drugs that have been identified in the recent past, including bedaquiline,
capreomycin, linezolid, and delamanid, inhibit energy metabolism, protein synthesis, and
cell wall synthesis in Mtb [2]. The current anti-TB drugs exhibit several side effects on
the host and have led to the emergence of drug-resistant genes in Mtb [3]. Consequently,
the development of new anti-tubercular agents and scrutiny of their mechanism of action
needs more emphasis.
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Metabolic pathways unique to Mtb hold considerable potential for developing anti-
tubercular agents. Among the various metabolic pathways, arginine biosynthesis is one
of the indispensable pathways required for the virulence and survival of Mtb [4,5]. Thus,
mutants of argF encoding ornithine carbamoyltransferase exhibit decreased pathogenicity
and survival of Mtb in immunocompetent and immunocompromised mice [6]. Recently,
argB mutants have shown decreased survival of Mtb by inducing oxidative stress [7,8].
While all the enzymes of the arginine pathway have been proposed to be essential for Mtb
growth, among them argJ has been considered as a promising target for drug discovery
and development against Mtb survival due to the lack of a homolog in humans [7,8]. The
gene argJ encodes for the monofunctional enzyme ornithine acetyltransferase in Mtb, which
acts on the substrates of first and fifth reactions in the arginine biosynthetic pathway [9].
Pranlukast (PRK), an antagonist of cysteinyl leukotriene receptor 1, is used in the treatment
of asthma [10,11]. Recently, PRK has been shown to act as an allosteric inhibitor of MtArgJ,
which in turn inhibits the survival of Mtb in cultures, a macrophage infection model, and
in vivo in mice models of TB [12].

Metabolites that catalyze chemical reactions in distinct metabolic pathways play a sig-
nificant role in regulating cellular functions through protein–metabolite interactions [13,14].
Mass spectrometry-based metabolomics is emerging with implications in the field of disease
diagnosis, biomarker discovery, drug efficacy, and screening [15]. Because of the demon-
strated ability of PRK to curtail the growth or pathogenesis of Mtb, understanding the global
changes in the Mtb metabolome brought about by PRK is imperative for unravelling the in-
depth mechanisms associated with its metabolism [16]. Therefore, in this study, untargeted
metabolomics, followed by a targeted approach, was executed to identify the dysregulated
metabolites by PRK in Mtb. To our knowledge, the dysregulation of metabolites associated
with this drug in Mtb has not been studied so far. In this study, 30 metabolites in positive
mode and 20 metabolites in negative mode were captured to be significantly dysregu-
lated at MS2 level by PRK treatment. Pathway analysis showed significant enrichment of
arginine and proline metabolic pathways. Further, downregulation of argJ downstream
metabolites including N-acetylglutamate, argininosuccinate, and L-arginine, in addition
to L-ergothioneine and L-phenylalanine, was validated in this study. Host protein target
prediction against the dysregulated metabolome by PRK highlighted their association with
inflammation, autophagy, phagocytosis, and other immune-related responses.

2. Results
2.1. Mass Spectrometry Analysis of PRK-Treated Mtb H37Rv

LC-MS/MS analysis of mycobacterial cells with and without PRK treatment was
carried out in technical triplicates for each of the two biological replicates separately in
both positive and negative modes. A schematic workflow deployed for mass spectrometry
analysis is shown in Figure 1. The analysis led to the identification of 2330 aligned peak
features in positive mode and 2084 aligned peak features in negative mode. A complete
list of aligned peaks acquired from both positive and negative ion modes is provided in
Supplementary Data, Tables S1 and S2, respectively. Of these, metabolite features expressed
in at least two technical replicates per biological group were taken further for downstream
analysis. These included 2264 features in positive mode and 2058 features in negative
mode. A total of 426 metabolite features in positive mode and 219 metabolite features in
the negative mode were assigned to Mtb H37Rv species in BioCyc and KEGG databases.
Due to limitations in metabolite assignment, features lacking assignment at MS2 level
were assigned at precursor level by mapping to their respective m/z. In positive mode
1335 aligned peaks and in negative mode 1058 aligned peaks were assigned at precursor
level. Subsequently, unsupervised principal component analysis (PCA) on PRK-treated and
untreated samples was performed to observe the clustering patterns between replicates
and groups. The analysis resulted in close clustering among the replicates and distinct
separation between the groups, as illustrated in Figure 2A,B.
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The quality of the mass spectrometry data was analyzed by comparing blank runs
with control and PRK sample runs in order to rule out any carryover of sample features [17].
Therefore, PCA analysis was performed, which showed distinct separation of blank runs
from sample groups without leaving any carryover from samples. In addition, super-
vised PLS discriminant analysis (PLS-DA) with variable importance in projection scores
showed the significant features were substantially unidentified or insignificant in blank
runs [18]. PCA and PLS-DA illustrations in positive and negative modes are shown in
Supplementary Data, Figure S1.

