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Abstract—We propose a composite diagnostics solution for
railway infrastructure monitoring. In particular, we address
the issue of soft-fault detection in underground railway cables.
We first demonstrate the feasibility of an orthogonal multitone
time domain reflectometry based fault detection and location
method for railway cabling infrastructure by implementing it
using software defined radios. Our practical implementation,
comprehensive measurement campaign, and our measurement
results guide the design of our overall composite solution.
With several diagnostics solutions available in the literature,
our conglomerated method presents a technique to consolidate
results from multiple diagnostics methods to provide an accurate
assessment of underground cable health. We present a Bayesian
framework based cable health index computation technique that
indicates the extent of degradation that a cable is subject to
at any stage during its lifespan. We present the performance
results of our proposed solution using real-world measurements
to demonstrate its effectiveness.

Index Terms—Online Cable Fault detection, Remote monitor-
ing, IoT platform, cloud IoT, Railway asset management, Non-
invasive, Impedance discontinuity localization.

I. INTRODUCTION

CABLE diagnostics plays a crucial role in realizing the
concept of the smart grid. Toward this end, several

solutions have been proposed in the past for monitoring the
health of power cables and detecting, locating, and assessing
possible degradations and faults along the cable [1, Ch. 6], [2]–
[4]. While most works in the literature focus, rightly so, on
diagnosing cable health in the electricity transmission and
distribution infrastructure, methods developed for these do-
mains may not be universally applicable. The network setting
considered in this paper is one such example, where we focus
on cable diagnostics for railway signaling cables [5]. For the
purposes of this study, we focus on an Indian railway network
setting for example, considering network topology, operating
loads, and cable types. However, the solutions we propose
in this paper are generally universal in nature and can be ex-
tended across different operating conditions. Railway signaling
cables are typically buried underground and carry power and
signalling data for circuits such as: (a) point machine and the
associated relay circuit that carry signalling data, (b) train-
on-track circuit, (c) signalling speed limit indication circuit,
which comprises of indications such as a yellow light (low
speed), a double yellow light (much lower speed), and STOP
and GO signal using red and green lights, respectively. These
vital signals are used by the railway personnel and the loco
pilot for the safe operation of trains. The power and control

signal carrying cables are thus one of the critical signaling
assets.

The standard railway cables are 10 Twisted Pairs (TWP) and
6 quad Polyethylene Insulated Jelly Filled (PIJF). The PIJF
insulation makes these cables suitable for sub-soil deployment.
Cables buried underground are typically subject to insulation
faults that are hard to detect by visual inspection [6]. Such
faults can occur due to mechanical stress, accidental damage,
and/or electrical stress. An electrical stress is usually caused
due to short circuit in the loads (signalling loads in our
case), and might lead to the creation of cable hotspots. These
hotspots are potential locations for an insulation fault, which
are as a result of ineffective heat dissipation, leading to rise in
temperature. Based on the length of the fault, one may classify
insulation fault as a small fault (e.g., 5mm to 3 cm insulation
damage) or a large fault (e.g., 3 cm or longer insulation
damage).

Cable faults are dangerous in most contexts of the smart
grid [7], [8]. However, they are potentially more critical in the
context of railway signaling cables. For example, the EU-27
has recorded about 802 persons killed and 612 persons injured
during the year 2019 in Europe [9]. The majority causes of
these accidents are due to signaling faults. In another incident,
three Indian railway staff deaths during a maintenance regime
was reported in the year 2020 [10].

The state-of-the-art in railway cable maintenance and di-
agnostics body is considerably lagging to other diagnostics
counterparts. Currently, the cable maintenance has a periodic
schedule where the insulation resistance of the cable is mea-
sured using a megger test [11]. This measurement schedule is
carried out once a year. Often, this schedule is complemented
by railway personnel carrying out periodic visual inspection
of the cable route to identify any recent digging activity or
change in soil compaction [12].

