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Abstract

In this Supplementary Material we give (a) details of the numerical methods we use to obtain the results
in the main part of this paper (Section I), (b) links to the videos that illustrate the spatiotemporal evolution
of the transmembrane potential for Figs. (3), (4), (5), (6), (7), and (8) in the main paper(Section II) and (c),
the Hund-Rudy-Dynamic(HRD) cell model (Section III), and a few important plots from the cell model
simulations, viz, APDR curves, AP curves, frequency of the scroll waves etc.

1. Numerical Methods

In our direct numerical simulations (DNSs), we consider monodomain tissue. We solve a reaction-
diffusion-type partial differential equation (PDE), in which the diffusion tensor is determined by the fiber-
orientation directions:

∂V
∂t

= ∇ ·D∇V −
(Iion + Iapplied)

Cm
, (1)

where V is the transmembrane voltage, D is the diffusion tensor (see below) that describes the diffusion of
the voltage through the medium, Iion is the sum of all the ionic currents, Iapplied is the external stimulus, and
Cm is the membrane capacitance per unit area.

The action potential (AP) propagates faster in the direction parallel to the muscle fibers than in the
direction perpendicular to them. This property is taken into account in our calculations by defining the
local conductivity tensor Di j, which is derived from the local fiber direction, as follows:

Di j = D‖δi j + (Dparallel −D⊥)αiα j, (2)

where α is the vector describing muscle fiber direction, and D‖ and D⊥ are the conductivities in the
longitudinal and transverse fiber directions, respectively. The ratio D‖ : D⊥ = 4 : 1, which is comparable to
the experimentally recorded ratios.

We assume that the transverse conductivity is the same in directions orthogonal to the muscle-fiber
direction.
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Table 1: Table showing, for our DNSs, the size of the simulation domain, the space and time steps (δx and δt), the real-time equivalent
of the duration of the simulation (T).

DNS Domain size δx δt T
3D −HRD 416 × 416 × 416 0.02 0.02 3s

Figure 1: Two level isosurface plots (at four representative times, which increase from left to right) of the transmembrane potential V
showing how a scroll wave is formed and how it develops, in the anatomical dog-heart geometry after we apply the S1-S2 cross-field
stimuli (see text). For the complete spatiotemporal evolution see the Video S31

We use a finite-difference method for computing the spatial evolution; and we employ the forward-Euler
scheme for computing the temporal evolution of the system. We use no-flux boundary conditions at the
borders. Boundary conditions are handled by the phase-field method.

The size of the domain, the space step and time steps that we use in our DNSs (δx and δt), the real-time
equivalent of the simulation(T) and the total run-time of the program(τtot) for each of our DNSs are given
in Table 1. These DNSs are computationally intensive. The programs are run on a CRAY supercomputer by
using 6656 processors for the 3D heart simulations.For each parameter set we used 416 processors. We had
28 parameter sets. We used 16 × 416 = 6656 processors for simultaneously running the 16 parameter sets.

The size of the large-scale localized inhomogeneity that we used in this study is ∼ 12mm and the
small-scale distributed inhomogeneities are of size ∼ 2mm.

We have also developed a combined MPI-CUDA program for our computations; we have run these on
CPU-GPU hybrid computer systems and thus achieved great improvement in computational performance.
The 416 cores that we use on a CRAY computer system requires 8 hours to simulate the real-time equivalent
of 3 seconds, for a single parameter value. Our MPI-CUDA implementation needs almost the same time
with 24 cores; each CPU core is attached to one GPU; thus, we use a total of 24 CPUs and 24 GPUs in our
MPI-CUDA program.

For our 3D simulation we use the processed Diffusion-Tensor Magnetic-Resonance Imaging (DTMRI)
data for the canine-ventricular anatomy, which is freely available for academic purposes at the CMISS
website (https://www.cmiss.org/). This geometry, of a structurally normal canine heart, has been obtained
via DTMRI, which is a non-invasive technique, based on measuring the Brownian motion of water molecules
in anisotropic cardiac tissue; this motion is constrained by the tissue structure. It shows only grey-scale
images. Typically, images are obtained in tissue slices; and then these images are assembled into a 3D
volume. The image contains the Cartesian coordinates of the points within the heart and the direction
cosines of the orientation of the muscle fiber at each point. For our 3D DNSs, we place this geometry inside
a cube of side 8.32 cm. The simulation domain consists of a total of around 72 million grid points.

We use the S1-S2 cross-field protocol to initiate scroll waves in the medium. In this protocol, we begin
with a plane wave S1, which is initiated from one end. When it has passed through half the medium, we
apply a cross field, i.e., another plane wave in the perpendicular direction (the S2 stimulus). This creates a
scroll wave in the 3D geometry, which we use as an initial condition. Figure 1 shows the development of
the initial scroll that we obtain by using the S1-S2 protocol. D‖ in Eq.2 is 2cm2/s for the HRD model.
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1.1. The Phase-field method for the imposition of Boundary Conditions in Anatomical Geometries
In our numerical simulations we use no-flux boundary conditions. In conventional methods, we need

to track the boundaries and calculate the normal to the surface at each point; this is computationally costly.
The phase-field method, proposed by Fenton et al. [1], uses a different approach in which the boundary
between the cardiac muscle and the surrounding medium is converted into a smooth, spatially diffuse
interface of small thickness for a phase variable φ.