2.2. Differentially Expressed Mtb Metabolites by PRK

Fold change analysis was performed using a two-sample t-test to calculate the p-values.
A total of 195 metabolite features in positive mode and 209 features in the negative mode
were differentially expressed with a 1.5-fold change cut-off and p-value ≤ 0.05. Collec-
tively, a non-redundant number of 78 metabolites in positive mode and 79 metabolites in
negative mode assigned at MS1 level were found to be differentially expressed. Similarly,
30 metabolites in positive mode and 20 metabolites in negative mode assigned at MS2
level were differentially regulated. Volcano plots of the differentially expressed features
are shown in Figure 2C,D. A partial list of the significantly dysregulated metabolites as-
signed at the MS2 level is provided in Table 1. A complete list of differentially expressed
metabolites in positive mode and negative mode is provided in Supplementary Data,
Tables S3 and S4, respectively.

Figure 1. Schematic representation of the metabolomics experimental pipeline. The details of samples
and the experimental pipeline employed for targeted and untargeted approach are illustrated.
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Figure 2. Data visualization plots. PCA clustering of PRK-treated and untreated Mtb H37Rv samples
in (A) positive mode and (B) negative mode. Volcano plots showing the distribution of identified
features in (C) positive mode and (D) negative mode. The differentially expressed metabolites with
p-value ≤ 0.05 are highlighted in blue and red in the respective plots.

Table 1. A partial list of differentially expressed metabolites.

S. No Metabolite Mode of
Acquisition

Fold
Change p-Value

1 L-Arginine Positive 0.15 0.03
2 Agmatine Negative 0.47 0.04
3 4-Guanidinobutanamide Positive 0.25 0.04
4 2-Oxoarginine Positive 0.15 0.04

5
5-Amino-6-(5′-phospho-D-

ribitylamino)
uracil

Positive 1.92 0.05

6 2-Methylmalate Negative 1.59 0.03

7 S-methyl-5-thio-D-ribose Positive 0.59 0.04

8 Oxalosuccinate Positive 1.92 0.04

9 3-Hydroxypropionyl-CoA Positive 0.61 0.03

10 Menaquinol Positive 0.17 0.01
11 NADP Positive 0.65 0.02

12 5′-Adenylyl sulfate Positive 4.24 0.00

13 6-Phospho-D-gluconate Positive 0.18 0.00

14 Cyclic-AMP Negative 2.05 0.03

15 Inositol 1-phosphate Negative 2.25 0.02
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2.3. Pathway Analysis and Metabolite Classification

Pathway analysis of the differentially expressed metabolites was carried out against
the Mtb H37Rv database to understand the changes in metabolic pathways in Mtb in
response to PRK. Pathways including arginine and proline metabolism, purine, pyrim-
idine, and phenylalanine metabolic pathways along with others as shown in Figure 3
were significantly enriched with FDR ≤ 0.05. Interestingly, arginine and its downstream
metabolites—L-agmatine, 4-guanidinobutanamide, and 2-oxoarginine—were downreg-
ulated in the arginine and proline metabolic pathway. Metabolite classification of the
differentially expressed metabolites was performed using MBROLE against the Mtb H37Rv
database. A portion of the differentially expressed metabolites by PRK was classified as
nucleotides, amino acids, vitamins and cofactors, and fatty acids.

