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Large amount of multi-dimensional data can be difficult to visualize in standard 2D display. Virtual 
Reality and the associated 3rd dimension may be useful for data analysis; however, 3D charts may 
often be confusing to users rather conveying information. This paper investigated and evaluated 
graphical primitives of 3D charts in a Virtual Reality (VR) environment. We compared six different 
3D graphs involving two graph types and five visual variables. We analysed ocular and EEG 
parameters of users while they undertook representative data interpretation tasks using 3D graphs. 
Our analysis found significant differences in fixation rate, alpha and low-beta EEG bands among 
different graphs and a bar chart using different sizes of columns for different data values found to 
be preferred among users in terms of correct response. We also found that colour makes it easier 
to interpret nominal data as compared to shape and size variable reduces the time required for 
processing numerical data as compared to orientation or opacity. Our results can be used to 
develop 3D sensor dashboard and visualization techniques for VR environments. 

Evaluation. Visual variables. Visualization. Virtual Reality. Eye Tracking. Cognitive load. 

1. Introduction 

Analysing data is turning increasingly difficult as the 
size and complexity of datasets continue to grow 
every day.   Using visualisation techniques for data 
analysis is a popular method because it exploits the 
human visual system as a means of communication 
for interpreting information. In recent times, a 
plethora of visualisation techniques have been 
developed to explore large and complex data. The 
rise of visualisation techniques has made the 
practice of evaluation of visualization techniques 
even more critical. A number of empirical evaluation 
methods for visualisation techniques have been 
developed in the last two decades.  There has been 
a steady increase in evaluation methods those 
include human participants’ performances and 
subjective feedback. Isenberg et al. [1] divided 
evaluation methods into eight categories. They 
reported that Qualitative Result Inspection, 
Algorithmic Performance, User Experience and User 
Performance are the most common evaluation 
scenarios. In this paper, we have evaluated 3D 
visualisation in a VR environment by comparing user 
performance and experience across six types of 
visualisation techniques. We have investigated and 
compared visualisations using ocular parameters 
and EEG (Electroencephalogram). Ocular 
parameters are already extensively used to explain 
and model visual perception [39], analyse cognitive 

load [18, 20, 21] and areas of interest in complex 
visual stimuli [22, 23]. Comparison of 2D graphs 
used for representing quantitative data using eye 
tracking device has been undertaken for evaluating 
user/task characteristics and finding appropriate 
graphs [2,3]. Drogemuller et al. [42] evaluated 
navigation techniques for 3D graph visualisations in 
VR environment. Ware and Mitchell [33] studied 
graph visualisation in 3D, specifically they compared 
3D tubes with 2D lines to display the links in a graph. 
They reported that with motion and stereoscopic 
depth cues, skilled observers could identify paths in 
a 1000-node graph with an error rate less than 10% 
compared to 28% with 2D graphs. Although tools 
and techniques have been developed in a VR 
environment for exploring and interacting with 
graphs effortlessly [4,5,6], researchers have hardly 
explored studies that compare 3D graphs. A 
comparative survey of user experiences with 3D 
charts in a VR environment was undertaken in [7,8]. 
However, these studies were primarily limited to a 
single graph.  

Visualisation can be termed as a collection of 
graphical objects. Ward et al. [9] state that there are 
eight ways in which graphical objects can encode 
information, i.e., eight visual variables – position, 
shape, size, opacity, colour, orientation, texture, and 
motion. These eight variables can be adjusted as 
necessary to maximise the effectiveness of a 
visualisation to convey information. Garlandini and 
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Fabrikant [35] explored the effectiveness and 
efficiency of these visual variables in 2D 
cartography. Their results revealed that the variable 
size was most effective and efficient in guiding 
viewers, and orientation played the least role. 
However, researchers have not investigated and 
compared visual variables in 3D graphs previously. 
We consider the problem of comparing visual 
variables of 3D graphs for representing 1D 
numerical data. In particular, we compare variables 
that are used to depict numerical data - size, 
orientation and opacity and nominal data - colour 
and shape. Somnath [3] compared 2D graphs and 
reported that users are more comfortable using bar 
and area charts than line and radar charts. 
Extending the work in the VR environment, we also 
compare the 3D bar chart and area chart to find if 
there is any difference between them in the VR 
environment. The readers may be interested in 
knowing:  

1. Which 3D graph is best in terms of correct 
data interpretation? 

2. Which visual variable(s) is (are) easier to 
interpret than others? 

3. Does the 3
rd

 dimension add a value? 

4. Are there differences among graph types 
with respect to-? 

a. Ocular parameters and 

b. Cognitive load while interpreting 
graphs. 

The paper is organised as follows. We discuss the 
related work in Section 2 followed by user study in 
Section 3. Methodology is discussed in Section 4, 
analysis and results are discussed in Section 5 
followed by discussion in Section 6. We have 
presented concluding remarks in Section 7. 