The boundary conditions for the heart wall: there is zero current flow normal to the tissue boundary
surfaces, so

n̂.D∇V = 0, (3)

where n̂ is the unit vector normal to the heart surface. We now define a phase variable φ, that takes
different values inside and outside of the heart tissue and varies smoothly across a thin, diffuse interface
between them: φ = 1 inside the heart and φ = 0 outside the heart. To calculate φ in the interfacial region
we solve the following equation:

∂φ

∂t
= ζ2
∇

2φ −
∂G(φ)
∂φ

, (4)

where ζ controls the width of the interface. G(φ) is a function of the form of a double-well potential with
minima at φ = 0 and φ = 1.

G(φ) = −
(2φ − 1)2

4
+

(2φ − 1)4

8
. (5)

We use a time step of δt = 0.01 ms and a space step of δx = 0.025 cm . The phase profile of φ is used
to interpolate smoothly the properties of the interior and exterior regions. The variables now change as
follows: Cm → φCm, Iion → φIion , and σ → φσ, respectively. The reaction-diffusion equation then assumes
the following form:

φ
∂V
∂t

= ∇.[Dφ∇V] − φ
Iion

Cm
. (6)

No calculations are carried out where φ = 0. We set φ = 0 below the cut-off value of φ = 1 × 10−4. This
saves computational time, but does not affect our numerical results significantly.

2. Cell level Plots and other important plots

3. Movies showing the spatiotemporal evolution of the various systems in this study

This section contains the links to the movies of the two-level isosurface plots of the transmembrane
potential V illustrating the spatiotemporal evolution of scroll waves in the HRD model, in the anatomically
realistic geometry for a canine ventricle, with and without inhomogeneities. These movies correspond to
the Figs. (3)-(8) in the main paper.

Supporting Information
Videos are hyperlinked.

Please click on Video “S#”, which is bounded by a rectangular box, to play the video;
here # denotes the number of the video.
The videos should play with VLC Media Player.

Without any inhomogeneities.
We use two different parameter sets: the first yields a rotating scroll wave; and the second gives broken

scroll waves interacting with each other.
Video S41:
Video S42:
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Figure 2: Plots for the HRD model of the APD restitution (APDR) curves for 3 representative parameter sets in each row; the diastolic
interval (DI) is on the horizontal axis; and the vertical axis shows the corresponding value of the APD. Top panel: the variation of the
APDR with NGCao, for 3 fixed values of NGKr; bottom panel: the variation of the APDR with NGKr, for 3 fixed values of NGCao. On
the right sides of these plots, we depict the corresponding plots for the maximal values of the slopes(d(APD)/d(DI)) of the restitution
curves. The maximal slopes decrease with an increase in NGKr as well as with a decrease in γCao. We show later that the flat-slope
region gives rise to stable rotating spiral and scroll waves in 2D tissue and in the 3D geometry, respectively.

Figure 3: Plots of the transmembrane potential V versus time illustrating the variation of the shape of the action potential (AP) as we
change (a) γCao, while GKr is held constant (top panel), and (b) GKr, for a fixed value of γCao (bottom panel), in the HRD model, for 3
representative cases. The wavelength λ = APD × cv, where cv is the conduction velocity and APD is the AP duration (see text). On
the right side, we show these wavelengths for all the 10 × 10 combinations.
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Figure 4: The dominant frequencies that we obtain from power spectra for all our parameter values, i.e., for NGKr = 1, 2..7 and
NGCao = 1, 2..7. In the region where stable rotating waves exist, we see a prominent frequency in the spectrum. If the waves are
unstable and disappear, it is not possible to identify a major frequency.
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When a medium-sized spherical inhomogeneity of conduction type is placed at four different positions.
Position 1 with a broken-wave initial condition:

Video S43:
Position 2 with a broken-wave initial condition:

Video S44:
Position 3 with a broken-wave initial condition:

Video S45:
Position 4 with a broken-wave initial condition:

Video S46:
Position 1 with rotating-wave initial condition:

Video S47:
Position 2 with a rotating-wave initial condition:

Video S48:
Position 3 with a rotating-wave initial condition:

Video S49:
Position 4 with a rotating-wave initial condition:

Video S410:

With small conduction inhomogeneities distributed in the domain for three different concentrations of the inhomo-
geneities

5% inhomogeneities with the broken-scroll-state initial condition:
Video S411:

10% inhomogeneities with the broken-scroll-state initial condition:
Video S412:

20% inhomogeneities with the broken-scroll-state initial condition:
Video S413:

5% inhomogeneities with the rotating-scroll-state initial condition:
Video S414:

10% inhomogeneities with the rotating-scroll-state initial condition:
Video S415:

20% inhomogeneities with the rotating-scroll-state initial condition:
Video S416:

With a medium-sized spherical inhomogeneity, of ionic type, is placed at four different positions.
Position 1 with the broken-scroll-state initial condition:

Video S417:
Position 2 with the broken-scroll-state initial condition:

Video S418:
Position 3 with the broken-scroll-state initial condition:

Video S419:
Position 4 with the broken-scroll-state initial condition:

Video S420:
Position 1 with the rotating-scroll-state initial condition:

Video S421:
Position 2 with the rotating-scroll-state initial condition:

Video S422:
Position 3 with the rotating-scroll-state initial condition:

Video S423:
Position 4 with the rotating-scroll-state initial condition:

Video S424:
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With small ionic inhomogeneities are distributed in the domain with three different concentrations
5% inhomogeneities with the rotating-scroll-state initial condition:

Video S425:
10% inhomogeneities with the rotating-scroll-state initial condition:

Video S426:
20% inhomogeneities with the rotating-scroll-state initial condition:

Video S427:
5% inhomogeneities with the broken-scroll-state initial condition:

Video S428:
10% inhomogeneities with the broken-scroll-state initial condition:

Video S429:
20% inhomogeneities with the broken-scroll-state initial condition:

Video S430:

4. Formulation of the Hund-Rudy-Dynamic (HRD) Cell Model

The complete HRD-model equations are described below.

Abbreviations and Definitions

Table 2: General Parameters

Abbreviation Definition Unit

Vm Membrane voltage mV
Ex Reversal potential of current x mV
Ix Maximum current carried through the channel, x µA/µF
Gx Maximum conductance of the channel, x ms/µF
X∞ Steady state value of variable X
Xτ Time constant of variable X
αy, βy Opening and closing rate constants of gate y, re-

spectively.
PS Membrane permeability to ion S cm/s
PS,A Permeability ratio of ion S to ion A
γS Activity coefficient of ion S cm/s
zs Valence of ion S
VX Volume of Compartment X
R Gas constant, 8314 J/kmol/K
T Temperature, 310 K
F Faraday constant, 96487. C/mol
Cm Total cellular membrane capacitance, 1 µF
ACap Capacitative membrane area cm2

AGeo Geometric membrane area cm2

RCG Ratio of ACap to AGeo = 2.

Table 3: Currents, Pumps and Exchangers
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Abbreviation Definition Unit

INa Fast Na+ current µA/µF
INa,L Slowly inactivating late Na+ current µA/µF
INa,b Background Na+ current µA/µF
ICaL Ca2+ current through the L-type Ca2+ channel µA/µF
ICa,b Background Ca2+ current µA/µF
Ip,Ca Sarcolemmal Ca2+ current µA/µF
ICaNa Na+ current through the L-type Ca2+ channel µA/µF
ICaK K+ current through the L-type Ca2+ channel µA/µF
IKr Rapid delayed rectifier K+ current µA/µF
IKs Slow delayed rectifier K+ current µA/µF
Ito1 4AP-sensitive transient outward K+ current µA/µF
Ito2 Ca2+ dependent transient outward Cl- current µA/µF
IK1 Time-independent K+ current µA/µF
IKp Plateau K+ current µA/µF
ICl,b Background Cl2+ current µA/µF
INaCa Na+ - Ca- current µA/µF
INaK Na+ - K+ pump µA/µF
IpCa Sarcolemmal Ca2+ pump µA/µF
CTNaCl Na+ -Cl- cotransporter mmol/L per ms
CTKCl K+ -Cl- cotransporter mmol/L per ms
ICa,t Total transmembrane Ca2+ current

ICa,t = ICa,L + I Ca,b + I p,Ca - 2INa,Ca
INa,t Total transmembrane Na+ current

INa,t = INa + 3INaK + 3INaCa + INaL + INab
IK,t Total transmembrane K+ current

IK,t = IKs + IKr + IK1 + Ito1 + IKp - 2INaK
ICl,t Total transmembrane Cl- current

ICl,t = Ito2 + IClb
Itot Total transmembrane current

Itot = ICa,t + INa,t + IK,t + ICl,t
Istim Stimulus current µA/µF
ACT ICaL activation parameter
α ICaL Rate Constant, activation
β ICaL Rate Constant, deactivation
C ICaL State, closed (Ca2+ free)
O ICaL State, open (Ca2+ free)
IV ICaL inactivation parameter (Ca2+ free)
x ICaL Rate Constant, recovery from inactivation

(Ca 2+ free)
y ICaL Rate Constant, inactivation (Ca2+ free)
CI ICaL State closed state, inactivation (Ca2+ free)
OI ICaL State open state, inactivation (Ca2+ free)
Allo Ca2+ dependent allosteric activation factor of INaCa
νmax Maximal flux of INaCa
ksat Saturation factor of INaCa at negative potentials
η Position of energy barrier of INaCa
fNaK Voltage dependent parameter of INaK
σ [Na+]o -dependent factor of f NaK
Ip,Ca Sarcolemmal Ca2+ pump µA/µF
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ICa,b Background Ca2+ current µA/µF
CTNaCl Na+ - Cl- cotransporter mmol/L per ms
CTKCl K + -Cl - cotransporter mmol/L per ms
τri Time constant of I rel inactivation ms
τdi f f Time constant of Ca2+ transfer from SS to my-

oplasm
ms

APD Action potential duration measured at 90% repo-
larization

CaT Calcium transient
CaTamp Calcium transient amplitude
PLB Phospholamban
RyR Ryanodine receptor SR Ca2+ release channel
LTCC L-type Ca2+ channel
Km Half-saturation concentration mmol/L
m, h, and j Activation gate, fast inactivation gate, and slow

inactivation gate of INa, respectively.
mL and hL Activation gate and inactivation gate of INaL, re-

spectively
d, f, and f 2 Activation gate, fast voltage-dependent inactiva-

tion gate, and slow voltage-dependent inactiva-
tion gate of ICaL, respectively.