Figure 3. Pathway enrichment with significant p-value and FDR is shown as a bubble plot. The size
of the bubble represents the p-value and color scale represents FDR for each pathway.

2.4. Host Protein Target Prediction against PRK-Treated Mtb-Dysregulated Metabolites

Identification of predicted human protein targets against differentially expressed Mtb
metabolome by PRK provides insights in understanding the host functional processes likely
impacted in response to the combined effect of drug and Mtb infection. Therefore, human
protein targets were analyzed in this study using a publicly accessible tool, BindingDB,
which is a repository of protein–metabolite interactions essentially comprising experimen-
tally proven data from the scientific literature [19]. In this study, only the significantly
dysregulated metabolites with an assignment at MS2 level were chosen to obtain protein
targets. The PubChem identifiers of these metabolites were converted to SMILES ID that
served as an input source for BindingDB analysis. Collectively, 102 host protein targets
were identified against 46 non-redundant Mtb-dysregulated metabolites with a similarity
score ≥ 85% (Supplementary Data, Table S5). The protein targets were subjected to Gene
Ontology (GO) analysis in order to understand their associated cellular processes and clas-
sification against PRK and Mtb. The predicted protein targets belonged to various classes
including ligand-gated ion channels, G-protein-coupled receptors, ABC transporters, non-
receptor S/T kinases, and other enzymes and protein classes (Figure 4A). These proteins
were found to be involved in transcription, protein folding, transmembrane transport,
inflammatory response, and sequestering of calcium ions, in addition to other biological
processes (Figure 4B).
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Figure 4. Gene Ontology classification of predicted protein targets—(A) protein classes and
(B) biological processes. (C) Pathway enrichment showed with an alluvial diagram. The thickness of
the correlation lines connecting genes to pathways represents a significant p-value (≤0.05).

Pathway analysis of the predicted protein targets was performed using the REAC-
TOME pathway browser. Interestingly, pathways such as inflammatory response, au-
tophagy, immune system, Fcγ receptor-mediated phagocytosis, and DNA repair were
enriched with significant p-value and FDR (Figure 4C). Further, network analysis of these
protein targets was grouped using a K-means clustering algorithm in the STRING web-
based interface. Proteins involved in apoptosis (APP, NLRP3, OGT, TLR2, BCL2L11, PARP1,
PPARD) and immune response (SRC, PPP2R5A HSPA8, HSP90AA1, HSPA1B, HSPA1A,
MAPKAPK2, EP300) were clustered together in red nodes along with other proteins in
Figure 5. In addition, close clustering of purinergic receptors such as P2RX1, P2RX4, P2RX7,
P2RY2, P2RY6, P2RY11, P2RY14, and ADORA1 was observed that is known to be related to
inflammation. These proteins are segmented as blue nodes in Figure 5.
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Figure 5. Interaction network map of protein targets of altered metabolites showing clustering of
proteins into three groups. The edges connecting the nodes represent high confidence. Proteins
associated with apoptosis and immune response are highlighted with pink and blue stars, respectively,
while proteins associated with inflammation are highlighted with green stars.

2.5. Validation of Metabolites

A total of 20 metabolites that are involved in arginine metabolism, TCA cycle, and
others including amino acids, purines, pyrimidines, and antioxidants were validated
using the multiple reaction monitoring (MRM) approach. Of these, six metabolites, in-
cluding L-arginine, N-acetylglutamate, ergothioneine, argininosuccinate, succinate, and
L-phenylalanine, were significantly dysregulated with FC cut-off of 1.5 and p-value ≤ 0.05.
A box plot of these metabolites is shown in Figure 6. Meanwhile, the remaining 14 validated
metabolites were neither dysregulated nor had a significant p-value. The transition details
and optimization parameters of all the 20 validated metabolites are provided in Supplemen-
tary Data, Table S6. A pathway map of arginine metabolism with a highlight of metabolites
identified through targeted and global analysis at MS2 level is shown in Figure 7.
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Figure 6. Box plots of validated metabolites showing differential expression of metabolites in control
and PRK-treated Mtb H37Rv groups. (A) L-Ergothioneine, (B) L-Arginine (C) Argininosuccinate,
(D) N-acetylglutamate, (E) Succinate, and (F) L-Phenylalanine.