2. Related Work 

Visualisation is defined as the communication of 
information using graphical representations. 
Graphics related application demands in depth 
understanding of graphics primitives and their 
properties to communicate information. In total, there 
are eight ways in which graphical objects can 
encode information [9]. Variables such as size, 
orientation, and opacity [9, 36] encode quantitative 
data information, while colour and shape are used 
for visualising nominal data. Fisher et al. [34] 
investigated which 3D graph type was easiest to 
interpret among bar, pie, floating line, mixed bar/line, 
and layered line charts. It was revealed that 
information extracted from bar and pie charts were 
found to be more effective than others. Additionally, 
it was found that the participants had better 
information retention with pie charts than bar charts. 
Hitherto, researchers have either developed new 

methods or discussed in detail how specific 
approaches need to be extended for visualisation 
evaluation. Evaluation of visualisation is primarily 
based on empirical methods. In particular, empiric 
evaluation and the consideration of human factors 
are discussed in [10,11,12]. Isenberg et al. [1] 
identified eight evaluation scenarios. They reported 
that Qualitative Result Inspection (QRI), Algorithmic 
Performance (AP), User Experience (UE) and User 
Performance (UP) to be the most common 
evaluation scenarios. In User Performance 
evaluation, Livingston et al. [13] focused on time 
taken and errors committed to complete a task using 
a new technique [13]. It was found that a large 
number of UP studies were done with 10-15 
participants [1]. Evaluation of visualisation using an 
eye-tracking device [3] is an example of a UP 
evaluation scenario. Understanding user 
performances and feedback includes tasks where 
the user must answer a set of questions after 
assessing the visualisation techniques [2,3]. A set of 
low-level analysis tasks that capture user's activities 
while employing visualisation for understanding data 
was presented in [14]. We have adopted four out of 
these ten analytical task questions [14] for our user 
study.  

Cognitive measures also have an influence on a 
user's performance and satisfaction while working 
with visualisations [15, 16, 17]. Peck et al. [32] 
utilized fNIRS to examine how participants process 
bar graphs and pie charts, and cognitive loads 
associated with them. Their results indicated that 
there was no significant difference among bar graph 
and pie chart, and this result also correlated with the 
results of the NASA TLX questionnaire. 
Furthermore, psychologists [19] have reported a 
strong association between cognitive load and pupil 
dilation of eyes. Marshall [20] proposed a wavelet-
based algorithm to detect a hike in pupil dilation 
corresponding to an increase in cognitive load. 
Gavas [21] and Duchowski [22] also estimated 
cognitive load from pupil dilation. Saccadic Intrusion, 
change in fixation duration, and blink count [23] are 
also used for measuring cognitive load. Prabhakar et 
al. [18] investigated the efficacy of various ocular 
parameters to estimate cognitive load and detect 
driver's cognitive state. They derived gaze and pupil-
based metrics and proposed a machine learning 
model classifying different levels of cognitive states. 
The use of ocular parameters has also shown an 
impact on evaluating visualisation performance 
[3,30,31]. A comparative study on user experiences 
with 3D graphs in VR environments was undertaken 
in [7,8]. There are no studies reported in literature 
which considers ocular parameters while the user 
observes different visualisation techniques in a VR 
environment. Gaze fixations are used for identifying 
areas of interest in graphs [3]. Research has been 
conducted on identifying user gaze differences for 
alternative visualisations [24], task types [25] or 
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individual user differences [26]. In [24], linear and 
radial versions of bar, line, area, and scatter graphs 
were evaluated in terms of the cognitive load 
induced. It was revealed that participants took more 
time to complete tasks with the radial versions than 
their linear counterparts. It was also concluded that 
radial graphs are most useful for finding extreme 
values. In this work, we investigated ocular 
parameters like fixation rate, saccade rate and revisit 
sequences while users undertake tasks in VR 
environment. We also investigated pupil dilation and 
EEG data to estimate cognitive load of participants. 

 

3. User study 

In order to investigate and compare visual variables 
and charts, we designed and conducted a user 
study with six types of visualisation techniques. 
Each technique displayed numerical data and 
nominal data using different combinations of visual 
variables. We considered synthetic sensor data in 
our study and used five different sensors: 
temperature, humidity, smoke, air, and light. We 
have three instances of each sensor, and we use 
the term “node” to refer to all instances of a 
particular type of sensor. The data type of node 
was nominal. In total, there are 15 data points and 
5 sensor nodes. The six visualisation techniques 
are explained next. 

3.1 Visualisation charts 

We developed and used six types of charts in our 
study, bar-size/bar chart (BC), bar-orientation 
(BOR), bar-opacity (BO), shape-size (SS), shape-
opacity (SO) and area chart (AC). Nodes were 
arranged on the x-axis and instances of each node 
were arranged in the z-axis for all six charts. The 
representation of node and real valued sensor for 
each chart are described next.  