poww Power applied to d
f Caand f Ca2 Fast Ca2+ -dependent inactivation gate and slow

Ca2+ -dependent inactivation gate of ICaL, respec-
tively.

X s1and X s2 Fast activation gate and slow activation gate of
I Ks, respectively

X r Activation gate of I Kr
R Kr Time-independent rectification gate of I Kr
K 1 Inactivation gate of I K1
a, i, i 2 Activation gate, fast inactivation gate, and slow

inactivation gate of I to1 , respectively
R to1 time-independent rectification gate of I to1
AA Ca2+ -dependent activation gate of Ito2
ro and ri Activation gate and inactivation gate of I rel , re-

spectively.
∆ro∞ JSR Modulation of ro∞ by [Ca2+] JSR
vg Variable gain factor for I rel
y∞ Steady-state value of gate y
α yand β y Opening and closing rate constants of gate y, re-

spectively
ms -1

τ y Time constant of gate y ms
Īx Maximum current carried through channel x µA/µF
∆[S]x Change in concentration of ion S in compartment

x during one time step
mmol/L

Table 4: Ionic Fluxes and Diffusion

I rel Ca2+ release from JSR to myoplasm mmol/L per ms

9



I up Ca2+ uptake from myoplasm to NSR mmol/L per ms
I leak Ca 2+ leak from JSR to myoplasm mmol/L per ms
I tr Ca2+ transfer from NSR to JSR, mmol/L per ms
I diff,x Ionic diffusion of Ca 2+, Cl− or Na+ from SR sub-

space to myoplasm
CaMK bound Fraction of CaMKII binding sites bound to Ca2+ /

calmodulin
CaMK active Fraction of active CaMKII binding sites
CaMK trap Fraction of autonomous CaMKII binding sites

with trapped calmodulin
CaMK o Equilibrium fraction of active CaMKII binding

sites, 0.05
αCaMK Phosphorylation rate of CaMKII,0.5 ms−1

βCaMK Dephosphorylation rate of CaMKII, 0.00068 ms−1

∆̄P Maximal CaMKII-dependent change in parame-
ter P

∆PCaMK CaMKII-dependent factor of substrate parameter
P

Km,CaM CaMK half-saturation coefficient, 0.0015 mmol/L
Km,CaMK Half-saturation coefficient of substrate parameter,

0.15
β0 Irel , minimal value of βτ, 4.75 ms
∆β0 Irel , I rel , Maximal CaMK dependent change for

βτ, 1
mmol/L

Kβ Irel , half saturation coefficient for ∆βτ,CaMK,0.28 mmol/L
KRel,∞ Irel , half saturation coefficient for Irel,∞,1 mmol/L
hRel Irel , Hill coefficient for Irel,∞,8
hβ Irel , Hill coefficient for ∆βτ,CaMK,10
κ Irel , Amplitude coefficient for αRel,0.1125 µA/µF
KRel,τ Irel , Half saturation coefficient for IRel,τ , 0.0123 mmol/L
∆̄Km,PLB Iup , Phospholamban Half-saturation factor, 1.7

×10−4
mmol/L

∆̄Iup,CaMK Iup , Maximal CaMK dependent change in Iup, 0.75
Īup Iup , Maximal value of Iup, 0.004375 mmol/L per ms
Km,up Iup , Half saturation of Iup, 0.000925 mmol/L
τtr Itr, Time constant for NSR/JSR Ca2+ transfer, 25 ms

INa,b is not included in the HRd model due to the presence of CTNaCl , which brings Na+ into the cell at
rest. ICa,K and ICa,Na are assumed to be insignificant and are eliminated from the HRd model.
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Table 5: Concentrations and Buffering
[Ca2+]x Calcium concentration in compartment X mmol/L
[Na+]x Sodium concentration in compartment X mmol/L
[K+]x Potassium concentration in compartment X mmol/L
[Cl−]x Chloride concentration in compartment X mmol/L
csqn Calsequestrin, Ca2+ buffer in JSR
trpn Troponin,Ca2+ buffer in myoplasm
cmdn Calmodulin,Ca2+ buffer in myoplasm
BSRX Anionic SR binding sites for Ca2+ (SS or SS,CaL)
BSLX Anionic sarcolemmal binding sites for Ca2+ (SS or

SS,CaL)
[trpn] Maximum troponin concentration, 0.07 mmol/L
[cmdn] Maximum calmodulin concentration, 0.05 mmol/L
Km,cmdn Calmodulin half saturation, 0.00238 mmol/L
Km,trpn Troponin half saturation, 0.0005 mmol/L
[csqn] Calsequestrin concentration, 10.0 mmol/L
Km,csqn Calsequestrin half saturation, 0.8 mmol/L

Table 6: Compartments

i intracellular space
o extracellular space
SR sarcoplasmic reticulum
JSR junctional sarcoplasmic reticulum
NSR network sarcoplasmic reticulum
SS,SR SR Ca2+ release subspace
SS,CaL L-type Ca2+ entry subspace

CaMKII

CaMKbound = CaMK0. (1 − CaMKtrap).