Figure 7. Pathway map of arginine metabolism and GABA shunt. MRM-validated metabolites are
highlighted in yellow, while the metabolites dysregulated in the global analysis are highlighted in
blue in the pathway.
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3. Discussion

The role of the arginine biosynthetic pathway in the survival and virulence of Mtb is
currently receiving a lot of scrutiny. However, there are no drugs known so far to target
enzymes of this pathway other than PRK and sorafenib (SRB), which target MtArgJ [20].
The absence of the MtArgJ homolog gene in humans and the vital requirement of this gene
for Mtb growth and pathogenicity anoints MtArgJ as an important drug target against this
devastating pathogen. Since PRK targets an allosteric site on MtArgJ, cross-reactivity with
the molecules similar to substrate and additional off-target effects are likely eliminated.
Moreover, the dearth of an equivalent gene in humans confers specific binding of the
drugs, thus minimizing cross-reaction in Mtb-infected hosts. PRK has shown significant
inhibition of Mtb survival under in vitro and in vivo conditions compared with SRB at
same concentrations. Similarly, PRK in combination therapy with rifampicin and isoniazid
reduced CFU to approximately 40- to 50-fold compared with SRB. Therefore, metabolomic
analysis was carried out using PRK at a concentration of 1 µg/mL, which has been reported
to barely inhibit the survival of Mtb [12].

A previous study has shown that downstream metabolites of argB and argF enzymes
in the arginine biosynthetic pathway were depleted in the respective mutant strains of
Mtb. In addition to these metabolites, antioxidants—ergothioneine and mycothiol—are
downregulated in argB and argF mutants of Mtb. The authors also have shown that arginine
deficiency augments DNA damage through ROS production, thus killing Mtb [7]. Further,
L-ergothioneine is known to play vital roles in Mtb, where it confers defensive response
against oxidative stress, anti-TB drugs, alkylating agents, and metals and also augments
virulence of Mtb in the host [21]. Interestingly, decreased expression of ergothioneine and
arginine pathway metabolites—N-acetylglutamate, argininosuccinate, and arginine—were
observed in this study by a targeted approach. Therefore, it is predicted that PRK could
have a similar role in sterilizing Mtb. However, further experiments are required to confirm
the mechanism of action of Mtb killing by PRK.

Succinate, an intermediate metabolite of GABA shunt or TCA cycle, is a substrate of
succinate dehydrogenase enzyme in the electron transport chain (ETC) [22]. Oxidation
of succinate to fumarate is known to enhance menaquinol levels that pump protons to
complex III and IV, thus generating ATP synthesis and membrane potential [23]. Decreased
levels of succinate by PRK may pose dysregulation of the ETC pathway, as it correlated
with decreased menaquinol and ATP levels in this study. ATP is an essential metabolite
for various metabolic processes in Mtb. Bedaquiline, a well-known anti-tubercular drug,
inhibits ATP synthase that leads to depletion of ATP and disruption of pH homeostasis,
thus affecting bacterial survival [24,25]. CTP and CDP are also metabolite co-substrates
of phosphatidylinositol biosynthesis and the non-mevalonate pathway [26,27]. CTP and
CDP were downregulated by PRK. Further, 2-C-methyl-D-erythritol-2,4-cyclodiphosphate
(MEcPP), a metabolite of the non-mevalonate pathway of isoprenoid biosynthesis, is syn-
thesized by the activity of MEcPP synthase (ispF). Knockout studies have shown that
the ispF gene is essential for the survival of Mtb [28]. Moreover, the lipophilic nature of
the ispF enzyme active site is considered to be the best target for drugs compared with
other enzymes of the non-mevalonate pathway [29,30]. MEcPP, an anti-stressor molecule,
is known to increase in the presence of oxidative stress in various bacterial species [31].
Interestingly, MEcPP was observed to be 0.5-fold downregulated by PRK.