3.1.1. Bar-Size chart 

In this technique, the nodes are represented by 
different colours, and the size of bars depicts a 
numerical value, as shown in Figure 1. The size of 
bars is scaled along the y-axis. The scaled value of 
sensor is computed using - 

𝑆𝑉𝑆𝑒𝑛𝑠𝑜𝑟 =
𝑅𝑉𝑆𝑒𝑛𝑠𝑜𝑟 − 𝑆𝑀𝑖𝑛

𝑆𝑀𝑎𝑥 − 𝑆𝑀𝑖𝑛
∗ 10, 

where  𝑆𝑉𝑆𝑒𝑛𝑠𝑜𝑟 is the scaled value of sensor 
(length of the bar), 𝑅𝑉𝑆𝑒𝑛𝑠𝑜𝑟 is the real value of 
sensor, 𝑆𝑀𝑖𝑛 is the minimum value of the sensor 

and 𝑆𝑀𝑎𝑥 is the maximum value of the sensor. 

 

3.1.2. Bar-Orientation chart 

As before nodes are represented by different 
colours but numerical values of sensors are defined 
by the orientation of bars. Bars are oriented or 

rotated along the x-axis to display values of 
sensors. The rotation is computed using -  

                𝑆𝑉𝑆𝑒𝑛𝑠𝑜𝑟 = (
𝑅𝑉𝑆𝑒𝑛𝑠𝑜𝑟−𝑆𝑀𝑖𝑛

𝑆𝑀𝑎𝑥 −𝑆𝑀𝑖𝑛
∗ 180) − 90, 

where  𝑆𝑉𝑆𝑒𝑛𝑠𝑜𝑟 is the scaled value of the sensor 
(rotation of the bar), 𝑅𝑉𝑆𝑒𝑛𝑠𝑜𝑟 is the real value of the 

sensor, 𝑆𝑀𝑖𝑛 and 𝑆𝑀𝑎𝑥 were defined as before. 

 

                     Figure 1: Bar-Size chart 

 

3.1.3. Bar-Opacity chart 

Nodes are represented by the unique bar colours, 
and the opacity of bars is directly proportional to 
the numerical value of sensors. The darker the 
bars, the more its value. The real value of the 
sensor is mapped to the opacity of the bar using 
the following equation - 

𝑆𝑉𝑆𝑒𝑛𝑠𝑜𝑟 =
𝑅𝑉𝑆𝑒𝑛𝑠𝑜𝑟 − 𝑆𝑀𝑖𝑛

𝑆𝑀𝑎𝑥 − 𝑆𝑀𝑖𝑛
∗ 255, 

 

where  𝑆𝑉𝑆𝑒𝑛𝑠𝑜𝑟 is the scaled value of sensor 
(opacity of bar), 𝑅𝑉𝑆𝑒𝑛𝑠𝑜𝑟 is real value of sensor, 

𝑆𝑀𝑖𝑛 and 𝑆𝑀𝑎𝑥 were defined as before. 
 
 
 

3.1.4. Shape-Size chart  
 
This visualisation technique uses a combination of 
shape and colour to define a node. The numerical 
values of the sensors are represented by the 
volume of the shape. The relation between sensor 
values and scaled values in VR environment 
follows the equation given below. 
 

𝑆𝑉𝑆𝑒𝑛𝑠𝑜𝑟 =
𝑅𝑉𝑆𝑒𝑛𝑠𝑜𝑟 − 𝑆𝑀𝑖𝑛

𝑆𝑀𝑎𝑥 − 𝑆𝑀𝑖𝑛
∗ 10, 

where  𝑆𝑉𝑆𝑒𝑛𝑠𝑜𝑟 is scaled value of sensor (size of 

shape), 𝑅𝑉𝑆𝑒𝑛𝑠𝑜𝑟 is real value of sensor, 𝑆𝑀𝑖𝑛 and 

𝑆𝑀𝑎𝑥 were defined as before. 
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3.1.5. Shape-Opacity chart 
 
In this technique, nodes are represented by a 
combination of shape and colour. Numerical values 
are defined by the opacity of the shape, as shown in 
Figure 2. The real value of the sensor is mapped to 
the opacity of the bar using the following equation. 

𝑆𝑉𝑆𝑒𝑛𝑠𝑜𝑟 =
𝑅𝑉𝑆𝑒𝑛𝑠𝑜𝑟 − 𝑆𝑀𝑖𝑛

𝑆𝑀𝑎𝑥 − 𝑆𝑀𝑖𝑛
∗ 255, 

where  𝑆𝑉𝑆𝑒𝑛𝑠𝑜𝑟 is scaled value of sensor (opacity of 

shape), 𝑅𝑉𝑆𝑒𝑛𝑠𝑜𝑟 is real value of sensor, 𝑆𝑀𝑖𝑛 and 
𝑆𝑀𝑎𝑥 were defined as before. 
 

