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Abstract Background Social distancing is an effective way to reduce the spread of the SARS-CoV-2

virus. Many students and researchers have already attempted to use computer vision technology to

automatically detect human beings in the field of view of a camera and help enforce social distancing.

However, because of the present lockdown measures in several countries, the validation of computer vision

systems using large-scale datasets is a challenge. Methods In this paper, a new method is proposed for

generating customized datasets and validating deep-learning-based computer vision models using virtual

reality (VR) technology. Using VR, we modeled a digital twin (DT) of an existing office space and used it

to create a dataset of individuals in different postures, dresses, and locations. To test the proposed solution,

we implemented a convolutional neural network (CNN) model for detecting people in a limited-sized

dataset of real humans and a simulated dataset of humanoid figures. Results We detected the number of

persons in both the real and synthetic datasets with more than 90% accuracy, and the actual and measured

distances were significantly correlated (r=0.99). Finally, we used intermittent-layer- and heatmap-based

data visualization techniques to explain the failure modes of a CNN. Conclusions A new application of

DTs is proposed to enhance workplace safety by measuring the social distance between individuals. The

use of our proposed pipeline along with a DT of the shared space for visualizing both environmental and

human behavior aspects preserves the privacy of individuals and improves the latency of such monitoring

systems because only the extracted information is streamed.

Keywords Virtual environment; Digital twin; 3D visualization; Convolutional neural network; Object

detection; Social distancing

1 Introduction

The COVID-19 pandemic is already considered one of the worst human disasters since the Second World

War. The pandemic is spreading at different paces in different geographic regions, and efforts are already
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in place to adapt to a "new normal". Social distancing is undoubtedly an effective strategy for slowing the

spread of the disease in the workplace and other crowded spaces such as shopping centers. Enforcing

social distancing is often challenging, however, owing to various factors such as ignorance and the nature

of human activity, among other aspects. An automatic method for measuring and alerting a deviation from

social distancing can be an effective way to stop the spread of the disease as offices and shopping centers

gradually reopen in affected areas.

Social distancing can be measured automatically using computer vision technology by detecting the

presence of individuals within the field of view of a camera. Most modern computer vision systems

operate based on machine learning technology, which in turn depends on appropriate training and testing

datasets. Despite a plethora of datasets for autonomous vehicles and facial images, among others,

generating an appropriate dataset for social distancing measurement systems is a challenge under the

present circumstances because many offices, shopping centers, and public spaces are either closed or are

operating with a reduced number of people. However, as more people start returning to the workplace, an

automatic system for accurately detecting and calculating the optimal number of people in indoor places

would be of significant value for accelerating the return to normal activities. For this approach, a system

trained in an outdoor environment may not work as well as that trained in an indoor environment where

variables such as the background color, lighting, and even the posture of personnel will be different.

Following a similar logic, we must consider that even a system trained on one particular indoor

environment may not work well in another indoor environment.

In this context, we propose a digital twin (DT) of a workspace through an interactive and immersive

virtual reality (VR) experience. Users can move around the space virtually and remotely, as they would in

the real world. The benefits of using DTs as a visualization medium are multifold. First, a DT provides an

interactive and intuitive virtual experience that can be used in VR. Users can navigate around the virtual

environment as they would in the real world. Second, a virtual environment protects the privacy of the

occupants through abstract humanoid figures compared to a direct video feed. In the virtual world, a virtual

camera was simulated at the same position from where the real-world feed was recorded. We then mapped

the two-dimensional centroid coordinates onto the feed of the virtual camera. Moreover, through a ray-cast

operation, the two-dimensional coordinates are mapped to the three-dimensional coordinates of the virtual

world, and hence, the movements of people are simulated in real time. In addition, to help us debug the

performance of the system, we used data visualization techniques to explain the working of a complex

machine learning system, such as a convolutional neural network (CNN). As the main contribution of this

study a synthetic data generation system is validated using a VR digital twin. Whereas earlier studies have

taken a similar approach for traffic datasets or robot control, we validated the VR DT for detecting persons

inside office workspaces.

The remainder of this paper is organized as follows. Section 2 presents a literature survey on VR-based

workspace simulators, particularly in the context of COVID-19 and different human detection systems.

The subsequent sections present a case study for developing a VR-based simulator, training a CNN with a

synthetic dataset, and explaining the operation of the CNN with both real and synthetic datasets using

appropriate data visualization techniques. The final sections highlight the utility and value addition of the

system and provide some concluding remarks.