Phenylalanine catabolizes to acetyl CoA and succinyl CoA through the formation of
phenylacetic acid in bacteria [32]. Phenylalanine was 0.44-fold downregulated in MRM-
based experiments. α-Ketoglutarate synthesized from oxalosuccinate enters into the argi-
nine biosynthetic pathway through the formation of glutamate. TCA cycle metabolite
oxalosuccinate was upregulated in this study. The pentose phosphate pathway end product
enters into purine, pyrimidine metabolism for the synthesis of nucleotides. In this study,
the central metabolite of the pentose phosphate pathway, 6-phospho-D-gluconate, was
observed to be downregulated.



Molecules 2022, 27, 1520 10 of 16

Identification of predicted host protein targets against the PRK-regulated Mtb
metabolome revealed interesting observations. The targeted proteins were identified in
association with the pathogen–host interaction pathway. Previous studies have shown that
PRK induces autophagy in the fibroblasts of mucopolysaccharidosis type IVA disease [33].
PRK is an antagonist of cysteinyl leukotriene receptor (CysLTR) that is widely expressed
on innate immune cells, including macrophages. PRK is previously known to exhibit anti-
inflammation by alleviating enzymes of leukotrienes and prostaglandin biosynthesis [34].
Leukotrienes that mediate inflammatory response bind to CysLTR [35]. Further, downregu-
lation of lipid inflammatory molecules such as PTGS2, along with ALOX5 and ALOX5AP,
associated with arachidonic acid metabolism by PRK in Mtb-infected Raw264.7 murine
macrophages [12]. The predicted protein targets—PTGS1, PTGS2—were enriched in the
lipid metabolic pathway, in addition to other fatty acid metabolic enzymes or proteins.
Further studies on other protein targets related to lipid metabolism will provide better
understanding of PRK-mediated regulation in an Mtb-infected host.

Network analysis showed close clustering of purinergic receptors that play a role in
host inflammatory response. P2RX7 and ATP signaling induce necrosis and cell death
through the production of pro-inflammatory cytokines upon Mtb infection [36]. Stimulation
of P2RY6 induces the production of pro-inflammatory cytokines such as IL-8 in human
monocytes treated with lipopolysaccharide (LPS) [37]. Further, UDP-P2RY6 signaling
re-establishes the differentiation of monocytes through autophagy induction in CMML
patients [38]. P2RY2 and P2RY14 receptors are pro-inflammatory, while P2RY11 are anti-
inflammatory molecules [39]. In addition to purinergic receptors, clustering of proteins
associated with apoptosis was also observed. Previous reports in Mtb-infected macrophage
cell lines have shown overexpression of BCL2L11 and induction of apoptosis, indicating
the involvement of BCL2L11 in the pro-apoptotic mechanism [40]. TLR2 gene deletion
and anti-TLR2 antibodies studies have shown that signaling of TLR2 by cell wall protein
Rv1016c induces apoptosis of Mtb-infected macrophages [41]. Further, NLRP3 is associated
with pyroptosis in Mtb-infected macrophages [42]. In our previous study, PRK has been
shown to inhibit apoptosis by alleviating pro-apoptotic signaling protein caspase-3 in
Mtb-infected murine and human macrophage cell lines [12]. In addition, PRK has also been
reported to exhibit protective effects by producing anti-inflammatory signaling molecules
in ischemic brain-injured rats [43,44]. An association of PRK treatment with autophagy,
apoptosis, and inflammation highlighted here serves to provide an impetus for further
investigations in this context.

In the present study, mass spectrometry data were acquired at the MS2 level, and
targeted analysis was performed on a couple of significant metabolites that are involved
in the arginine biosynthetic pathway. In recent times, metabolomic analysis has been
rapidly progressing from the modest approach of deploying quality control (QC) methods
that are based on the comparison of blank profiles to the advent of pooled QC samples
in multiple injections, along with sample data acquisition batches [17]. The concept of
QC was introduced at the time the data acquisition was executed for this study [45].
Therefore, comparison of blank runs to the sample runs was carried out that did not result
in any carryover of the sample metabolites, as reported in this study (See Supplementary
Data, Figure S1 for details). Moreover, high-confidence data were generated, as the MS2
acquired features were assigned at MS1 and MS2 levels using the in-house MS2Compound
tool [46]. Further, the data were predominantly dealt at the MS2 level in both untargeted
and targeted approaches, and most of the metabolites were associated with arginine and
proline biosynthetic pathways, along with ETC and purine metabolism. The study not
only validates the mode of anti-tubercular action of PRK through targeting of MtArgJ but
also provides a comprehensive insight into the altered levels of metabolites associated with
Mtb-killing by PRK.
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4. Materials and Methods
4.1. Mtb H37Rv Culture and Treatment Conditions