IoT technologies can potentially fill the gap with effective
real time monitoring methods that can continuously look for
anomalies. The cabling infrastructure connected to the point
machine and the signaling and train on track detection circuit
is expected to be monitored continuously for faults. Such
predictive maintenance not only enhances the passenger and
train safety, but also reduces downtime. The need for IoT
platforms for railway asset management and the advantages
from an economy and safety perspective is also brought out
in the literature, e.g., [13]

The problem we address in this paper is to reliably detect
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Figure 1: Real-time monitoring of a 500 m cable section between IPS and
Location boxes is important. The location box provides uninterrupted power
to the train on track detection circuit, the Point Machine circuit and Signal
post circuits. A 50-100 m cable is used between any two Location boxes.
Monitoring of these cable sections for insulation faults is crucial for a
sustainable operation of train traffic flows.

and localize a cable fault and thus compute a health index for
a cable. Our early fault detection system can be deployed be-
tween the Integrated Power Supply and the location boxes. We
develop an IoT solution for detecting, locating and classifying
cable faults. The network topology considered here is a single
500 m long cable with no branches, with a set of fixed and
known loads applied at the location box as shown in Fig. 1.
Our laboratory scale setup and experiments mimic the actual
railway cable section under test.

Our contributions can be listed as follows:
• We implement a powerline testbed of a portion of a

railway cabling infrastructure for continuous monitoring,
detection, and localisation of cable faults. The system
encompasses measurement based evaluation, incorporat-
ing (a) Signal-to-Noise Ratio (SNR) based tests (b) S-
parameter based tests and (c) OMTDR based reflectom-
etry tests.

• We develop a Bayesian framework based multi pronged
consolidation solution that combines various sensing
modalities to reliably identify small and large cable faults.

• We develop and evaluate a health index metric for dif-
ferent cable types that indicate the severity of a possible
fault. The health index provides an indication into the
remaining useful life in the cable.

II. RELATED WORK

One of the earliest reflectometry techniques for cable
fault detection and localization is Time Domain Reflectom-
etry (TDR). Spread Spectrum Time Domain Reflectometry
(SSTDR) [14], [15], Orthogonal multi-tone Reflectometry
(OMTDR) [16], and few other time domain reflectometry are
used for fault detection and localization techniques [17]. In
general, Reflectometry methods are based on cross-correlation
between the transmit test signal and received reflected signal.
Although all these works demonstrate fault detection and
localization, OMTDR has the ability to choose the test transmit
signal frequencies such that the system under operation is not
affected.

The authors of paper [18] state that the S-parameter mea-
surement based cable fault detection is significantly more reli-
able than correlation based methods. The authors use Bayesian
framework to estimate the fault characteristics. While we have

Figure 2: OMTDR basic blocks showing test signal injection in cable under
test and the Reflectogram generation.

used a similar approach to estimate fault characteristics, we
additionally provide an overall health index metric for the
cable. This metric gives an accurate knowledge of cable health.

The authors of ( [3], [19]) use channel frequency response
and SNR estimates from PLC modem and augumented ma-
chine learning to identify thermal degradation and short-circuit
faults respectively in powerline cables through simulation
studies. Although, these works prove by fault detection over
simulations, we have built one of our testbeds with commercial
off-the-shelf (COTS) PLC modem and evaluated the soft fault
identification accuracy with random load conditions.

The authors in [20] have investigated the fault in DC
overhead railway traction power lines. In contrast to this work,
we investigate underground cables which have a separate set
of challenges such as being prone to contamination of foreign
materials, corrosion due to water clogs. [21] investigates the
outer insulation degradation in shielded twisted pair railway
cables and its impact on communication parameters. Our
testbeds demonstrate a non-invasive online fault detection and
location. Even though some of the techniques mentioned in
the literature are capable of online measurements, placement
of sensors have to be planned ahead and installed within a
connector at a fixed position. In contrast, our non-invasive
prototype can be used to test at random points on the cable
when the system is under normal operation. This flexibility
reduces the downtime for maintenance schedule.