2 Related work

2.1 Digital twins

The first digital twin implementations date back to NASA's Apollo program[1], in which live missions were
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used to replicate the problem scenarios faced by a crew 100000 miles away. NASA[1] formalized the

definition of a DT in 2012 as an integrated multiphysics, multiscale, and probabilistic simulation of an as-

built vehicle or system that uses the best available physical models, sensor updates, fleet history, and other

available data to mirror the circumstances of its corresponding flying twin. Tao et al. highlighted state-of-

art approaches in industrial DTs[2], according to which DTs have been implemented in three key application

areas: (1) product design, (2) production, and (3) prognostics and health management (PHM), with the

majority of focus primarily on (3). Khajavi explored the use of DTs in a smart building scenario by

replicating a part of the front facade[3]. The facade was visualized by assigning different yellow shades to

the respective lux values received from the sensor. Several commercial solutions have emerged owing to

their diverse possibilities and benefits. One example is the Azure Digital Twins (ADT) [4], a cloud-based

service that aims to democratize DT deployment by providing software as a service solution. Steelcase, a

company known for workspace designs, developed a space-sensing sensor network using ADT[5]. By

implementing a suite of wireless infrared sensors, they generated analytics on how their spaces were being

utilized, which in turn was used to enhance the reliability and efficiency. ICONICS[6] also utilized ADT to

create a virtual representation of a physical space to improve the energy efficiency, optimize space usage,

and lower costs.

2.2 Digital twins in COVID-19

Through real-time sensor data and accurate simulations, DTs can play a vital role in reducing the spread of

COVID-19. Milne et al. modeled a city in Australia to understand the effectiveness of social distancing and

reported that such distancing has been a substantial factor in flattening the epidemic curve[7]. A consortium

among Aalto University, the Finnish Meteorological Institute, the VTT Technical Research Centre of

Finland, and the University of Helsinki[8] studied the transmission of the virus by modeling possible

scenarios in indoor spaces. They examined various situations, such as when a person coughs in an aisle in a

grocery store. In a blog post by Sharma[9], the authors concluded that the traditional workplace model is

ineffective in managing social distancing. In addition, Unity Technologies[10] built an open-source simulator

concept for visualizing the spread of COVID-19 in a fictitious three-dimensional grocery store

environment. Large industry players, including Google and Amazon, have also attempted to make social

distancing hassle-free in indoor and outdoor spaces. Google released a web application called SODAR[11],

which uses WebXR technology to help workers maintain the necessary distance. It operates by drawing a

2m circle around a user when walking and alerts the user if another person enters the circle. Amazon[12] also

developed a mirror-like tool that helps employees observe physical distancing in an office workspace.

Augmented reality and machine learning techniques are applied to provide visual feedback to employees.

It portrays a person as being inside a red circle when entering within 6 feet of any other person.

2.3 Person detection

Pedestrian or person detection is a key research area in the computer vision domain. It has applications in

autonomous vehicles, video surveillance, and robotics. In the early stage of pedestrian/person detection

research, people used Haar wavelet features[13-15] or component-based pedestrian detection[14,16,17]. With an

increase in computational power, researchers have started using gradient-based representations[17-20] and the

deformable part-based model (DPM) and its variants[19,21,22]. Hosang et al. first used CNNs for pedestrian

detection[23]. Although fast and faster RCNN methods have performed well for general object detection,

they are unable to detect smaller pedestrians owing to the low resolution of the feature map. Zhang et al.
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addressed this issue through feature fusion using a boosted forest technique[24]. In addition, Cao et al.

introduced unified multi-layer channel features (MCFs) that integrate handcrafted features (HOG+LUV) in

each layer of a CNN[25]. Tian et al. also optimized a pedestrian detection task using semantic segmentation

to improve the hard negative detection[26]. To overcome the problem of occlusions and variations in

illumination and lighting, Xu et al. proposed a cross-modality learning framework with input images from

RGB and thermal cameras[27]. Wang et al. also addressed the occlusion problem by proposing a bounding

box loss function, called a repulsion loss function[28].

2.4 Visualization of CNN

Although CNN-based object recognition has achieved an impressive performance, the use of a CNN faces

the challenge of working with a black box. The features learned in different layers of the CNN are difficult

to understand, unless we can visualize how they work. Explainable AI (XAI) appears to overcome these

concerns, providing transparent models (white box) that allow humans to understand how an AI decision

has been made; therefore, they do not rely on data only, but can be improved through human

observations[29]. A brief literature survey on the application of CNN visualization techniques can be found

elsewhere[30].

2.5 Summary

Past studies have primarily focused on the use of DTs in industrial scenarios[2]. Despite the literature on the

use of twins in workspaces, only Nikolakis et al. focused on mapping the position and posture of an

individual using expensive depth cameras[31]. Synthetic data have also proven to be a successful alternative

for generating annotated datasets and is particularly essential during a pandemic. Moreover, we infer that

the existing state-of-art object detection models fail to detect humans with the same degree of accuracy as

they do in general object detection. Numerous approaches have been proposed to overcome this limitation.

In this study, we address these limitations using the approaches detailed in the subsequent sections.