Mtb bacterial cultures were grown in 100 mL Middlebrook 7H9 media supplemented
with 10% OADC and Tween-80 until the cultures reached the logarithmic phase of 0.6 OD.
Subsequently, the bacterial cells were treated with the drug PRK (Tocris Bioscience, Bristol,
UK) at a concentration of 1 µg/mL, and the control cells were treated with DMSO and incu-
bated at 37 ◦C for 12 h. Preceding the bacterial cell harvest, the cell density was optimized
to 0.4 OD in both DMSO and PRK-treated cultures (0.4 OD is ~0.6 × 108 mycobacterial
cells). The experiment was carried out in biological duplicates for both the conditions.

4.2. Mtb H37Rv Cell Llysis and Metabolite Extraction

The cultures were subjected to centrifugation at 5000 rpm for 10 min at 4 ◦C, and the
pellets were washed with ice-cold PBS three times in order to remove the leftover media
and the chemicals. The pellets were snap-frozen in liquid nitrogen and were resuspended
in 1 mL of precooled resuspension buffer containing acetonitrile (ACN), methanol, and
water at a ratio of 2:2:1. The cells were then subjected to mechanical cell lysis using 0.1 mm
zirconia beads in a tissue homogenizer with a pulse of 6 m/s for 45 s each round. The
process was repeated for four rounds by placing the tubes on the ice at regular intervals.
The lysates were centrifuged at 14,000 rpm for 20 min at 4 ◦C, and the supernatants were
separated and filtered using 0.22 µm filters (Corning). The samples were dried using a
speed vacuum before LC-MS/MS analysis.

4.3. LC-MS/MS Analysis for Global Metabolomic Profiling

Samples were analyzed on an ABSciex QTRAP 6500 mass spectrometer (SCIEX, Fram-
ingham, MA, USA) in triplicates for each biological replicate in both positive and negative
modes, respectively. The mass spectrometer was coupled with an Agilent 1290 Infinity
II liquid chromatography system, C18 RRHD Zorbax column (20 × 150 mm, 1.8 µm par-
ticle size). The parameters for mass spectrometry analysis were set on Analyst software
(version 1.6.3) with the inbuilt Analyst Device Drive. The metabolite separation was carried
out using a 30 min LC method with 0.1% formic acid (solvent A) and 0.1% formic acid in
90% ACN (solvent B), and the flow rate was set to 0.3 mL/min. The LC method was set
with gradient as 2.0% B for 1 min, 2.0–30% B for 9 min, 30–60% B for 7min, 60–95% B for
9 min, and 2% B for 4 min and with a flow rate of 0.300 mL/min. The sample injection
volume was set as 15 µL per injection. The ABSciex QTRAP 6500 (triple quadrupole-linear
ion trap) mass spectrometer uses the information dependent acquisition (IDA) method,
which is built with an enhanced mass spectra (EMS) survey scan to identify the top five ions
based on intensity in each scan, which are taken forward for tandem MS-enhanced product
ion (EPI) scan. The EMS survey scan rapidly screens for all the compounds present in the
sample. The IDA criteria were set to trigger dependent scans, while the EPI scans rapidly
collected high-quality MS/MS data. For untargeted metabolomics, a general unknown
screening (with EMS) can detect maximum compounds and metabolites.

