
Mathematische Annalen
https://doi.org/10.1007/s00208-021-02355-8 Mathematische Annalen

Diameter rigidity for Kähler manifolds with positive
bisectional curvature

Ved Datar1 · Harish Seshadri1

Received: 28 August 2021 / Revised: 28 August 2021 / Accepted: 22 December 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract
We prove that a Kähler manifold with positive bisectional curvature and maximal
diameter is isometric to complex projective space with the Fubini-Study metric.

1 Introduction

Let (M, ω) be a Kähler manifold. The bisectional curvature of ω along real unit
tangent vectors X ,Y is defined to be

BK(X ,Y ) = Rm(X , J X , JY ,Y ),

where Rm denotes the Riemann curvature tensor of the Riemannian metric associated
to ω. In this note we will be concerned with Kähler manifolds (M, ω) satisfying

BK ≥ 1, (1)

i.e., BK(X ,Y ) ≥ 1 for all real unit tangent vectors X ,Y .
A diameter comparison theorem was established for compact Kähler n-manifolds

satisfying (1) in [5]. The comparison space here is the complex projective space CPn
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endowed with the Fubini-Study metric ωCPn , normalized so that

∫
CPn

ωn
CPn = (2π)n, equivalently Ric = (n + 1)ωCPn .

Theorem 1 (Li-Wang [5]) If (Mn, ω) is a compactKählermanifold satisfyingBK ≥ 1,
then

diam(M) ≤ diam(CPn, ωCPn ) = π√
2
.

Remark In [5], the diameter bound is stated to be π/2. This is due to a different
normalization for the Hermitian extension of the Riemannian metric.

The main result of this note is a characterization of the case of equality in Theorem
1:

Theorem 2 Let (Mn, ω) be a compact Kähler manifold satisfying BK ≥ 1. If

diam(M, ω) = diam(CPn, ωCPn ),

then (M, ω) is isometric to (CPn, ωCPn ).

The diameter bound in Theorem 1 is analogous to the classical Bonnet-Myers
diameter bound for compact Riemannian manifolds with positive Ricci curvature.
However, one cannot relax the curvature assumption to a positive Ricci lower bound
in the Kähler case, as pointed out in [6]: endowCP1 with the roundmetric of curvature
1

n+1 and consider the product metric on the n-fold product

M = CP1 × ... × CP1.

The Ricci curvature of M satisfies Ric = (n + 1)ω, but

diam(M) =
√

n

n + 1
π >

π√
2
,

if n ≥ 2.
In the Riemannian case, the equality case of the Bonnet-Myers diameter bound is

the well-known maximal diameter theorem of Cheng. Theorem 2 can be regarded as
the Kähler analogue of Cheng’s theorem.

Theorem 2 has been established under additional assumptions in [6,11]. In [6], the
authors construct a totally geodesicCP1 with sectional curvature 2 and use this to show
that rigidity holds if

∫
M ωn > πn . In [11], the authors assume that there are compact

connected complex submanifolds P and Q in M with dim(P) + dim(Q) = n − 1
and d(P, Q) = π√

2
. An eigenvalue comparison theorem is then employed to show

rigidity.
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Our strategy for proving Theorem 2 is to establish a monotonicity formula for a
function arising from Lelong numbers of positive currents on CPn . In [7], the ∂∂̄-
comparison theorem of [11] is reformulated as asserting the positivity of a certain
(1, 1)-current and this is the current we work with.

2 Lelong numbers and amonotonicity formula onCPn

Let M be a Kähler manifold. In what follows, we frequently use the real operator

dc =
√−1

2π
(∂ − ∂).

Note that

ddc = 1

π

√−1∂∂.