3 Our proposed approach

A unified approach for modeling DTs has not yet been developed. According to Tao et al. [2], a generic

framework is critically required. The authors also outlined five dimensions that should be addressed while

modeling a twin: a physical part, a virtual part, data, their connections, and service modeling. In

collaboration with BT, we created a DT of their office workspace in Bengaluru, India. We built a three-

dimensional (3D) representation of a 12-person meeting room and the surrounding area using the

modeling, physics simulation, and rendering capabilities of Unity 3D. The physical and virtual worlds are

connected through sockets. Specifically, we mapped the weather properties of the space, such as the

temperature and humidity, measured using a DHT-11 sensor. Furthermore, through a ray-cast operation, the

two-dimensional coordinates are mapped to the three-dimensional coordinates of the virtual world, and

hence the movements of people are simulated. To ensure that the twin is as photorealistic as feasible for

data generation, we employed the ray tracing[32] tools of Unity instead of the traditional Rasterized renderer.

Ray tracing is a rendering technique that involves the tracing of individual rays of light as it bounces off

virtual objects in a scene. Specifically, we used the path tracing algorithm[33] of Unity with a sample count

of 4096, that is, the algorithm traces 4096 rays of light and requires 4096 frames to generate a single

image. Hence, if the simulation runs at 30fps, it will take approximately 2.3min to generate a single image.

To automate the process and increase the diversity of the dataset, we utilized the perception package of
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Unity. We were able to generate high-fidelity ray-traced synthetic datasets of humanoids in a sitting or

standing pose using the perception package and its in-built randomizer. By exploiting this randomizer, the

humanoid poses, that is, the position and orientation, were changed according to a random seed with each

iteration. By randomizing the poses on a fixed z-axis, we were also able to ensure that the humanoids did

not clash with one another.

3.1 Planned physical setup

In the planned deployment, each meeting room has a set of weather monitoring sensors and cameras

(Figure 1). Data from the sensors and cameras were collected and processed on a local computer.

Processing involves noise cancelation from sensor readings through low-pass filtering and calculating the

number of people inside each meeting room using a CNN. The processed data are sent to a central

computer equipped with a high-end graphics processing unit (GPU) using network sockets. The VR-based

DT will be deployed on this machine and updated with a real-time sensor feed. A demonstration video of

the implementation can be found at https://youtube/XGYvDnwbyhM, and a web version can be found

athttp://cambum.net/BT/BTWebGL/.

Figure 1 shows a schematic diagram of the planned deployment of the DT implementation, gathering

real-time data from a camera and IoT sensors (temperature and humidity). A similar setup was deployed

earlier for the smart manufacturing capabilities[34].

3.2 Social distancing measurement through person detection

The system was designed in such a way that the system input devices (i.e., sensors and camera) need to be

implemented within a physical office space. However, given the current situation in which most office

spaces are still closed in many parts of India owing to the pandemic, the system cannot be deployed in the

designated office space. Even after the office spaces are reopened, it will take a long time to generate

appropriate data to validate the CNNs for person detection. Hence, we planned to generate synthetic data

using a VR-based digital twin to validate a CNN-based person detection model. We chose YOLOv3 as our

Figure 1 Planned setup of the VR-based DT.
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person detection model based on the following studies:

(1) The performance of YOLOv3 was compared with a Faster RCNN, Mask RCNN, SSD, and

RetinaNet in terms of accuracy and latency, and it was found that YOLOv3 is better than the other

models[35,36].

(2) Redmon et al. also reported that YOLO performs better than other models when they fine-tune the

model with artwork images and tested it on a synthetic dataset[37].

Finally, we measured the distance between each pair of humanoids and calculated the correlation of this

measurement with that from the actual distance within the virtual environment. We describe the training,

validation of YOLOv3, and distance measurement in detail in Section 5.

3.3 Explanation through visualization

To understand how well the CNN performs, we investigated two different types of CNN visualization

techniques.

(1) The first type is visualizing the intermediate layers of a CNN model following Zeiler and Fergus[38].

This visualization technique is useful for understanding how successive convnet layers transform their

inputs. It also gives us an idea of what types of features are extracted by different filters of different layers

of the CNN model from the input images.

(2) The second, Grad-CAM based visualization[39], aims to understand which part of the image has a

maximum association in predicting person classes. To obtain the class discriminative localization map

corresponding to a specific class, we calculated the gradient with the feature maps of the last convolutional

layer. These gradients were globally average pooled to obtain weights corresponding to the class, followed

by a weighted combination of activation maps; finally, we applied a ReLU function. Thus, we obtained a

coarse heatmap of the same size as the feature map in the last convolutional layer of the CNN model. In

the final step, we resized the coarse heatmap to the input image size and overlapped the input image. Thus,

the Grad-CAM-based heatmap helps us visualize which part of the image has a maximum association with

the class of interest.

We applied these two techniques on both synthetically generated and real images to determine whether

there are any differences in extracting features for predicting persons in the images. In the following

sections, we describe our approach for developing a VR-based digital twin and use it to train and explain

the function of the CNN in detail.

4 VR simulator development

4.1 Modeling

The construction of an accurate virtual twin requires precise information about the geometrical dimensions

and physical properties of the object. Moreover, there is more than one way to implement such a twin.