The data acquisition was executed with the IDA method at low mass mode. The top
five intense spectra from EMS mode were selected for analysis in EPI (MS2) mode, using
high energy collisional-induced dissociation (CID). The default option, three mass windows
per scan with respective scan times in QTRAP-6500, was selected. Further, metabolite data
were acquired in both polarities at 4500 V in positive mode and at −4500 V in negative
mode, with a probe temperature set to 450 ◦C. The compound parameters, including
declustering potential (DP), were set to 75 V and collision energy (CE) was set to 45 V. The
cycle time was set at 2.091 s per cycle. The MS2 data were acquired for biological duplicates
and technical triplicates. In between every technical triplicate sample run, intermediate
blank runs were executed on a mass spectrometer to avoid sample carryover between
adjacent sample runs.
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4.4. MZmine Data Analysis and Metabolite Assignment

The metabolite data analysis was carried out with MZmine version 2.53 [47]. The
wiff files from Analyst software were converted to mzML files using the ProteoWizard MS
Convert tool. The .mzML files of control and PRK-treated were analyzed for mass detection
using the centroid mode with peak intensities set to a minimum of 1.0E3 at MS1 level and
1.0E1 at MS2 level. The m/z feature list was built by selecting the precursors comprising
MS2-level information using the MS/MS peak list-builder algorithm. Features were then
detected with the Peak extender algorithm with m/z tolerance of 0.05 Da. Chromatogram
deconvolution with Noise Amplitude algorithm was selected, where a minimum peak
height of 1.0E3, the noise peak height of 1.5E2, and retention time (RT) of 1 min and
m/z tolerance of 0.1 Da for MS2 pairing was set for deconvolution of the feature list.
Isotopic peak grouping with m/z tolerance of 0.25 Da, maximum charge of 4, and RT
tolerance of 0.2 min were chosen. The deisotoped features were aligned with m/z tolerance
of 50 ppm and m/z weight of 70%, along with RT tolerance of 0.5 min, RT threshold of
30% using the Join-Aligner algorithm. Further, gap filling was performed with the Peak
finder (multi-threaded) algorithm with m/z tolerance and RT tolerance set to 0.05 Da
and 0.6 min, respectively. A duplicate filter algorithm was applied with New Average
filter mode to remove the duplicate peaks. Subsequently, the results containing feature ID,
m/z, RT, and peak areas at the MS2 level were exported as .csv files. Similarly, MS2
information of MS1 masses was exported as .mgf files for metabolite assignment and
further downstream analysis. Raw files including blank runs, PRK-treated and control
sample runs were analyzed on MZmine using similar parameters that were employed for
sample group analysis.

The .mgf files comprising MS1 and MS2 information were used to fetch metabolite
details at the MS1 and MS2 level through the in-house inbuilt MS2Compound tool [46].
The metabolites of Mtb H37Rv from BioCyc and KEGG databases were computationally
fragmented by using metabolite SMILES ID as input in the Competitive Fragmentation
Modeling-ID (CFM-ID) tool [48]. Such fragmented details were used as the theoretical
database for searching Mtb H37Rv metabolites. Parameters including precursor tolerance
of 0.05 Da, a fragment tolerance of 0.5 Da, and a minimum of two fragment matches were
set for searching the metabolites against the Mtb H37Rv database. The metabolites with
rank 1 and the highest mS score were selected. Further, m/z features lacking metabolite
assignment at the MS2 level were assigned at the MS1 level.

4.5. Statistical and Functional Analysis

Statistical analysis was carried out using the MetaboAnalyst version 5.0 [49] online
tool. Fold changes were calculated from median normalized data. PCA analysis was
employed with log10 data transformation and auto-scaling for positive mode data and
mean centering for negative mode data. Metabolite classification and pathway analysis for
the differentially expressed metabolites was performed against Mtb H37Rv species using
MBROLE version 2.0 [50]. Protein interactors for the identified metabolites were predicted
using the BindingDB database, and the protein clustering was carried out by using the
STRING K-means algorithm with the confidence set to 0.7 for the interaction network.
GO terms including biological processes and protein classes for predicted proteins were
acquired against the Homo sapiens database from PANTHER version 16.0. Further, pathway
analysis for the predicted proteins was executed using REACTOME.