 1

1 + KmCaM
[Ca2+]SS


dCaMKtrap

dt
= αCaMK. CaMKbound. (CaMKbound + CaMKtrap)

−βCaMK.CaMKtrap

CaMKactive = CaMKbound + CaMKtrap

where
αCaMK = 0.05 ms−1

βCaMK = 0.00068 ms−1

CaMK0 = 0.05
KmCaM = 0.0015 mmol/L
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Table 7: External Concentrations (Single cell)

[Ca2+]o 1.8 mmol/L
[Cl−]o 100 mmol/L
[K+]o 5.4 mmol/L
[Na+]o 140 mmol/L

Table 8: Resting voltage and concentrations (Single cell)

Vm -87.472528 mV
[Ca2+]i 0.0000822 mmol/L
[Ca2+]SS,SR 0.000138151 mmol/L
[Ca2+]SS,CaL 0.000143898 mmol/L
[Ca2+]JSR 1.25 mmol/L
[Ca2+]NSR 1.25 mmol/L
[Cl−]i 19.53 mmol/L
[Cl−]SS 20.26905 mmol/L
[K+]i 142.82 mmol/L
[Na+]i 9.71 mmol/L
[Na+]SS 6.935607 mmol/L

ICaL

ICaL = d pow. fca. fca2. f . f2. ICaL

ICaL = PCa. z 2
Ca.

(Vm − 15.0).F2

RT

.
γCai.[Ca]SS. exp

(
zCa.(Vm − 15.0). F

RT

)
i − γCao.[Ca]o

exp
(
zCa.(Vm − 15.0). F

RT

)
− 1

d∞ =
1

1 + exp
(
−

(Vm−4)
6.74

)
τd = 0.59 + 0.8.

exp ((0.052.(Vm + 13)))
1 + exp ((0.132.(Vm + 13)))

pow∞ = 9 −
8

1 + exp
(
−(Vm+65)

3.4

)
f∞ =

0.7

1.0 + exp
(

Vm+17.12
7

) + 0.3

f2∞ =
0.77

1.0 + exp
(

Vm+17.12
7

) + 0.23

τ f =
1

0.2411. exp
(
−[0.045.(Vm − 9.6914)]2

)
+ 0.0529

τ f 2 =
1

0.0423. exp
(
−[0.059.(Vm − 18.5729)]2

)
fCa∞ =

0.3

1 − ICaL
0.05

+
0.55

1 + [Ca2+]SS
0.003

+ 0.15

fCa2∞ =
1

1 − ICaL
0.01

∆τ f caCaMK = ∆τ f caCaMK .
CaMKactive

KmCaMK + CaMKactive

τ f ca = ∆τ f caCaMK + 0.5 +
1

1.0 + [Ca2+]SS
0.003

ms

τ f ca2 =
300.0

1 + exp
(
−

ICaL+0.175
0.04

) + 125.0

where
τpow = 10.0 ms

∆τ f caCaMK = 10 ms
KmCaMK = 0.15

PCa = 2.43 × 10−4 cm/s
γCai = 1
γCao = 0.341
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Table 9: Cell Geometry

Length (L) 0.01 cm
Cell volume,Vcell = π.r2.L 38×10−6 µL
Geometric membrane area: 0.767×10−4 cm2

Ageo = 2πr2 + 2πrL
Capacitative membrane area: 1.534 ×10−4 cm2

Acap = RCG.Ageo
Myoplasmic volume, Vmyo = Vcell.68% 25.84 ×10−6 µL
Mitochondrial volume, Vmito = Vcell.26% 9.88×10−6 µL
SR volume, VSR = Vcell.6% 2.28×10−6 µL
NSR volume, VNSR = Vcell.5.52% 2.098×10−6 µL
JSR volume, VJSR = Vcell.0.48% 0.182×10−6 µL
SS,SR volume, VSS,SR = Vcell.2.0% 0.76×10−6 µL
SS,CaL volume, VSS,CaL = Vcell.0.2% 0.076×10−6 µL

IKs

IKs = GKs.Xs.Xs2.(Vm − EKs)

GKs = 0.0248975

1 +
0.6

1 +
[

3.8×10−5

[Ca2+]i

]1.4


EKs =

RT
F
. ln

 [K+]o + PNaK.[Na+]o

]K+]i + PNaK.[Na+]i


Xs∞ = Xs2∞ =

1

1 + exp
(
−(Vm−10.5)

24.7

)
τxs1 =

1[
7.61×10−5.(Vm+44.6)

1−exp (−9.97.(Vm+44.6))

]
+

[
3.6×10−4.(Vm−0.55)

exp (0.128.(Vm−0.55))−1

]
τxs2 = 2.τxs1

where
PNaK = 0.01833
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IKr

IKr = GKr.Xr.RKr.(Vm − EKr)

GKr = 0.0138542.