Building information modeling (BIM)[40] is a growing technology used in the AEC industry that advances

the planning and design of infrastructure by portraying the building properties in 3D. BIM has been used in

several previous studies[41,42], as well as in commercial services such as Tridify[43], PiXYZ[44], and Unity

Reflect[45] to expedite the process of importing BIM files into game engines such as Unity. Another

technique, highlighted by a Siemens patent[46], is the use of depth scanners to generate a point cloud

illustration of a room and then match the point cloud data with the corresponding objects. However, owing
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to the immediate lockdown and social distancing measures enforced in the wake of the COVID-19

pandemic, the above techniques are infeasible and could not be duly arranged. Hence, we manually

modeled a part of the office workspace with the aid of an architectural drawing for our approach. We

started with a meeting room that could accommodate a total of 12 people and then continued to the

encompassing areas. We used Probuilder[47] and ProGrids[48] for modeling and rapid prototyping. The 3D

models for workspace furniture were procured from the online markets TurboSquid[49] and Sketchfab[50] and

accordingly placed within the environment.

4.2 Realistic rendering

Through multiple photographs taken using standard digital cameras, we were able to ascertain the different

materials that made up the meeting room, and we aimed to replicate these materials in the twin through

physically based rendering (PBR). PBR materials[51] enable the physical simulation of real-life material

properties such that they accurately reflect the flow of light and thereby achieve photorealism. A PBR

material entails several parameters such as albedo, metallic, and smoothness properties, as well as normal,

height, diffuse, and occlusion maps. The respective texture maps used in our twin for the walls and floor

mat were obtained from Freepbr.com.

Global illumination (GI) is one of the most significant factors determining how realistically a twin can

resemble a real object. GI facilitates realistic light rendering by bouncing light off of surfaces; that is, it

accounts for indirect light within the scene. We employed Baked GI for our environment, which entails

computing the lighting and generating lightmap textures beforehand and is therefore computationally

inexpensive during runtime. Its counterpart, Realtime GI, involves calculating the light during runtime and

places a substantial load on the GPU. Furthermore, reflection probes are placed within the environment to

simulate reflections and strengthen photorealism. Finally, the Post-Processing tool of Unity is used to

implement anti-aliasing, ambient occlusion, color grading, and auto-exposure. The final results are shown

in Figure 2.

For smoother processing, we optimized the twin by deleting several unnecessary polygons, such as the

height adjusters in the chairs and trays underneath the desks. Low-poly humanoid models were placed

within the environment for recognition by the person detection model. Their behavior was driven using

NavMeshAgents of Unity[52]. Here, the agents avoid each other and other obstacles in a scene through

spatial reasoning obtained from a baked NavMesh. We also enabled ray-traced rendering in a virtual

environment by employing the path-tracing algorithm of Unity. In this context, physically based rendering

is a category of virtual materials that mimics the physical properties of real-world materials. Finally, we

compared the performances of rasterized rendering and raytracing.

Figure 2 Digital twin rendered with baked global illumination and post-processing using Unity.
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4.3 Interactive dashboards

We configured interactive dashboards inside a VR-based workspace simulator, which displayed real-time

sensor data such as the temperature and humidity, and the latest statistics regarding the coronavirus

pandemic at the place of deployment. The sensors were interfaced with the VR machine through their

respective wireless modules. These wireless modules used a peer-to-peer connection to communicate with

a VR machine using the UDP protocol at a frequency of 1 Hz. Data obtained from the temperature and

humidity sensors are shown as separate circular bars (Figure 3c). Instantaneous values are converted into

time-series values when users dwell using an eye gaze while wearing an HTC Vive Pro Eye headset or

when selecting a dial using a hand-controller, thereby providing a detailed view (Figure 3b). The color of

the circular bars changes if the value exceeds a predefined threshold (Figure 3c). Any abrupt changes in the

sensor readings are also reflected instantly through both visual and haptic feedback. Haptic feedback is

generated through the hand controller. The live sensor data values can be used further for making decisions

regarding air conditioning or maintaining the room temperature of the office workspace.

In addition, the dashboard displays real-time statistics from the coronavirus pandemic obtained from the

COVID-19-India API (https://api. covid19india. org/). The dashboard shows the number of active cases

within the region where the actual workspace is located. The data are shown as a circular bar (Figure 3a)

depicting the number of active cases to date. When a user dwells using an eye gaze, detailed statistics are

shown for the latest phase[53] as a bar graph (Figure 3b).