 
                   Figure 2: Shape-Opacity chart 

 
3.1.6. Area chart 
 
Sensors are represented by planes in the chart and each 
sensor has a unique colour. The values of sensors are 
depicted by the peaks of planes. Each plane is scaled 
along the y-axis. Relation between sensor value and 
peak of the plane is given by the following equation. 
 

𝑆𝑉𝑆𝑒𝑛𝑠𝑜𝑟 =
𝑅𝑉𝑆𝑒𝑛𝑠𝑜𝑟 − 𝑆𝑀𝑖𝑛

𝑆𝑀𝑎𝑥  − 𝑆𝑀𝑖𝑛
∗ 10. 

 
3.2 Materials 

We used HTC Vive Pro Eye [37] with an inbuilt eye-
tracker and refresh rate of 90Hz to collect gaze-

based data and pupil diameter (accuracy 0.5⁰ of 

visual angle). We have also used Emotiv Insight 
EEG tracker [38] with 5 dry electrodes and 
sampling rate of 128 Samples per Second (SPS) to 
collect EEG data. Our computer architecture 
consists of an Intel Core i5 processor and Nvidia 
2070 graphics card. 

3.3 Participants 

We collected data from 17 participants with an 
average age of 28 years (male:15 and female: 2) 
recruited from our university. We took appropriate 
ethical approval from university ethics committee 
for conducting the experiment. Participants were 
tested for visual acuity and all had 20/20 vision. 

3.4 Design  

We designed and set up a VR environment scene 
using the Unity 3D game engine. The scene 
consists of a visualisation chart and a set of 4 

questions. The VR scene is shown in Figure 3. We 
set questions based on low-level tasks by Amar et 
al. [14]. The four questions that participants were 
requested to answer are explained below. 

Q1: Which node has the highest range? 

Participants were asked to compare ranges of 
five sensor nodes and report the highest value 
among them.   

Q2: Find the node with the maximum and 
minimum average values? 

Participants were first asked to guess the 
average value of each sensor node across its 
three instances. From these five estimated 
average values of five sensor nodes, 
participants were requested to report the 
sensor node with the maximum and minimum 
value. The process involves first browsing 
through y and z-axes to guess average and 
then comparison across x-axis. 

Q3: Which sensor has its average value 
nearest to humidity sensor? 

Participants were asked to approximate the 
average value of each sensor as before. We 
then requested them to report the sensor node 
whose average value is closest to the average 
value of the humidity sensor. 

Q4: Sort the average values of sensors in 
descending order. 

After estimating each sensor's average value 
as before, participants were asked to sort those 
values in descending order. 

For example, in Figure 1, the temperature sensor 
has the highest difference between the maximum 
and the minimum value (range). After estimating 
the average value of all sensors, we can notice that 
the temperature sensor has the maximum average 
value, and the smoke sensor has the minimum 
average value. The air sensor’s average value is 
closest to the average value of the humidity sensor. 
It may be noted that although sensors measure 
different physical variables, but their values were 
normalized in the rendering. 

 

 

                     Figure 3: Virtual Reality scene 
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3.5. Procedure 

Initially, participants were tested for their visual 
acuity and allowed the trial if they had 20/20 vision. 
Then they were briefed about the aim of the study 
and shown a virtual walkthrough of the 
environment. We calibrated the hand controller and 
eye tracker for each participant separately and 
proceeded with the trail when they could select the 
target, and the proprietary eye-tracking software 
indicated the calibration to be successful. We 
instructed participants to use the VR headset for 
ten minutes to get accustomed to the VR scene. 
Participants were instructed to move around the 
scene using a teleport button on the VR hand 
controller. When participants were comfortable with 
the scene, we asked them to start the task by 
wearing both EEG tracker and HTC Vive Pro Eye. 
Participants were then requested to observe the 
visualisation chart and answer four questions. 
 

4. Analysis methodology 

This section describes different algorithms used for 
calculating gaze-based metrics and cognitive load 
from ocular parameters. We calculated fixation 
rate, saccade rate and revisit sequences from eye 
gaze points. We also filtered the pupil dilation 
signal from the eye tracker using a low pass filter. 
The algorithms to calculate these metrics are 
described in the following sections. 

4.1 Fixation and saccade rate 

We calculated fixation rate and saccade rate by 
detecting fixations and saccades from gaze direction 
data using the velocity threshold fixation 
identification method (I-VT) [29]. I-VT is a velocity-
based method that separates fixation and saccade 
points based on their point-to-point velocities. I-VT 
then classifies each point as a fixation or saccade 
based on a simple velocity threshold. If the point’s 
velocity is below the threshold, it becomes a fixation 
point, otherwise it becomes a saccade point. We 
then calculated fixation and saccade rate as the 
number of fixations and saccades per second [18]. 
We calculated velocity in terms of visual angle i.e., 
degrees per second in order to render gaze velocity 
independent of the image and screen resolutions. 
This calculation is based on the relationship 
between the eye position in 3D space in relation to 
the stimuli plane and the gaze positions on the 
stimuli plane. The angle is calculated by taking the 
direction vector of two consecutive sample gaze 
points. The angle is then divided by the time 
between the two samples to get the angular velocity. 
The velocity threshold parameter is set to 40º/sec 
[27]. The pseudo code for the I-VT method is shown 
in Table 1. 