√
[K+]o

5.4

EKr =
RT
F
. ln

[
[K+]0

[K+]i

]
τXr =

1[
0.6×10−3.(Vm−1.7384)

1−exp (−0.136.(Vm−1.7384))

]
+

[
3×10−4.(Vm+38.3608)

exp (0.1522.(Vm+38.3608))−1

]
RKr =

1

1 + exp
(

Vm+10
15.4

)
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Ito1

Ito1 = Gto1.a3.i.i2.Rto1.(Vm − Eto1)

Eto1 =
RT
F
. ln

 [K+]o

[K+]o


Rto1 = exp

( Vm

300

)
αa =

25. exp
(

(Vm−40
25

)
1 + exp

(
(Vm−40

25

)
βa =

25. exp
(
−(Vm+90

25

)
1 + exp

(
(−Vm+90

25

)
αi =

0.03

1 + exp
(

(Vm+60
5

)
βi =

0.2. exp
(

(Vm+25
5

)
1 + exp

(
(Vm+25

5

)
αi2 =

0.00225

1 + exp
(

(Vm+60
5

)
βi2 =

0.1. exp
(

(Vm+25
5

)
1 + exp

(
(Vm+25

5

)
where

Gto1 = 0.19 mS/µF
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INaCa

INaCa = Allo.∆E

Allo =
1

1 +
 KmCa,act

1.5.[Ca2+]i

2

∆E =
νmax.

[Na+]i
3. [Ca2+]o. exp

(
η. VF

RT

)
− [Na+]o

3. 1.5. [Ca2+]i. exp
( (η−1).VF

RT

)

1 + ksat exp
(
η−1) .VF

RT

) .KmCao[Na+]i
3 + K3

mNao. 1.5 .[Ca2+]i + K3
mNai. [Ca2+]o.

(
1 + 1.5.[Ca2+]i

KmCai

)
+

KmCai. [Na+]3
o .

(
1 +

[Na+]3
o

K3
mNai

)
+ [Na+]3

i . [Ca2+]o + [Na+]3
o . 1.5.[Ca2+]i




where
νmax = 4.5 µA/µF
ksat = 0.27
η = 0.35

KmNai = 12.3 mmol/L
KmNao = 87.5 mmol/L
KmCai = 0.0036 mmol/L
KmCao = 1.3 mmol/L

KmCa,act = 1.25 × 10−4 mmol/L
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INa

INa = GNa.m3. h. j . (Vm − ENa)

GNa = 8.25 mS/µF

ENa =
RT
F
. ln

 [Na+]o

[Na+]i


αm =

0.32 .(Vm + 47.13)
1 − exp (Vm + 47.13)

βm = 0.08. exp
(
−

Vm

11

)
If Vm ≥ −40.0 mV,

αh = 0.0

βh =
1

0.13.
1 + exp

(
(Vm+10.66)
−11.1

)
α j = 0.0

β j =
0.3 exp

(
− 2.535 × 10−7.Vm

)
1 + exp

(
− 0.1.(Vm + 32)

)
else

αh = 0.135. exp
(

(80.0 + Vm

−6.8

)
βh = 3.56. exp

(
0.079.Vm

)
+ 3.1 × 105. exp

(
0.35.Vm

)

α j = (Vm + 37.78) .


(
−1.2714 × 105. exp

(
0.2444.Vm

)
− 3.474 × 10−5. exp

(
− 0.04391.Vm

))
1 + exp (0.311.(Vm + 79.23))


β j =

0.1212. exp
(
− 0.01052.Vm

)
1 + exp (−0.1378.(Vm + 40.14))
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INaL

INaL = GNaL .mL
3. hL (Vm − ENaL)

ENaL =
RT
F
. ln

 [Na+]o

[Na+]i


αmL =

0.32 .(Vm + 47.13)
1 − exp (Vm + 47.13)

βmL = 0.08. exp
(
−

Vm

11

)
hL∞ =

1

1 + exp
(

Vm+91
6.1

)
where

GNaL = 0.0065 mS/µF
τhL = 600 ms

Cl- Currents

ECl = −
RT
F
. ln

(
[Cl−]o

[Cl−]i

)
EK =

RT
F
. ln

(
[K+]o

[K+]i

)
ENa =

RT
F
. ln

(
[Na+]o

[Na+]i

)

CTKCl, K+–Cl- Cotransporter

CTKCl = CTKCl.
(EK − ECl)

(EK − ECl) + 87.82514

CTKCl = 7.0756 × 10−6 mmol/L per ms

CTNaCl, Na+–Cl- Cotransporter

CTNaCl = CTNaCl.
(ENa − ECl)4

(ENa−ECl)4 + 87.8251

CTNaCl = 9.8443 × 10−6 mmol/L per ms
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IClb, Cl- background current

IClb = GClb.
(
Vm − ECl

)
GClb = 2.25 × 10−4 µA/µF

Ito2, Ca2+-dependent transient outward current

Ito2 = PCl.z2
Cl.