III. FAULT DETECTION METHODS

We describe here three different fault detection methods
namely OMTDR based Reflectometry test, S-parameter test
and SNR test. We then combine these three methods to
improve the reliability of fault detection, thus leading to a
useful predictive maintenance metric.

Table I lists the testbed components and associated specifi-
cations. The Raspberry PI computer, 4G router and LimeSDR
(USB) together consume about 39 watts. The 4G router pro-
vides the required cloud connectivity. The inductive couplers
provide non-invasive coupling of test signals required for cable
fault identification and localisation. This enables us to monitor
the cables without disturbing the system under operation. The
sample cables used for measurements is also shown. The VNA
and PLC modem are primarily used as sensors for S-parameter
and SNR measurements respectively. We perform exhaustive
measurements under varying load conditions. Our loads try to
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emulate the power requirements for signal posts, train on track
and the point machine. We basically use 3 lamps connected in
parallel, where the load power can be varied from 200W to a
maximum of 600W. Fig. 3 shows the setup for connecting a
Cable Under Test (CUT) to 110 V 50 Hz AC supply. The train
on track detection and signal circuits uses the Power Supply
(PS) through the 6 quad and 10 TWP PIJF cables. A 10 TWP
PIJF cable with 1cm x 1cm outer insulation damage is shown.
We pick the three fault detection methods where OMTDR is
one of the state-of-the art reflectometry method, S-parameter
method is more traditional method and the third method uses
a widely deployed PLC modems for SNR measurement.

A. OMTDR based Reflectometry test

The testbed consists of a Raspberry PI-3 (RPi) single
board computer that interfaces with a reflectometry sensor that
monitors cable health periodically. The RPi collects the reflec-
togram data and communicates the cloud. The reflectometry
sensor is LimeSDR, a software-defined radio which injects
and collects the reflected signal to and from the power line.
The transmit (TX) and receive (RX) ports of the LimeSDR
connect to inductive couplers through coaxial cables. The
inductive couplers can easily couple the sensor to powerline
during its normal operation. We choose the centre frequency
for OMTDR system as 30MHz with a sampling frequency
of 5MHz and oversampling rate of 32. We arrived at this
combination after several trial rounds and find this optimal
for our hardware setup.

In OMTDR based reflectometry test, we inject an OFDM
signal onto the CUT and capture the reflected signal for
various load conditions. We correlate this reflected signal
with the transmitted signal and the resultant signal is called
a reflectogram. The correlation peak magnitudes are high at
the locations of impedance mismatched cable sections. Every
insulation fault introduces an impedance mismatch and part
of the input signal is reflected back to the source. We refer to
insulation fault as a soft fault. The reflectogram helps us to
locate soft faults and estimate the severity of those faults.

1) Insulation fault identification and localization using
OMTDR: We analyze the reflectogram to locate faults.
The time samples and the correlation peaks are the two
parameters obtained from the reflectogram. The time sample

Components Specifications
Computing board Raspberry PI-3
OMTDR sensor LimeSDR USB (100KHz-3.8GHz)

Inductive coupler Arteche (2-40 MHz)
Cable connectors SMA to BNC connectors

Cloud connectivity 4G
Cables i)PIJF 6 quad cable

ii)PIJF 10 TWP cable
iii)Symmetric 4 core cables

Vector Network
Analyzer(VNA) N9923A

PLC modem Devolo dLAN 1200+

Table I: The testbed uses commercially available components and shows their
respective specifications

Figure 3: The OMTDR sensor constructed using the LimeSDR, a SDR
module. The sensor injects an RF signal that couples to the cable using
inductive couplers. The figure also shows the picture of 10TWP PIJF cable
with insulation fault. The sensor, RPi and 4G router form a typical system
for cloud connectivity; irrespective of the sensing modalities.