4.4 Connecting CNN to VR environment

The physical implementation involves processing live video in a separate computer and sending the

number of people detected in the live video feed to the VR setup. However, at the present stage of

Figure 3 VR Model of the office space.
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development, and given the previously mentioned constraints from COVID-19, we connected the CNN

model for detecting humanoids within the VR environment through a real-time streaming protocol (RTSP)

connection, streaming the game view of the Unity camera to the CNN where the person detection process

(as described in Section 5.1) occurs. Once the person detection results are obtained, we filter our

predictions using the corresponding confidence scores. We select persons with a confidence score of

greater than 0.6, and if such a person is found, we stream the results back to Unity through a UDP

connection. Currently, there is no in-built option in Unity to stream its camera view; therefore, we built a

custom solution using the FFmpeg module and an RTSP server. These functions were implemented to

stream the Unity view through the RTSP connection. Because the CNN processing speed differs from the

streaming speed of Unity, we considered the latest sample of the RTSP buffer to pass on to the CNN. We

tested the person detection model on videos recorded in both real and virtual worlds. The model processes

each frame and localizes persons/humanoids when detected in the frame (Figure 4). Localization is

achieved by annotating the bounding box around the person. Figure 4 shows each person annotated with a

bounding box labeled with a number.

Once Unity receives the object results, we add or delete humanoids inside the virtual environment.

Digital humanoid models are composed of more than 90 different links/joints and 140 degrees, similar to

those used in many biomechanical models of the human body[54]. We used motion capture data of

Mixamo[55] to automatically rig the armature of the humanoid (base skeleton rig) to reflect realistic human

poses.

4.5 Comparison with similar approaches

The ParallelEye dataset[56] applies an approach similar to our method using a VR-based synthetic dataset

for autonomous vehicles. UnrealROX[57] is another tool built over the Unreal engine to generate

photorealistic synthetic datasets but is targeted more toward research into robotic vision. The tool focuses

on simulating a broad range of indoor robotic activities in terms of both object interactions and pose. We

extended the idea for a different use case and compared the system in terms of accuracy with a real dataset.

Figure 4 Humanoids detected by person detection model and annotated with bounding boxes. Here, the bounding

boxes turn to red if social distancing is violated and are otherwise green.
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Different methods for generating synthetic datasets use variable autoencoders (VAE) [58-60] and generative

adversarial networks (GANs)[61]. We also compared our approach using the same setup. We ran real images

through a GAN implementation. The GAN consists of a generator, which tries to fool another network,

known as a discriminator, that learns to distinguish between real and fake images. We used one version of a

GAN, called SinGAN[62], which is an unconditional generative model that can be trained on a single image.

The model learns the internal distribution of the image patches[63-66] using multi-scale adversarial training

and can generate similar images of different scales. This model is similar to a GAN model, except that the

training samples are patches of the input image rather than a set of images, and the network consists of a

pyramid[67-69] of GANs of different scales. As the authors of the study on SinGAN claimed, it might produce

unrealistic and distorted results on coarser scales. Still, we were able to generate realistic fake images on

finer scales that were indistinguishable from the real image. At finer scales, the generator learns a smaller

patch distribution than at a coarser scale, giving better results in smaller scales and preserving the global

structure of the image (Figure 5).

There are no existing VAE-based algorithms that take a single image and can synthesize as many fake

images as desired. If we have a sufficient dataset, the VAE can capture the distribution and generate more

data from the same distribution. Conventional GANs have problems of non-convergence [70] and mode

collapse [71], which researchers have improved over time. Although a SinGAN model can synthesize more

indistinguishable fake images similar to the original image, as shown in Figure 5, it offers less

customization compared to a VR-based DT. As shown in earlier sections, in a DT, we can easily change the

number, clothing colors, and postures of the persons in an image dataset while keeping the background and

ambient light constant. Although it was found that a VAE can detect the camera rotation and emotion of

Frey faces [72], neither VAE nor GAN can add multiple objects or persons in an image while keeping a

few features constant and varying the others.

5 Accuracy comparison of person detection

5.1 Model preparation

We used a transfer learning technique to fine-tune the model with a person dataset downloaded from the

Open Images Dataset[73]. This dataset contains both real and artwork images. We used 2022 images in total

with the "person" label showing single or multiple people. We separated the complete dataset into an 80:20

Figure 5 (a) original input images (b) random samples from a single image at n=6, n=11, and n=25.
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ratio for training and validation. We prepared the dataset by converting the annotation files into an xml

format. The existing annotation files were in Darknet format, which is the actual backend used for YOLO

training. We trained the model using the model using the "Keras" backend. The model was trained for 200

epochs, with a batch size of 4. We used an NVIDIA GeForce RTX 2070 GPU to train the model and

conduct a performance testing on the images. Finally, we tested our trained model on both real and

synthetic sequences of images.

5.2 Data preparation

To test the model on real and synthetic images, we recorded short videos in the physical world (Figure 6d)

and the virtual environment (Figure 6d). In the physical world video, we recorded multiple situations such

as occluding persons and varying lighting conditions in the same office space used for VR modeling

(Figure 6c). In the virtual environment video, we recorded the ambient light and room setup as constant

parameters and the following as independent parameters: (1) changing the number of humanoids in the

frames (one to four humanoids), (2) posture of humanoids (seating and standing), and (3) occluding

humanoids (yes or no). We tested a total of 9000 images divided into three classes: real images, synthetic

images generated without ray tracing, and synthetic images generated through ray tracing. Because ray

tracing is computationally intensive, we considered synthetic images without ray tracing, and in a practical

implementation, we may need to deploy the DT without ray tracing based on the availability of the GPUs.