If T is a non-negative current on a M such that

T = ddcϕ,

in a neighbourhood of a point q ∈ M , then the Lelong number of T at q is defined as

ν(T , q) := lim
r→0+

supBCn (0,r) ϕ(z)

log r
,

where z is a holomorphic coordinate in a neighbourhood of q such that z(q) = 0.
It is not difficult to see (for instance using the maximum principle) that the quotient
on the right is increasing in r , and hence the limit ν(T , q) exists and is moreover
non-negative and independent of the choice of holomorphic coordinates. Note that the
normalization is chosen so that if V is a smooth hypersurface with defining function
f , and [V ] denotes the current of integration along V , then by the Poincáre-Lelong
equation, [V ] = ddc log | f |, and so ν([V ], q) = 1 for any point q ∈ V .

The following proposition is well known (cf. [2, pg. 164–165]), but since the proof
of our main theorem has a precise dependence on the constants involved, we provide
a proof for the convenience of the reader.

Proposition 3 Suppose T = ddcϕ as above in a neighbourhood of q with holomorphic
coordinates z = (z1, . . . , zn) such that z(q) = 0. We then have

ν(T , q) = lim
r→0+

1

πn−1r2n−2

∫
BCn (0,r)

T ∧ ωn−1
Cn ,

where BCn (0, r) is the ball of radius r around the origin with respect to the Euclidean

metric ωCn =
√−1
2 ∂∂̄|z|2.
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Note that quantity on the right above is increasing in r (cf. [4, pg. 390]), and hence
the limit, in particular, exists.

Proof First suppose that ϕ is smooth. We let

ν(ddcϕ, 0, t) := 1

πn−1t2n−2

∫
BCn (0,t)

ddcϕ ∧ ωn−1
Cn ,

μt (ϕ) := 1

σ2n−1

∫
S2n−1

ϕ(t, θ) dσ(θ),

where σ2n−1 = 2πn/(n − 1)! is the volume of the unit sphere in S
2n−1 ⊂ C

n , and
dσ is the standard Riemannian measure on S2n−1 Let S2n−1

t be the sphere of radius t
centred at the origin, dσt the Riemannian measure on it and let ∂ϕ/∂ν be the normal
derivative of ϕ. Differentiating in t ,

dμt (ϕ)

dt
= 1

σ2n−1

∫
S2n−1

∂ϕ

∂t
(t, θ) dσ

= 1

σ2n−1t2n−1

∫
S
2n−1
t

∂ϕ

∂ν
dσt

= 2

σ2n−1t2n−1

∫
BCn (0,t)

	∂ϕ
ωn
Cn

n!

= 2

σ2n−1t2n−1

∫
BCn (0,t)

√−1∂∂ϕ ∧ ωn−1
Cn

(n − 1)!
= 2π

σ2n−1(n − 1)! · 1

t2n−1

∫
BCn (0,t)

ddcϕ ∧ ωn−1
Cn

= ν(T , 0, t)

t
.

Note that in the third line we have the ∂-Laplacian 	∂ , and hence the factor of 2 on
application of Green’s formula. Integrating the above equality from r to 1, we obtain
the so-called Jensen-Lelong formula (cf. [2, pg. 163]):

μ1(ϕ) − μr (ϕ) =
∫ 1

r
ν(ddcϕ, 0, t)

dt

t
.

By regularization, the above equality also holds for a general, possibly non-smooth,
plurisubharmonic function ϕ. Changing variables s = log t and dividing by log r we
have

μr (ϕ)

log r
= μ1(ϕ)

log r
− 1

log r

∫ 0

log r
ν(ddcϕ, 0, es) ds,
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and letting r → 0+ we obtain

lim
r→0+ ν(T , 0, r) = lim

r→0+
μr (ϕ)

log r
.

Next proceeding as in [2, pg. 165], by Harnack inequality and maximum principle,
we have that

lim
r→0+

μr (ϕ)

log r
= lim

r→0+
supz∈∂BCn (0,r) ϕ(z)

log r
= lim

r→0+
supz∈BCn (0,r) ϕ(z)

log r
.

	

We require the following modification, which as far as we can tell, seems to be new.