corresponding to the end of the line and transmit signal from
baseline measurements helps us to identify the distance of the
fault from the test signal injection. The length of the sample
railway cables PIJF 6 quad and PIJF 10TWP cables considered
are 24 m and 7.2 m respectively. These cables are connected
between 110v 50 Hz PS and a 0.2 KW load. The reflectograms
corresponding to these healthy cables are called baseline
measurements. We then intentionally introduce an insulation
cut of length 1cm and width 1cm at a distance 21 m and 5.79 m
in PIJF 6 quad and PIJF 10TWP cables respectively for testing
purpose. Reflectogram will have a correlation peak at the time
sample corresponding to the fault. Table II shows the results,
where a fault position error of 0.5 m and 0.17m respectively is
seen. The choice of thresholds for the magnitude of correlation
peak at the time sample corresponding to fault, gives a high
detection accuracy in addition to the trade off in terms of
false positives. We also used the testbed for different types
of cables with longer lengths. For instance, we would require
about 50 to 70m of length to demonstrate faults occurring
between two location boxes. Fig 4a shows a 70m symmetrical
four-core conductor connected between the power supply and
the loads. There is a 0.4 m insulation peel off at both ends of
the cable. In addition, there is a 5mm insulation fault at a 35m
distance from Power Supply (PS). Fig 4b is the reflectogram
collected using LimeSDR USB showing the Correlation Peaks
(CP) corresponding to the injected transmitted signal, the three
introduced faults, and the end of the line.

B. PLC-modem based SNR test

We use Commercial Off The Shelf (COTS) Power Line
Communication (PLC) modems to measure SNR between
the two ends of the CUT. These modems have QCA 7500

Cable Actual Mean measured
type position position
PIJF 21 20.5

6 quad
PIJF 5.79 5.62

10 TWP

Table II: Actual and mean measured position of Insulation fault in PIJF cables
using OMTDR method.
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(a) The Cable Under Test (CUT) is connected between Power Supply (PS)
and loads. The Fault conditions are F1-fault length of 0.4 m, F2-fault length
of 5mm at a distance, Df2 of 35m from PS end and F3- fault length of
F3-0.4m at a distance of 69.5m from PS end.

(b) Reflectogram obtained from LimeSDR USB shows CPs corresponding
to TX signal, F1, F2, F3 and the end of the line.

Figure 4: Cable fault condition and OMTDR Reflectogram

Figure 5: Fault identification using SNR measurements using PLC modem.
The hc70mload curve represents the average spectral SNR of a healthy cable,
while fc70m5mmload and fc70m3cmload curves represents the average
spectral SNR of a cable with fault length 5mm and 3cm respectively.

transceiver chip that responds to the queries from open-plc-
utils software [22]. A pair of PLC modems communicate to
each other periodically and calculate the SNR at both ends to
estimate the cable conditions. In our lab setup, we connect a
CUT between a PS and loads. We inductively couple the two
PLC modems at each end of the 70m CUT. We connect each
modem to an RPi running open-plc-utils. The RPi measures
SNR for varying load conditions. We plot the average spectral
SNR obtained by this method as shown in Fig. 5. We analyze
the SNR plot to know the state of the cable.

C. S-parameter test

We measure the S-parameters of different cable fault condi-
tions using a VNA. We follow a simple procedure to compute
Channel Frequency Response (CFR) from S-parameter mea-
surements [18]. The analysis of this CFR will give us a method

Figure 6: Average Channel Frequency Response (CFR) is plotted for various
cable conditions. hc<5mmlength, fc5mmlength, and fc3cmlength curves
represents average CFR for the healthy cable, the cable with small fault of
size 5mm, the cable with large insulation fault of size 3cm respectively.
The straight lines represents the thresholds for the three states of the cable
considered.

to identify insulation faults. While measuring S-parameters,
we vary the load conditions from a full load condition to a no-
load condition in a random fashion. We compute the average
CFR from hundred S-parameter measurements. We plot the
average CFR of the healthy cable, the cables with 5mm and
3cm insulation cuts as shown in Fig. 6. The mean CFR values
with phase information gives a threshold level for healthy,
small fault, and large fault cases. Later, these threshold values
are used for online measurements to estimate the state of an
unknown cable .