We calculated the accuracy of our model using the following formula: Accuracy = (TP + TN) / (TP + FP +
FN + TN ) , where TP, TN, FP, and FN denote true positive, true negative, false positive, and false

negative, respectively.

5.3 Results

We found an overall accuracy of 96.044% (standard error of 0.186) for real images, 96.981% (standard

error of 0.126) for synthetic images without using ray tracing, and 94.25% (std error of 0.974) for synthetic

images using ray tracing. We analyzed the accuracies to determine if the performance of the CNN was

significantly different between real and synthetic images. We listed the accuracies for all conditions

(different numbers of persons, postures, and occlusions) separately and found that, except when one person

was occluded, the interquartile range for all conditions was zero, and the median and first and third

quartiles were 100% for both real and synthetic images (Table 1, where the numbers in the brackets

indicate the interquartile range). Table 2 lists the proportion of images for all conditions, with an accuracy

of less than 100%. Owing to this skewness of the samples, we did not conduct standard ANOVA and

median tests.

Figure 6 Training and test data samples: (a) Training data with real person image, (b) training data with artwork

image, (c) testing on synthetic world image in which a false negative result was obtained, and (d) test result on real-

world image in which a false positive result was obtained with four persons detected despite only three persons being

present.
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5.4 Distance measurement

Bertoni et al. worked on the silhouettes of people in an outdoor environment using 3D distances[74]. In this

study, we measured the distance between persons in an indoor environment. We first fixed the camera at a

particular height of the room in a virtual environment. We then recorded the distance between each pair of

humanoids detected in each frame in pixels using the Unity tool. We used a trained model to generate a set

of bounding boxes and a unique ID for each humanoid. To measure the distances between detected

humanoids, we calculated the distance between humanoids from bounding box references generated by

YOLO following Punn's study[36] using video recorded by a road surveillance camera. We calculated the

bounding boxes and the corresponding centroids for each box in a frame recorded through the VE. The

bounding boxes are shown in red or green, and the corresponding centroids are shown in yellow, as

indicated in Figure 4. We computed the pairwise Euclidean distance between centroids using (1) and by

applying a p ×p matrix, where p denotes the number of persons detected at any instance.

d (m, n ) = ∑i = 1
p (mi - ni )2 (1)

Table 1 Median accuracy across different conditions

Conditions

One person standing without occlusion

One person standing with occlusion

One person sitting without occlusion

One person sitting with occlusion

Two persons standing without occlusion

Two persons standing with occlusion

Two persons sitting without occlusion

Two persons sitting with occlusion

Three persons standing without occlusion

Three persons standing with occlusion

Three persons sitting without occlusion

Three persons sitting with occlusion

Real image

100(0)

100(0)

100(0)

100(0)

100(0)

100(0)

100(0)

100(25)

100(0)

100(0)

100(0)

100(20)

Synthetic image

without ray tracing

100(0)

100(0)

100(0)

100(0)

100(0)

100(0)

100(0)

100(0)

100(0)

100(20)

100(0)

100(0)

Synthetic image

with ray tracing

100(0)

100(0)

100(0)

100(0)

100(0)

100(0)

100(0)

100(43.75)

100(15)

100(25)

100(0)

75(33.33)

Table 2 Proportion of images with accuracy of less than 100%

Conditions

One person standing without occlusion*

One person standing with occlusion

One person sitting without occlusion*

One person sitting with occlusion*

Two persons standing without occlusion

Two persons standing with occlusion

Two persons sitting without occlusion

Two persons sitting with occlusion*

Three persons standing without occlusion*

Three persons standing with occlusion

Three persons sitting without occlusion*

Three persons sitting with occlusion*

Real image

3.28

0.00

0.00

0.36

0.00

18.25

0.00

37.59

15.69

22.63

11.31

44.89

Synthetic image

without ray tracing

0.00

0.00

9.48

0.00

0.00

18.97

1.83

0.33

1.00

29.62

0.00

20.63

Synthetic image

with ray tracing

0.00

0.00

0.00

10

0.00

10

0.00

40

30

30

0.00

60

Notes: *Statistically significant differences among the seven conditions.
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Here, p is a two-dimensional space, and m and n are two centroids in a 2D space. Finally, we measured

the correlation of this measurement with the distance measured through the virtual environment, the

correlation coefficient of which was r=0.99, p<0.01 (Figure 7).

5.5 Discussion

We compared the performance of a representative CNN model among real and synthetically generated

images using a VR DT and noted that the interquartile range of accuracies across different combinations of

numbers of persons, occlusions, and postures was zero for the first, second, and third quartiles at 100%.