Vm.F2

RT
.

(
[Cl−]i − [Cl−]o

)
. exp

(
−zCl.Vm. F

RT

)
1 − exp

(
−zCl.Vm. F

RT

)
aa∞ =

1

1 + Kmto2
[Ca2+]r

where
τaa = 1 ms
PCl = 4.0 × 10−7 cm/s

Kmto2 = 0.1502 mM
Ito1 = Ito2 . aa
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Irel

Irel = Grel. ro. ri.
(
[Ca2+]JSR − [Ca2+]SS

)
Grel = 3000.νg ms−1

νg =
1

1 + exp
(

ICaL+13
5

)
τri =

350 − ∆τrelCaMK

1 + exp
( [Ca2+]SS−0.003+0.003. ca f ac

0.0002

) + 3 + ∆τrel,CaMK ms

ri∞ =
1

1 + exp
( [Ca2+]SS−0.0004+0.002. ca f ac

000025

)
ca f ac =

1

1 + exp
(

ICaL+0.05
0.015

)
ro∞ =

ICaL
2

ICaL
2 + 1.02

. ∆ro∞,JSR

∆ro∞,JSR =
[Ca2+]JSR

1.9

[Ca2+]JSR
1.9 +

[
49.28.[Ca2+]SS

[Ca2+]SS+0.0028

]1.9

∆τrel,CaMK = ∆τral,CaMK.
CaMKactive

KmCaMK + CaMKactive

where
∆τrel,CaMK = 10 ms

τro = 3 ms
KmCaMK = 0.15
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SR Fluxes

Iup

Iup =
(
∆Iup,CaMK + 1

)
.Iup.

[Ca2+]i

[Ca2+]i + Km,up − ∆Km,PLB

∆Iup,CaMK = ∆Iup,CaMK.
CaMKactive

KmCaMK + CaMKactive

∆Km,PLB = ∆Km,PLB.
CaMKactive

KmCaMK + CaMKactive
where

∆Km,PLB = 0.00017 mmol/L

∆Iup,CaMK = 0.75 mmol/L
KmCaMK = 0.15

Iup = 0.004375 mmol/L per ms
Km,up = 0.00092 mmol/L

Ileak

Ileak =
0.004375

NSR
. [Ca2+]NSR

where
NSR = 15 mmol/L

Itr

Itr =
[Ca2+]NSR − [Ca2+]JSR

τtr

where
τtr = 120 ms
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Calcium Buffers

Ca2+ buffers in myoplasm

Bu f f ered[trpn] = [trpn].
[Ca2+]i

[Ca2+]i + Kmtrpn

Bu f f ered[cmdn] = [cmdn].
[Ca2+]i

[Ca2+]i + Kmcmdn

where
[trpn] = 0.07 mmol/L

[cmdn] = 0.05 mmol/L
Kmtrpn = 0.0005 mmol/L

Kmcmdn = 0.00238 mmol/L

Ca2+ buffer in JSR

Bu f f ered[csqn] = [csqn].
[Ca2+]JSR

[Ca2+]JSR + Kmcsqn

where
[csqn] = 0.07 mmol/L
Kmcsqn = 0.0005 mmol/L

Time Independent Currents

ICab

ICab = PCab. z2
Ca.

Vm.F2

RT
.
γCai.[Ca2+]i. exp

(
zca.Vm. F

RT

)
− γCao.[Ca]o

exp
(
zCa.Vm. F

RT

)
− 1

where
PCab = 1.995084 × 10−7 cm/s
γCai = 1
γCao = 0.341
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INaK

INaK = GNaK.
fNaK

1 +
(

KmNai
[Na+]i

)2 .

(
[K+]o

[K+]o + KmKo

)

fNaK =
1

1 + 0.1245. exp
(
−0.1.Vm.F

RT

)
+ 0.0365.σ. exp

(
−Vm.F

RT

)
σ =

exp
(

[Na+]o
67.3

)
− 1.0

7.0
where

GNaK = 0.61875 mS/µF
KmNai = 10 mM
KmKo = 1.5 mM

IKp

IKp = GKp.Kp.
(
Vm − EKp

)
Kp =

1

1 + exp
(

7.488−Vm
5.98

)
EKp =

RT
F
. ln

 [K+]o

[K+]i


where

GKp = 2.76 × 10−3 mS/µF

IK1

IK1 = GK1.K1.
(
Vm − EK1

)
GK1 = 0.5.