IV. PROBABILITY OF CABLE FAULT DETECTION

We now discuss the probability of identifying the state of
the cable by the S-parameter-based measurement method. This
can be easily generalized for any other measurement method.
We explain the procedure to obtain the conditional probability
of the actual state of the CUT given the measurement-based
estimated state of the CUT. Initially, we classify a CUT based
on the length of the insulation cut. If a cable has an insulation
fault length greater than 3cm, we classify it as a large fault,
Fl. Similarly, if the insulation fault length is between 5mm
and 3cm, we classify it as a small fault, Fs , and the cable
with insulation fault length less than 5mm as healthy cable.
We perform several measurements on known cable states and
use this information to set thresholds to identify each of
these states. We use Bayesian inversion framework to use the
knowledge of estimated state of the cable to infer the actual
state of the cable. When we do an S-parameter measurement
on a cable, three events such as small fault, Fs, large fault,
Fs, and healthy, H can occur. Let Y1 represent the estimated
state of the CUT by the S-parameter based measurement
method and S represent the actual state of the CUT. Y1 and
S may take one of the three mutually exclusive states: healthy
(H), small insulation cut (Fs), or large insulation cut (Fl).
The probability of an event Y1 taking a particular state, for
example, P (Y1 = Fl) is the sum of probabilities of the three
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events as in Eq. (1).

P (Y1 = Fl) =
∑

s1∈(Fs,Fl,H)

P ((Y1 = Fl), (S = s1)). (1)

The joint probability P ((Y1 = Fl), (S = s1)) can be ex-
pressed as

P ((Y1 = Fl), (S = s1)) = P ((Y1 = Fl)/(S = s1)) · P (S = s1),
(2)

where P (S = s1) is the a priori probability of the actual state
of the CUT. We then obtain the conditional probability of the
actual state of the CUT given the estimated state of the CUT
as

P ((S = s1)/(Y1 = Fl)) =
P ((Y1 = Fl), (S = s1))

P (Y1 = Fl)
. (3)

Similarly, we compute the conditional probabilities
P ((S = s1)/(Y1 = Fs)) and P ((S = s1)/(Y1 = H)).
The value obtained in Eq. (3) provides a trustworthiness
metric of the considered method. We explain the procedure
to obtain these conditional probabilities empirically using
Algorithm 1. We measure S-parameters with a VNA for
the healthy cable, the cable with 5mm, and the cable with
3cm insulation cuts. We measure average CFR for N1 time
instants for all three cable conditions. We estimate the values
for threshold settings by the procedure mentioned in section
III-C and use those values in Algorithm 1. Let Y2 and
Y3 represent the estimated state of the CUT by SNR and
OMTDR measurements respectively. We run Algorithm 1 on
measurements obtained from these two tests also. The ψi

parameters used in Algorithm 1 corresponds to average CFR,
average SNR, and average CP for S-parameter test, SNR test,
and OMTDR test respectively.

A. Health Index

To quantify the health and remaining operating life of a
cable, we utilize a metric called the health index. Health index
quantifies the quality of the cable with a low value indicating
a poor health cable condition and a high value indicating a
healthy condition.

CFD =W1 ·
∑N1

i=1 Y1,i

N1
+W2 ·

∑N2
i=1 Y2,i

N2
+W3 ·

∑N3
i=1 Y3,i

N3

NCFD =
CFD

W1 +W2 +W3

HI = (1−NCFD) · 100

(4)

W1,W2, and W3 gives an overall trustworthiness metric for
each fault detection method. This takes into account of false
positives and true positives in identifying the states of the cable
using Algorithm 1. Weights Wi for i ∈ 1, 2, 3 is computed
using Eq. (5). Y1,i is the ith measurement result in S-parameter
test and it takes value 1 when |avgCFR| > thl, a value 0
otherwise. Similarly, Y2,i and Y3,i are results from SNR and
OMTDR tests. We then calculate Normalized Coefficient of
Fault Detection, NCFD, using all three methods and eventually
provide the composite health index, HI, for the cable. N1, N2,
and N3 are the total number of time instants at which each
experiment is repeated using VNA, PLC modem, and OMTDR