The highest number of images with less than 100% accuracy occurred when one or more persons were

occluded, and was similar for both real and synthetic images. We observed a few cases (for example, two

sitting persons with occlusions) in which the accuracy on the real images was comparatively lower than

that on the synthetic images. This might be due to uncontrolled lighting illumination, the similar color

contrast between the clothes of the persons and the background, and other factors. The difference in

accuracies among the three conditions was less than 2%, which does not have a significant effect on the

practical use. The calculated distances from the synthetic image correlated with the 0.99 coefficient under

real distances.

We found three conditions (two persons sitting with an occlusion, three persons standing without an

occlusion, and three persons sitting with and without an occlusion) in which the accuracy on real images

was comparatively less than on synthetic images without ray tracing. We observed that, although the model

was able to detect persons under such conditions in the real world, the false positive rate was higher. This

might be due to uncontrolled ambient lighting conditions in the real world and an indistinguishable

similarity between clothes colors and the background in the images.

6 Explanation through visualization

In the previous section, we mention that YOLO had the lowest accuracy when one or more persons were

partially occluded. To understand this result, we used an intermediate layer visualization technique and the

Grad-CAM technique to explain the performance of the person detection model. Grad-CAM calculates

each pixel value of the feature maps in the last convolution layer on the predicted class[39]. It does not

require any information related to bounding box regression, which is typically used to localize an object in

an image. Because the YOLO model does not allow reading data from intermittent layers, we used a

VGG16 classification model pretrained with the ILSVRC ImageNet dataset. We prepared our dataset by

combining five different classes (i. e., airplane, bicycle, car, motorbike, and face) of images downloaded

Figure 7 Scatter plot of distances measured from virtual environment and through a CNN.
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from Kaggle, Google Image, the Caltech face image dataset, and the Georgia Tech Face database. We

trained the model using a total of 3513 images separated into training and validation datasets (80:20) for

100 epochs. To understand how the CNN model can classify the input image, we need to understand how

our model sees the input image by looking at the output of its intermediate layers. We visualized the

activations in the ( n4 ) th convolutional layer, ( n2 ) th convolutional layer, ( 3n4 ) th convolutional layer, and

n-th convolutional layer of the trained model. To visualize the heatmap generated by the Grad-CAM

method, we used a pretrained VGG16 model. Although this pretrained model does not include any person

class, it has different classes related to clothes (e.g., t-shirt and jeans), which are relevant for the

localization of the individual in the image. We generated a heatmap corresponding to the t-shirt and jeans

classes to identify people in the images. We visualized the performance of the CNN for person prediction

in both real and synthetically generated images. We generated the output of the CNN from the layers

mentioned above for both types of images to understand whether the CNN handles synthetically generated

and real images differently or in the same manner. We found that the first few convolution layers of the

model extracted the basic features (edges and contours) of the object and retained the maximum

information from the input image (Figures 8b and 9b). As we found deeper in the model, the activations

became less visually interpretable (Figures 8c-8e and 9c-9e). The model started to extract abstract features

(e.g., patch-based features such as the texture of the body parts of a humanoid in Figure 8 or a person in

Figure 10). At a deeper level of network resolution, the feature map starts decreasing, whereas the spatial

information increases. If we observe all four feature-map outputs (Figures 8c-8e and 9c-9e), it is evident

that in each transformation model, the background or any irrelevant information is eliminated, and useful

information related to the class of objects is refined.

We also visualized heatmaps of the class activation to understand which part of the object allowed the

model to correctly classify the object. In this context, the class activation map indicates which part of an

image corresponds to a class of objects. In Figure 10, we show a heatmap of synthetically generated

images in real-world images (Figures 10a-10c). We found that different body areas were strongly

Figure 8 (a) Input image (humanoids in a synthetic generated image). A red box indicates that YOLO detected a

person. (b) 28th channel of the activation of the 3rd convolution layer, (c) 28th channel of the activation of the 7th

convolution layer, (d) 28th channel of the activation of the 10th convolution layer, and (e) 510th channel of the

activation of the 13th convolution layer (please note that this figure is best viewed in its digital form).
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activated, with brown corresponding to the highest gradient score and cyan corresponding to the lowest

gradient score. Heatmap-based visualization helps us identify the part of the image that contributes to the

false positive or false negative results.

To understand how different independent variables contributed to the CNN performance, we tested

synthetic images with different parameters. We started with an image of an occluded person, where

YOLOv3 failed to detect individuals, and the accuracy dropped to 50% (Figure 10a). We found that the

occlusion made it difficult for the model to obtain sufficient information from a partially occluded person

and achieve localization, although it could generate a heatmap for whole body areas of a standing person

who was fully visible (Figure 10a). We conducted a second check with a different image in which

YOLOv3 was able to detect all people (Figure 10b). When we looked closely at the heatmap areas, we

found a strong association between the bounding box region and the heatmap areas. Although the female

humanoid in this image was weakly classified, the heatmap covered the maximum upper body parts visible

in the image for all three individuals. As previously mentioned, brown corresponds to the highest gradient

score, and cyan corresponds to the lowest gradient score. We tested the heatmap with a third image where

Figure 9 (a) Input test image (person in real-world image), (b) 28th channel of the activation of 3rd convolution

layer, (c) 28th channel of the activation of 7th convolution layer, (d) 28th channel of the activation of the 10th

convolution layer, and (e) 510th channel of the activation of the 13th convolution layer (please note that this figure is

best viewed in its electronic form).