  

 

Table 1: Pseudocode for the I-VT algorithm 

1. Calculate the angle between two 
consecutive points. 

2. Calculate angular velocity by dividing the 
angle with the time between the two 
sample points. 

3. Label each point below velocity threshold 
as a fixation and others as a saccade. 

4. Return fixations and saccades. 

 

4.2 Revisit sequences 

A sequence refers to an ordered collection of 
focused nodes without repetitions. For example, A-
B-C is a sequence, but A-A-B-C-C-C is not a 
sequence, where A, B and C are focused nodes. 
Revisit sequences provide information about how 
many times a participant scanned through a 
sequence [28]. This metric allows us to examine 
graphs that were repeatedly observed. We 
investigated three types of revisit sequences – 
sequences of lengths 3, 4 and 5. We also analysed 
two parameters of revisit sequences: (i) number of 
unique sequence and (ii) total revisit sequences. 
Unique revisit sequence is the distinct sequence for 
one graph that repeats itself. Total revisit sequences 
calculate all repetitions of every unique sequence. 
For the sequence of length three, if repetition is 
more than 3, the sequence is valid. For the 
sequence of length four, if repetition is more than 2, 
the sequence is valid. We did not consider revisits of 
the sequence of length five as there were less 
revisits for graphs. Figure 4 shows two unique 
sequences of length 3. 

S1: Temperature – Humidity – Smoke  

S2: Smoke – Air – Light    

The pseudo code for the revisit sequence is shown 
in Table 2. 

 

 

                Figure 4: Two sequences of length 3 

      

Table 2: Pseudocode for finding revisit sequences. 

S1

1 
S1

1 

S2

1 

S2

1 
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1. Find all nodes of the graph that 
participants were interested in and 
represent them into an array of 
sequential nodes. 

2. Create a new sequence by the 
elimination of repetitive node placed in 
succession in a sequence. 

3. Find unique sequences of length 3, 4 
and 5 from the newly created sequence. 

4. Calculate repetitions for each unique 
sequence. 

5. Return number of unique sequences and 
the total number of revisits 

 

4.3 Low pass filter of pupil (LPF) 

Sudden hike in pupil dilation is related with change 
in cognitive load [20]. We divided the pupil dilation 
data into sections of 100 samples and subtracted 
mean from the raw data. We used a Butterworth 
lowpass filter with a cut off frequency of 5 Hz [40] 
and added the magnitude of the filtered data using a 
running window of size 1-sec with 70% overlap. This 
algorithm uses a conventional filtering technique in 
Digital Signal Processing (DSP), which uses time 
domain difference equations to filter the signal. 

4.4 EEG data 
We used EmotivBCI software [38] to monitor EEG 
signals and recorded data streams from EEG 
headset. The EmotivBCI software automatically 
calculates power signal for five EEG bands, we 
considered alpha, low beta, high beta and theta 
bands. We removed outlier from raw EEG data 
using inner fence.  
 

5. Results 

For all analyses, we calculated average values of 
parameters from all responses for all participants. 
We prepared tables of 6 columns corresponding to 
each type of graph and 17 rows corresponding to 17 
participants. In all subsequent column graphs, the 
size of the column indicates average value while the 
error bar indicates standard deviation. We drew 
outline rectangles over columns which are 
statistically significantly different from each other. 

We analysed the percentage of correct responses 
from the user for each chart. We analysed gaze-
based metrics like fixation rate and saccade rate. 
We then calculated two parameters of revisit 
sequences and processed EEG data for further 
analysis. We analysed these parameters statistically 
for all participants across six charts. For statistical 
analysis we first undertook a Kolmogorov-Smirnov 
test for normality check. We then undertook 
Friedman test if data were not normally distributed. 

The following subsections explain each parameter 
used for the analysis and results. 

5.1 User responses 

The percentage of correct answers for each chart is 
calculated as 

𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑎𝑛𝑠𝑤𝑒𝑟𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑞𝑢𝑒𝑠𝑡𝑖𝑜𝑛𝑠
∗ 100 

Number of correct answers and total number of 
questions are calculated across all participants. We 
found that bar-size and bar-opacity are two charts 
that have highest percentage of correct answers. 
The comparison of percentage of correct answers 
across six charts is shown in Figure 5. We then 
carried out Wilcoxon Signed-Rank test between 
each pair of charts for correct answers. We found 
that BC is significantly different (p<0.05) from BOR, 
SO, SS and AC is significantly different (p<0.05) 
from SS. We also found that BO is significantly 
different (p<0.05) from SO and SS. 