√
[K+]o

5.4
mS/µF

K1 =
αK1

αK1 + βK1

βK1 =
0.49124. exp

(
0.08032.(Vm − EK1 + 5.476)

)
+ exp

(
0.06175.(Vm − EK1 − 594.31)

)
1 + exp

(
− 0.5143.(Vm − EK1 + 4.753)

)
αK1 =

1.02

1 + exp
(
0.2385.(Vm − EK1 − 59.215)

)
EK1 =

RT
F
. ln

 [K+]o

[K+]i


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IpCa

IpCa = GpCa.
[Ca2+]i

[Ca2+]i + KmpCa

where
GpCa = 0.0575 mS/µF

KmpCa = 0.0005 mM

Ion concentrations

Intracellular ion concentrations

Ca2+

d[Ca2+]i

dt
= −

(
ICab + IpCa − 2.INaCa.

ACap

Vmyo.2F
+ (Iup − Ileak).

VNSR

Vmyo
− IDi f f .

VSS

Vmyo

)
[Ca2+]it = [trpn] + [cmdn] + [Ca2+]i + ∆[Ca2+]i

[Ca2+]i =
2
3
.
√

b2 − 3c cos
(

1
3

cos−1

(
9bc − 2b3

− 27d

2(b2 − 3c)1.5

))
−

b
3

b = [trpn] + [cmdn] − [Ca2+]it + Kmcmdn + Kmtrpn

c = Kmcmdn.Kmtrpn − [Ca2+]it.
(
Kmtrpn + Kmcmdn

)
+ [trpn].

Kmcmdn + [cmdn].Kmtrpn

d = −Kmtrpn.Kmcmdn.[Ca2+]it

Na+

d[Na+]i

dt
= −INat.

ACap

Vmyo.F
+ CTNaCl

K+

d[K+]i

dt
= −IKt.

ACap

Vmyo.F
+ CTKCl

Cl-

d[Cl−]i

dt
= IClt.

ACap

Vmyo.F
+ CTNaCl + CTKCl
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SR calcium concentrations
JSR

d[Ca2+]JSR

dt
= Itr − Irel

[Ca2+]JSR =

√

b2 + 4c − b
2

b = [csqn] − [csqn] − [Ca2+]JSR − ∆[Ca2+]JSR + Kmcsqn

c = Kmcsqn.
(
[csqn] + [Ca2+]JSR + ∆[Ca2+]JSR

)
NSR

d[Ca2+]NSR

dt
= Iup − Ileak − Itr.

VJSR

VNSR

Subspace calcium concentration

d[Ca2+]SS

dt
= βSS.

(
−ICa.

ACap

VSS.2F
+ Irel.

VJSR

VSS
− IDi f f

)
IDi f f =

[Ca2+]SS − [Ca2+]i

τDi f f

βSS =
1

1 + BSR.KmBSR

(KmBSR+[Ca2+]SS)2 + BSL.KmBSL

(KmBSL+[Ca2+]SS)2

where
τDi f f = 0.2 cm

BSR = 0.047 mM
KmBSR = 0.00087 mM

BSL = 1.124mM
KmBSL = 0.0087mM

The total transmembrane current at time t
Total transmembrane Ca2+ current

ICat = ICaL + ICab + IpCa − 2INaCa

Total transmembrane Na+ current
INat = INa + 3INaK + ICaNa + INaL

Total transmembrane K+ current
IKt = IKs + IKr + IK1 + ICaK + Ito1 + IKp − 2INaK
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Total transmembrane Cl- current
IClt = Ito2 + IClb

Total transmembrane current
Itot = ICat + INat + IKt + IClt

Conservative current stimulus,Istim

IKt = IKt + 0.5.IstimIClt = IClt + 0.5.Istim

Transmembrane voltage, Vm
dVm

dt = −Itot
Cm

Electrical Wave Propagation in Cardiac Tissue
In a cardiac-tissue mathematical model, the time evolution of the transmembrane voltage is given by a

partial differential equation (PDE) of the reaction-diffusion type:

∂V
∂t

= ∇.D∇V −
Iion + Iapplied

Cm
, (7)

where Iion contains all the ionic currents, Iapplied is the external current, Cm the capacitance density, andD the
diffusion tensor that accounts for the conductivity of the tissue and propagation between cells; its elements
are described by:

Di j = DT ∗ δi j + (DL −DT)αiα j. (8)

Here, αis are the components of α, the unit vector along the direction of the local muscle fiber. We solve the
PDE for V by a finite-difference scheme. Table 10 contains a list of the currents in the HRD model and their
descriptions.
[1] F.H. Fenton, E.M. Cherry, A. Karma, and W.J. Rappel, CHAOS 15, 013502 (2005)
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Table 10: Table showing all the major currents in the HRD model and their descriptions. The units for all the currents are µA/µF.
Current Description

INa Fast Na+ current
INaL Slowly inactivating late Na+ cur-

rent
ICaL Ca2+ current through the L-type

Ca2+ channel
INaCa Na+ -Ca2+ exchanger
INaK Na+

− K+ pump
IKr Rapid delayed rectifier K+ cur-

rent
IKs Slow delayed rectifier K+ current
Ito1 4AP-sensitive transient outward

K+ current
Ito2 Ca2+ -dependent transient out-

ward Cl− current
IK1 Time-independent K+ current
IKp Plateau K+ current
ICab Background Ca2+ current
IClb background Cl− current
IIpCa Sarcolemmal Ca2+ pump
Irel Ca2+ release from JSR to my-

oplasm
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