Figure 10 Grad-CAM based heatmap for three different situations where the performance of YOLOv3 differed in

terms of accuracy (shown in the red bounding boxes). (a) YOLOv3 failing to detect a partially occluded person, (b)

YOLO detecting all individuals, and (c) YOLOv3 detecting all individuals with different postures and different

colored clothing.
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the humanoid figures were wearing different colors (green and white) and were positioned in different

postures (i.e., one person was sitting, and a second person was standing). The Grad-CAM heatmap

provided a strong visual cue regarding the location of these two different individuals (Figure 10c). These

results confirm our idea of using this visualization technique to analyze the failure modes of a CNN model

and take corrective steps, such as increasing the camera field of view and location to record a full-frontal

view of the humanoids, or in this case, to increase the accuracy of the model.

7 General discussion

7.1 Summary

In this paper, a new method is proposed for validating the accuracy of a CNN through a customized

synthetic video generated in an immersive environment. A case study demonstrated the possible

application of this implementation in the development of an automated social distance measurement

system in a physical office space. We presented the training and testing accuracy in detecting individuals

using a CNN-based person detection model and used data visualization techniques to describe the

operation of the model for both real-world and synthetically generated videos.

7.2 Accuracy of person detection

We achieved 100% median accuracy for person detection and a 0.99 correlation for physical distance

measurements. The applications a CNN are rapidly evolving with new models frequently appearing in the

literature, and the accuracy of person detection even under the presence of occlusions can be further

increased using customized CNN models. However, it should be noted that this study is not focused on the

development of a CNN for person detection, and rather proposes a new way of validating a CNN model

using a VR-based synthetic dataset. If a different CNN model other than YOLOv3 is used, we can also

train it with a synthetic dataset and can achieve a similar accuracy in a real-life deployment. Although the

present social distance measurement algorithm works within the visual field of a webcam inside a room,

future versions will implement 3D distance measurements such as Bertoni's[74] monocular 3D localization

algorithm.

7.3 Utility

The proposed VR prototype will be deployed as a VR-based DT of an office space implementing real-time

person detection and environmental variable monitoring capabilities through interactive dashboards. In

addition, the VR interface will show real-time COVID-19 statistics at the place of deployment and measure

the number of people in the space, as well as their relative position and posture. This can be extremely

valuable for monitoring social distancing measures in office spaces. As a second benefit, an observer can

undertake a detailed remote virtual walk through an office space, which would not be possible with a

standard multi-screen video from a security camera.

The concept of validating a CNN through synthetic video can have utility beyond this particular use case

of measuring the social distancing in an office space. For example, for both unmanned ground and aerial

vehicles, synthetic videos can be used to validate machine vision systems where real-time video generation

is difficult, for example, inside a hazardous location such as a nuclear power station or a high-security zone

such as inside a military facility.
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7.4 Value addition

During the past few months, a plethora of computer vision projects for calculating social distancing have

been conducted. However, most of these systems have not been rigorously validated as traditional machine

vision systems for autonomous vehicles or face recognition owing to a lack of appropriate data. Bertoni

et al. algorithm was validated for outdoor environments but not for indoor office workspaces[74]. Our paper

proposes a new method for validating a machine-learning-based person detection system using

synthetically generated video in an immersive environment.

DTs are traditionally used to optimize or simulate a process lifecycle or the maintenance of assets. Our

study proposes a new use of DTs to enhance workplace safety by measuring social distance.

We also demonstrated an application of the visualization technique using synthetic images to understand

why CNN-based object detection models work or fail to detect individuals from an image. We compared

the performance of YOLO using different independent parameters to understand how it operates under

different situations. The heatmap-based visualization helped us obtain a visual explanation of the operation

of the CNN model. This approach is novel in that a similar approach can be used for other CNN models for

different applications, and is a step toward the collective goal of XAI.

8 Conclusion

This paper presented a VR-based DT implementation of a physical office space with the goal of using it as

an automatic social distancing measurement system. The VR environment was enhanced with an

interactive dashboard showing information collected from physical sensors and the latest statistics on

COVID-19. Moreover, we implemented a CNN to identify people within a room. Given the present

pandemic, where lockdown and social distancing measures have impeded the collection of real large-scale

image and video data, we proposed a new technique for training and validating a CNN through synthetic

images generated through the VR DT. We also used two different data visualization techniques to explain

how a complex CNN operates, aiming toward the advancement of XAI, and used it to improve the CNN

performance. We hope that the proposed solution will help measure the occupancy accurately and

contribute to enhancing the safety of workspaces by enforcing social distancing measures.
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