5.2 Total task duration 

We measured the average time taken to complete 
the task for each chart. We observed that bar-size 
has the lowest average time and bar-orientation has 
the highest. As this parameter does not include user 
responses it would be inappropriate to evaluate 

 

             Figure 5: Percentage of correct answers 

charts using only this parameter. For example, a 
chart with high task duration might perform better in 
user responses. The best-case scenario would be 
a high percentage of correct answers and low task 
duration. To mitigate this issue, we considered 
correct user responses along with total task 
duration. We refer this parameter as accuracy per 
unit time (APT) and is calculated as 

𝐴𝑃𝑇 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑎𝑛𝑠𝑤𝑒𝑟𝑠

𝑡𝑜𝑡𝑎𝑙 𝑡𝑎𝑠𝑘 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛
 

We found that APT of bar-size is the highest and 
shape-size is the lowest as depicted by Figure 6. We 
further undertook Friedman test for the average task 
duration of each participant. We found significant 
difference between means of charts (Chi square (5) 
= 15.354, p<0.05). We then carried out Wilcoxon 
Signed-Rank test between each pair of charts. We 
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found BC and SS are significantly different from AC 
and BOR.  

 

 

                      Figure 6: APT across all charts 

 

5.3 Fixation and saccade rate 

We calculated fixation and saccade rate for all 
participants across six charts. Bar-opacity has the 
lowest fixation rate but highest saccade rate. Bar-
size has the highest fixation rate and area chart has 
the lowest saccade rate. Fixation and saccade rate 
would give information about total fixations during 
the task which includes movement of participant 
around the scene and answering questions. To 
investigate how long user focused only on 
visualisation chart we analysed fixation and saccade 
rate on chart. Fixation and saccade rate across all 
charts are shown in Figure 7 and 8, respectively. 
Bar-brightness chart has the highest fixation and 
saccade rate, while bar-orientation chart has the 
lowest.  We then undertook Friedman test for the 
fixation and saccade rate of each participant during 
the entire task. We found significant difference 
between means of charts for fixation rate (Chi 
square (5) = 12.714, p<0.05) and saccade rate (Chi 
square (5) = 14.214, p<0.05). We then carried out 
Wilcoxon Signed-Rank test between each pair of 
charts for fixation and saccade rate. We found that 
BC and BO are significantly different (p<0.05) from 
AC and BOR for fixation rate. We further noticed that 
BO is significantly different (p<0.05) from BC, AC, 
BOR and SS. 
 

 

              Figure 7: Fixation rate across all charts 

 

 

                Figure 8: Saccade rate across all charts 

 

5.4 Revisit sequences 

Parameters of revisit sequences that we analysed 
are the number of unique sequences and the total 
number of revisits. A high number of unique 
sequences and total revisits would signify more 
combinations and repetitions. This would denote 
that participant was repeatedly scanning and 
focusing on the chart. We found that the bar-size 
chart has the lowest average unique sequences for 
sequences of length three and four while for 
sequences of length five shape-opacity chart has 
the lowest value. The bar-size chart also has the 
lowest total revisits for sequences of length three 
and four. Figures 9 and 10 show the number of 
unique sequences and total revisits for sequences 
of length three across all charts. We undertook 
Wilcoxon Signed-Rank test between each pair of 
charts for unique sequences and total revisits and 
did get significant difference (p>0.05). 

 

 

  Figure 9: Unique sequences of length three sequences 
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      Figure 10: Total revisits of length three sequences 

5.5 Analysis of pupil dilation 

We undertook Friedman test on the output of LPF of 
the left and right pupil across all charts and found no 
significant difference (p>0.05) between the means of 
charts. Furthermore, we completed the Wilcoxon 
Signed-Rank test between each pair of charts and 
found no significant difference. We observed that 
pupil dilation ranges from 2.75 mm to 6.68 mm.  

5.6 EEG data analysis 
 
A Friedman test was undertaken on alpha, theta, low 
beta (Figure 11), and high beta bands of EEG. We 
did not get significant difference for any EEG band. 
We then undertook the Wilcoxon Signed-Rank test 
between each pair of charts for four EEG bands. 

1. Alpha band: We got significant difference 
(p<0.05) between bar-size chart and area 
chart. 

2. Theta band: We observed that bar-size 
chart is significantly different (p<0.05) from 
area chart and bar-opacity chart. 

3. Low beta band: We observed that bar-size 
chart is significantly different (p<0.05) from 
area chart and bar-opacity chart. We got 
significant difference (p<0.05) between 
bar-orientation and bar-opacity charts. 

We found that bar-size chart is significantly 
different (p<0.05) from the area chart in alpha, 
theta and low beta bands of EEG. We did not get 
any significant difference in the high beta band.  