4.6. Targeted Analysis of Metabolites by Multiple Reaction Monitoring (MRM)

The validation of the 20 metabolites was carried out with standards where each and
every metabolite was individually optimized for LC and MS/MS parameters to acquire
the RT and m/z transitions for precursor and product ions in addition to DP, EP, CE, and
CXP. Samples for MRM analysis were carried out in technical duplicates for each of the
two biological replicates using an ABSciex QTRAP 6500 mass spectrometer interfaced with
a 1290 Infinity II HPLC system (Agilent Technologies, Santa Clara, CA, USA). The samples
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were injected onto the Zorbax RHP column with the dimensions of 2.1 mm × 150 mm,
2.7 µm (Agilent Technologies, USA) through the programmed autosampler. Metabolite
separation was carried out using 0.1% formic acid in water (Solvent A) and 0.1% formic
acid in 90% ACN (Solvent B). LC method was set with gradient as 2.0% B for 3 min,
2.0–10% B for 2 min, 10–30% B for 2 min, 30–70% B for 7 min, 70–98% B for 9 min, 2% B
for 7 min, and with a flow rate of 0.300 mL/min. The total run time was 35 min, and
15 µL of the sample was injected into the column. Data were acquired in positive and
negative modes depending on the property of the metabolite using MRM scan mode. The
Analyst software, version 1.6.2 (AB SCIEX, Concord, Canada), was used to acquire data.
Samples were ionized using the ESI source. Ion Source Gas 1 (GS1) at 25 psi, Ion Source
Gas 2 (GS2) at 5.0 psi, Curtain gas (CUR) at 20.0 psi, ESI Source temperature at 450 ◦C, and
Collision-activated dissociation (CAD) gas at medium were maintained. The ion spray
voltage was set to 5500 V. The entire MS parameters, including RT, m/z, and ion intensities,
were acquired through the Analyst software, and the data were extracted using Skyline [51].
The resulting MS data were assembled into a matrix. DP, CE, and CXP for Q1 and Q3
masses for the selected molecules are provided in Supplementary Data, Table S6. A total of
20 metabolites were detected and quantified (relative) in both positive and negative modes.

4.7. Data Availability

Mass spectrometry-derived metabolomic data were submitted to MetaboLights [52],
which is a repository of metabolomic experiments including spectra, structures, and biolog-
ical roles. The study details and data are available with the identifier MTBLS3465.

5. Conclusions

In this study, metabolomic profiling of differentially expressed metabolites was carried
out using untargeted and targeted mass spectrometry-based approaches. Untargeted
analysis carried out at the MS2 level enhances the confidence of metabolite assignment and
its succeeding downstream analysis. In addition to metabolites associated with arginine
and proline metabolism, metabolites associated with the electron transport chain were also
identified in this study. Further studies are required to confirm the association of predicted
protein targets and their related biological processes and pathways in Mtb-infected hosts.
This study provides a framework or basis for the biological interpretation of metabolomic
changes mediated by PRK in the pathogen.

Supplementary Materials: Figure S1: Blank and sample group analysis by PCA analysis in (A) positive
mode and (B) negative mode. Important features detected by PLS-DA analysis in (C) positive mode
and (D) negative mode are shown, Table S1: A complete list of MS2 features identified in positive
mode. The table contains headers of adducts, m/z, RT, metabolite names, MS2Compound score, and
peak areas for the identified features. Identifiers including KEGG or BioCyc, PubChem, and HMDB
are also appended, Table S2: A complete list of MS2 features identified in negative mode. The table
contains headers of adducts, m/z, RT, metabolite names, MS2Compound score, and peak areas for the
identified features. Identifiers including KEGG or BioCyc, PubChem, and HMDB are also appended,
Table S3: List of differentially expressed metabolite features in positive mode. The table shows
the details of RT, m/z, metabolite names, and assignment level for the significant (p-value ≤ 0.05)
differentially expressed features in positive mode, Table S4: List of differentially expressed metabolite
features in negative mode. The table shows the details of RT, m/z, metabolite names, and assignment
level for the significant (p-value ≤ 0.05) differentially expressed features in negative mode, Table S5:
Predicted protein targets for the differentially expressed metabolites are tabulated, Table S6: List of
MRM-validated metabolites. The table shows the details of transitions and optimization parameters
of MRM-validated metabolites.
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