Proposition 4 Let T be a non-negative current on CPn in a Kähler class, and q ∈
CPn. Then


(T , q, r) := 1

(2π)n−1 sin2n−2(r/
√
2)

∫
BCPn (q,r)

T ∧ ωn−1
CPn

is increasing in r . Here BCPn (q, r) is the ball of radius r with respect to ωCPn .
Moreover, we also have that

lim
r→0+ 
(T , q, r) = ν(T , q). (2)

Note that the factor in the denominator is precisely the volume of a ball of radius
r in CPn−1 with respect to the Fubini-Study metric ωCPn−1 upto a factor of (n − 1)!.
Proof Let us first assume that T is a smooth (1, 1) Kähler form. We use homogenous
coordinates [ξ0 : ξ1 : · · · : ξn] on CPn with q = [1 : 0 : · · · : 0], and the usual
in-homogenous coordinates Zi = ξ1

ξ0
on ξ0 �= 0. Then

ω = √−1∂∂ log |ξ |2 = √−1∂∂ log(1 + |Z |2).

We then compute


(T , q, r) = 1

2n−1 sin2n−2 (r/
√
2)

∫
BCPn (q,r)

T ∧ (ddc log |ξ |2)n−1

= 1

2n−1 sin2n−2(r/
√
2)

∫
∂BCPn (q,r)

T ∧ dc log(1 + |Z |2)

∧ (ddc log(1 + |Z |2))n−2.

Now, it is well known fact that

cos2
dCPn (q, Z)√

2
= |ξ0|2

|ξ |2 = 1

1 + |Z |2 .
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For instance exploiting the U (n) symmetry one needs to check this only for CP1

which can be done easily. We then have that for any Z ∈ ∂BCPn (q, r),

dc log(1 + |Z |2) = |Z |2
1 + |Z |2 d

c log |Z |2 = sin2
( r√

2

)
dc log |Z |2.

Putting this back in the formula above we have that


(T , q, r) = 1

2n−1

∫
∂BCPn (q,r)

T ∧ dc log |Z |2 ∧ (ddc log |Z |2)n−2. (3)

So if r1 < r2, then integrating by parts we have


(T , q, r2) − 
(T , q, r1) = 1

2n−1

∫
ACPn (q,r1,r2)

T ∧ (ddc log |Z |2)n−1,

where ACPn (q, r1, r2) = BCPn (q, r2) \ BCPn (q, r1). Now if μ : CPn ��� CPn−1 is
the projection from q to [ξ0 = 0], then we have


(T , q, r2) − 
(T , q, r1) = 1

(2π)n−1

∫
ACPn (q,r1,r2)

T ∧ (μ∗ωCPn−1)n−1 ≥ 0.

This proves the monotonicity for smooth currents. For a general positive current T we
can proceed by regularization. In fact in our casewe can first let r1 < r2 < R < π/

√
2.

Then B(q, R) is contained in Euclidean ball (of radius tan R) with respect to the in-
homogenous coordinates. We can then use the standard convolution to find sequence
of smooth non-negative forms Tj converging weakly to T . Then since r1 < r2 < R,


(T , q, r2) − 
(T , q, r1) = lim
j→∞

(

(Tj , q, r2) − 
(Tj , q, r1)

)
≥ 0.

If r2 = π/
√
2, then the result follows by the monotonic convergence.

Next, to compute the limit, we again first work with smooth Kahler forms. If T is
smooth then in formula (3), we observe that

dc log |Z |2 = dc|Z |2
|Z |2 = dc|Z |2

tan2(r/
√
2)

,

where notice that d(q, Z) = r implies that

|Z |2 = tan2
( r√

2

)
.

Then we have


(T , q, r) = 1

2n−1

∫
∂BCPn (q,r)

T ∧ dc log |Z |2 ∧ (ddc log |Z |2)n−2
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= 1

2n−1 tan2n−2(r/
√
2)

∫
BCPn (q,r)

T ∧ dc|Z |2 ∧ (ddc|Z |2)n−2

= 1

2n−1 tan2n−2(r/
√
2)

∫
BCPn (q,r)

T ∧ (ddc|Z |2)n−1

= 1

πn−1t2n−2

∫
BCn (0,t)

T ∧ ωn−1
Cn ,

where we integrated by parts in the third line and set t = tan(r/
√
2), and noted that

in terms of the Z -coordinates BCPn (q, r) = BCn (0, t). Once again by regularization,
as above, the above formula holds for general possibly non-smooth currents. Letting
t → 0+ and applying Proposition 3 we obtain (2). 	