 

                      Figure 11: Average Low beta 

5.7 Z-axis analysis 
 
To analyse the effect of the 3rd dimension on 
participants, we separately investigated coordinates 
of gaze points. It would help us identify the impact of 
three axes on saccadic eye movements. We have 
considered all consecutive gaze points that form 
saccades. We calculated the absolute differences of 
coordinates between every two successive points. 
This calculation is based on L1 norm, which is the 
sum of the absolute differences of coordinates 
between two points. For example, if points P1: <x1, 
y1, z1> and P2: <x2, y2, z2> form a saccade, then 
the absolute differences of their coordinates are |x1-
x2|, |y1-y2|, |z1-z2|. We then undertook the 
Friedman test on the computed absolute differences 
for every chart. We found that the absolute 
differences of coordinates are significantly different 
(p<0.05) for all charts (Table 3). Furthermore, we 
undertook the Wilcoxon Signed-Rank test between 
each pair of coordinates for six charts. We found 
that the x-axis and z-axis are significantly different 
from the y-axis for all charts. We also analysed the 
movement of saccades along three axes. We 
calculated the average distance covered along the 
three axes during saccadic eye movement. 
 
Table 3: Friedman test on differences of axes. 

Bar size Chi square (2) = 25.765, p<0.05 

Area chart Chi square (2) = 22.706, p<0.05 

Bar orientation Chi square (2) = 25.529, p<0.05 

Bar opacity Chi square (2) = 20.235, p<0.05 

Shape opacity Chi square (2) = 20.588, p<0.05 

Shape size Chi square (2) = 20.588, p<0.05 

 
Figure 12 shows average distance of bar chart 
during saccade movement along all three axes. 
The distances are normalized from 0 to 1. 
 

 
              Figure 12: Average distance of bar chart 
 
 
5.8 Comparisons of visual variables 
 
As mentioned in Section 1, we have considered 
five visual variables in our study. Variable size, 
opacity, and orientation represent numerical data, 
while colour and shape depict nominal data. We 
investigated variables for each data type as 
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discussed in the sub-section below. We compared 
three parameters (APT, fixation rate and saccade 
rate) of each variable. We also compared revisit 
sequences between variables. 
 
5.8.1. Visual variables for nominal data 
 
We divided variables representing nominal data 
into following two categories - 

 Category1: Nominal data is represented by 
colour. 

 Category2: Nominal data is represented by 
both colour and shape. 

Bar-Size, Bar-Orientation and Bar-Opacity charts 
fall under category1, while Shape-Size and Shape-
Opacity charts fall under category2. We calculated 
the average value of three parameters for three 
charts in category1 and two charts in category2. 
We observed a difference in user performance 
between category1 and category2. APT is higher 
for category1 than category2, while fixation and 
saccade rate is lower for category2. The number of 
revisits is lower for category1 in the sequence of 
length 3 and 5 but higher in length 4. 
 
5.8.2. Visual variables for numerical data 
 
We divided variables representing numerical data 
into following three categories –  

 Category1: Numerical data is represented by 
size. 

 Category2: Numerical data is represented by 
orientation. 

 Category3: Numerical data is represented by 
opacity. 

Bar-Size and Shape-Size charts fall under 
category1, Bar-Opacity and Shape-Opacity charts 
fall under category3, while Bar-Orientation is a 
category2 chart. The average value of three 
parameters for charts in category1 and category2 
are computed. We then compared these parameters 
among the charts of three categories and noticed a 
difference in user performance between all three 
groups. The fixation and saccade rate are lower for 
category2 than the other two categories. However, 
in terms of task duration, accuracy is higher for 
category1. The number of sequences is higher in 
category3 for sequences of length 3, 4 and 5. 
 
6. Discussion 
 
Our results showed that accuracy per unit time is 
higher for size and colour than other variables. We 
further observed that variable size and colour have 
a smaller number of fixations, saccades, and total 
revisits. Furthermore, our results showed a 
difference in cognitive load between size, opacity, 
and brightness. We can infer from these results 
that the cognitive load of participants is less when 
size is used to represent numerical data and colour 
is used to depict nominal data. In addition, from 

results of our analysis, we noticed that cognitive 
load while using a bar chart is less to an area chart. 
Finally, we looked back at four questions that we 
had raised in Section 1 –  
 
Q1: Which 3D graph is best in terms of correct 
data interpretation? 
We observed from Figure 5 that both bar-opacity 
and bar-size are similar in terms of correct data 
interpretation. We then noticed that bar-size’s 
accuracy per unit time is higher than other charts 
and requires least number of revisits.  We can infer 
from these results that bar-size chart is best in 
terms of correct data interpretation.  
 
Q2: Which visual variables(s) is (are) easier to 
interpret than others? 
We found that colour makes it easier to interpret 
nominal data as compared to shape. Performance 
of variable colour is higher in two gaze-based 
metrics and task duration as compared to shape in 
terms of accuracy. The size variable reduces the 
time required for processing numerical data as 
compared to the other two variables. However, size 
is similar to orientation for the other two ocular 
parameters (fixation and saccade rates). The size 
variable also performs favourably in terms of the 
count of revisit sequences. In addition, from our 
results we observed that opacity is worst in terms 
of correct data interpretation among three 
variables. We further observed that bar chart has 
lower cognitive load than area chart. 
 