Figure 7: Health index using individual and combined fault detection methods.
SNR, S-parameter, OMTDR measurement methods evaluate fault detection.
The thresholds for each method is chosen to prioritize fault detection and
weights for each method are displayed at the right yaxis.

sensor respectively. We use 60% of lab measurements from
each test for weight computation and 40% of measurements
for fault detection.

Wi = α · P
(
(S=Fl)/(Yi=Fl)

)
+ β · P

(
(S=Fs)/(Yi=Fs)

)
+γ · P

(
(S=H)/(Yi=H)

)
,

α+ β + γ = 1

(5)

Let us consider three cases to study the significance of
health index calculation that employs all three fault detection
methods. Case1: The cable with 90% healthy, 8% small faults
and 2% large faults chances. This case is emulated with
measurement results chosen with corresponding percentages

Algorithm 1: Calculation of P
(

S
Y1

)
Input s1 ∈ Fl, Fs, H;
Input P (S = H), P (S = Fs), P (S = Fl);
i = 1;
while i ≤ N1 do

LFi = 0;
SFi = 0;
Hi = 0;
if ψi ≥ thl then

LFi = 1;
else if thl ≤ ψi ≤ ths then

SFi = 1;
else

Hi = 1;
end
i = i+ 1;

end

P
(
(Y1=Fl)/(S=s1)

)
=

∑N1
i=1 LFi

N1
;

P
(
(Y1=Fs)/(S=s1)

)
=

∑N1
i=1 SFi

N1
;

P
(
(Y1=H)/(S=s1)

)
=

∑N1
i=1 Hi

N1
;

P (Y1 = Fl, S = s1) = P (Y1=Fl/S=s1) · P (S = s1);
P (Y1 = Fl) =

∑
s1∈Fl,Fs,H

P (Y1 = Fl, S = s1);

P ((S=Fl)/(Y1=Fl)) =
P (Y1=Fl,S=Fl)

P (Y1=Fl)
;
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Figure 8: Health index using individual and combined fault detection methods.
The thresholds are chosen to prioritize low false positives
from three states of the cable. Case2: The cable with 17%
healthy, 58% small faults and 25% large faults chances. Case3:
The cable with 70% healthy, 25% small faults and 5% large
faults chances. Fig. 7 shows the HI estimated by individual
and composite method while prioritizing the fault detection
probability. The thresholds are chosen accordingly. Fig. 8
shows the estimated HI while prioritizing low false positives.
The time samples 0-50, 50-100, and 100-180 corresponds to
Case1, Case2, and Case3 respectively as shown in Fig 7 and
8. The end user has the flexibility in the level of prioritizing
fault detection capability and low false positives by tuning the
values of α, β, and γ in Eq. (5).

HISpar = 1−
∑N1

i=1 Y1,i

N1

HISNR = 1−
∑N2

i=1 Y2,i

N2

HIOMTDR = 1−
∑N3

i=1 Y3,i

N3

(6)

We calculate the individual HI for each method using Eq.set
(6). Later we compare the individual and composite HI with
the ground truth HI of the cable. The composite HI is closer
to the ground truth as the weights to each of the combined
methods is chosen from previous measurement inferences.

V. CONCLUSION

We provide an IoT solution for cable health monitoring
for track-side point machine, signal post, and train on track
detection circuits. We suggest three methodologies to identify
insulation fault in signal and power cables associated with
these electrical circuits. These methods support online and
non-invasive monitoring, and the measurements are performed
on a live wire when the system is under normal operation.
We analyze the resulting reflectogram, channel frequency
response, and SNRs for possible faults in the wire. The Com-
posite Health index calculation using these methods quantifies
cable health in a reliable manner.
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