Example 5 (The “model” case) OnCPn consider the current T = √−1∂∂ log |ξn|2 =
2π [ξn = 0], and q = [1 : 0 : · · · : 0]. We regard this as the model case for reasons
given in Section 3. Then for any r > 0,

∫
BCPn (q,r)

T ∧ ωn−1
CPn = 2π

∫
BCPn (q,r)∩{ξn=0}

ωn−1
CPn

= 2π
∫
B
CPn−1(q,r)

ωn−1
CPn−1

= (2π)n sin2n−2
( r√

2

)
,

and so 
(T , q, r) = 2π and is independent of r . Note that if we consider a modified


̃(T , q, r) := 1

(2π)n−1r2n−2

∫
BCPn (q,r)

T ∧ ωn−1
CPn ,

where we have r2n−2 in the denominator as in the usual Euclidean case, then for T
and q as above, we would have that


̃(T , q, r) = 2π
sin2n−2(r/

√
2)

r2n−2 .

It is easy to see that this function is decreasing in r . The increasing property of

(T , q, r) is crucial for our proof of Theorem 2.

3 Proof of the Theorem

In [7], Lott introduces the following current:

Tω,p := ω + √−1∂∂ψp, ψp := log cos2
( dp√

2

)
,
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where p is some fixed point in M and dp is the distance function from p. Note that
a priori, Tω,p is only defined (and also smooth) away from the cut-locus of p. Using
the Hessian comparison theorem in [11], which holds away from the cut-locus, Lott
observed that T is in fact a global non-negative current if ω satisfies (1).

If ω = ωCPn , and p = [0 : 0 : · · · : 1], then as observed before

cos2
(dωCPn ,p√

2

)
= |ξn|2

|ξ |2 ,

and so

TωCPn ,p = √−1∂∂ log |ξn|2,

is precisely the current considered in Example 5 above.

Proof of Theorem First note that by the proof of the Frankel conjecture (cf. [8,10]), M
is biholomorphic to CPn . So from now on we set M = CPn . Let p, q ∈ CPn such
that dω,p(q) = π/

√
2.

We claim that

ν(Tω,p, q) = ν(ω + πddcψω,p) ≥ 2π.

To see this, we fix holomorphic coordinates z := (z1, . . . , zn) near q with z(q) = 0.
Then C−1|z(x)| ≤ d(q, x) ≤ C |z(x)| for some constant C > 0, and hence it is
enough to show that

lim
ε→0+

supB(q,ε) ψω,p

log ε
≥ 2,

since ω being smooth does not contribute to the Lelong number. It is more convenient
to work with

δp = π

2
− dp√

2
.

Then ψp = 2 log sin δp. Note that by the diameter upper bound we have δp(z) ≥ 0
for all z, and that δp is Lipshitz with constant 1/

√
2. Then for any x ∈ CPn ,

δp(x) =≤ 1√
2
d(q, x),

and so supB(q,ε) ψω,p ≤ C + 2 log ε. But then

supB(q,ε) ψω,p

log ε
≥ C

log ε
+ 2

ε→0+−−−→ 2.

But then by monotonicity, if ω ∈ c[ωCPn ], putting R = π/
√
2, we have
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2πc = 1

(2π)n−1

∫
CPn

T ∧ ωn−1
CPn = 
(Tω,p, q, R) ≥ lim

r→0+ 
(Tω,p, q, r)

= ν(Tω,p, q) ≥ 2π,

and so c ≥ 1. On the other hand note that the bisectional curvature lower bound gives

Ric(ω) ≥ (n + 1)ω,

and so c ≤ 1 since [Ric(ω)] = (n + 1)[ωCPn ], and hence c = 1. But then the
lower bound on the Ricci curvature, and the

√−1∂∂-lemma imply that ω must be
Kähler-Einstein and hence isometric to ωCPn . 	
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