Q3: Does 3

rd
 dimension add value to the 

visualisation? 
We also observed that the addition of the 3

rd
 

dimension to the visualisation affects the 
performance of participants. We noticed that the 
movement of saccades along the z-axis is more than 
the movement along y-axis but less than the 
movement along x-axis, as shown in Figure 12. 
Moreover, the movement of saccades along axes 
were significantly different, as described in Table 6. 
This conveys that the movement along all axes are 
important and offers new information to participants. 
 
Q4: Are there differences among graph types 
with respect to - ocular parameters, and 
cognitive load while interpreting graphs. 
Notably, significant differences were observed 
among certain chart types with respect to ocular 
parameters. For example, bar-opacity and bar-
orientation are different in terms of the fixation rate, 
as shown in Table 4. Similarly, significant 
differences were noticed among six pairs of charts 
concerning cognitive load. However, we found 
significant difference only between area chart and 
bar-size in all the three bands measured.  
Beta band, especially in the sensory motor areas, 
are related to motor movements. A high value of 
power in the low beta band signifies low cognitive 
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load [41]. We observed that bar-size has the 
highest value and bar-opacity has the lowest value 
in the low beta band. It indicates that bar-size chart 
is incurring less motor action and cognitive load. 
 
Limitations and Future Work 

This study evaluated six different graph types 
involving five different visual variables. The study 
design and analysis did not investigate interaction 
effects among chart types and visual variables. We 
were limited by time and resource in terms of 
availability of participants and a repeated measure 
design with 2 types of graphs and five variables 
would increase duration of the experiment as well 
as required more participants than reported 
presently. A future work will limit the number of 
variables and analyse interaction effect. 

Our sampling strategy did not measure participants’ 
familiarity with different 2D graphs and the bar graph 
may found to be easier to interpret as participants 
were more familiar to it than area graph. However, it 
may be noted that our study involved three different 
types of bar graphs and the results related to visual 
variables are still useful for a single type of graph. 

In the study design, we utilized all three axes to 
display data points and their values and users found 
to use both saccades and vergance eye gaze 
movements to browse through graphs. Future work 
will separately analyse saccades and vergance and 
report their proportions while interpreting 3D graphs. 

For EEG analysis, we used a low-cost EEG headset 
and so did not analyse high frequency signals like 
Gamma band, future work will investigate ergonomic 
issues involving donning both a VR Headset and 
EEG cap and try to use an EEG device with more 
electrodes than the Emotiv Insight model. 
 
Application 
We have developed a VR model of a smart factory 
and set up visualization graphics at the locations of 
IoT nodes to embed real-time sensor readings on 
the virtual layout (Figure 13). We used the Unity 3D 
game engine and its modelling tool, Probuilder. The 
twin served as a three-dimensional illustration of the 
physical space whose dimensions were accurately 
mapped to the twin. Furthermore, the furniture and 
other objects in the physical space were also 
replicated in the virtual world. To improve the virtual 
environment’s photorealism, baked global 
illumination was used, which entails computing the 
lighting behaviour and characteristics beforehand 
and storing them as texture files; this technique also 
reduces the computational load present in real-time 
global illumination. Additionally, Physically Based 
Materials or PBR were used as they physically 
simulate real-life materials’ properties such that they 
accurately reflect the flow of light and thereby 
achieve photorealism. We deployed the twin on a 
Virtual Reality (VR) setup, specifically, the HTC Vive 

Pro Eye, since VR allows for immersive and 
interactive virtual walkthroughs. Users can browse 
through the virtual set up using 3D glass and as they 
touch any of the visualization, it provides both visual 
and haptic feedback based on sensor readings. We 
integrated ambient light sensor (BH1750) and, 
temperature and humidity sensor (DHT22) to show 
real-time visualization of data stream(s) in VR setup. 
Both sensors provide digital output. The BH1750 
Sensor has a built-in 16-bit A2D converter and 
output unit is lux. The DHT22 sensor provides 
temperature in celcius and humidity as relative 
percentage. Sensors are interfaced to the VR 
machine through their respective wireless 
module(s). After establishing a peer-to-peer 
connection, individual wireless module 
communicates with VR machine using UDP protocol 
at a frequency of 1 Hz. A video demonstration of the 
system can be found at 
https://youtu.be/FX8zfQE5GF8 
 

 
 

Figure 13.  3D Sensor Dashboard in a Digital Twin 
 

 
7. Conclusion 
 
This paper compared six different types of 3D 
graphs with respect to users’ subjective and 
objective feedback. We analysed speed-accuracy 
trade off in users’ response with respect to 
representative graph interpretation tasks. We also 
recorded and analysed ocular parameters and EEG 
to investigate eye gaze movement patterns and 
cognitive load while interacting with 3D graphs. A 
bar chart with different size of columns for different 
values of data points found out to generate most 
accurate response and least cognitive load among 
users. 
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