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Abstract
We prove that a Kihler manifold with positive bisectional curvature and maximal
diameter is isometric to complex projective space with the Fubini-Study metric.

1 Introduction

Let (M, ) be a Kihler manifold. The bisectional curvature of @ along real unit
tangent vectors X, Y is defined to be

BK(X,Y) =Rm(X, JX, JY,Y),

where Rm denotes the Riemann curvature tensor of the Riemannian metric associated
to w. In this note we will be concerned with Kéhler manifolds (M, w) satisfying

BK > 1, ey

i.e., BK(X, Y) > 1 for all real unit tangent vectors X, Y.
A diameter comparison theorem was established for compact Kihler n-manifolds
satisfying (1) in [5]. The comparison space here is the complex projective space CP"
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endowed with the Fubini-Study metric wcpr, normalized so that
/(Cpn w@pn = (2)", equivalently Ric = (n + Dawcpn.

Theorem 1 (Li-Wang [5]) If (M", w) is a compact Kdhler manifold satisfying BK > 1,
then

Nk

Remark In [5], the diameter bound is stated to be 7r/2. This is due to a different
normalization for the Hermitian extension of the Riemannian metric.

diam(M) < diam(CP", wcpn) =

The main result of this note is a characterization of the case of equality in Theorem
1:

Theorem 2 Let (M", w) be a compact Kiihler manifold satisfying BK > 1. If
diam(M, ) = diam(CP", wcpn),

then (M, w) is isometric to (CP", wcpn).

The diameter bound in Theorem 1 is analogous to the classical Bonnet-Myers
diameter bound for compact Riemannian manifolds with positive Ricci curvature.
However, one cannot relax the curvature assumption to a positive Ricci lower bound
in the Kéhler case, as pointed out in [6]: endow C P ! with the round metric of curvature
# and consider the product metric on the n-fold product

M=CP'x .. xCP.

The Ricci curvature of M satisfies Ric = (n + 1)w, but

diam(M) [ n b1
iam = |[—7 > —,

n+1 J2
ifn > 2.

In the Riemannian case, the equality case of the Bonnet-Myers diameter bound is
the well-known maximal diameter theorem of Cheng. Theorem 2 can be regarded as
the Kihler analogue of Cheng’s theorem.

Theorem 2 has been established under additional assumptions in [6,11]. In [6], the
authors construct a totally geodesic C P! with sectional curvature 2 and use this to show
that rigidity holds if [,, " > 7”.In [11], the authors assume that there are compact
connected complex submanifolds P and Q in M with dim(P) 4+ dim(Q) = n — 1
and d(P, Q) = % An eigenvalue comparison theorem is then employed to show

rigidity.
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Our strategy for proving Theorem 2 is to establish a monotonicity formula for a
function arising from Lelong numbers of positive currents on CP”. In [7], the 9-
comparison theorem of [11] is reformulated as asserting the positivity of a certain
(1, 1)-current and this is the current we work with.

2 Lelong numbers and a monotonicity formula on CP"

Let M be a Kéhler manifold. In what follows, we frequently use the real operator

S
d° = ——(0—0).
2
Note that
. 1 —
dd® = —+/—100.
T

If T is a non-negative current on a M such that
T =ddp,
in a neighbourhood of a point ¢ € M, then the Lelong number of T at g is defined as

(T, q) = lim —2Bc@n @& (p(Z),
r—0t IOg r

where z is a holomorphic coordinate in a neighbourhood of g such that z(g) = O.
It is not difficult to see (for instance using the maximum principle) that the quotient
on the right is increasing in r, and hence the limit v(7, g) exists and is moreover
non-negative and independent of the choice of holomorphic coordinates. Note that the
normalization is chosen so that if V is a smooth hypersurface with defining function
f, and [V] denotes the current of integration along V, then by the Poincare-Lelong
equation, [V] = dd€log | f], and so v([V], g) = 1 for any pointg € V.

The following proposition is well known (cf. [2, pg. 164—165]), but since the proof
of our main theorem has a precise dependence on the constants involved, we provide
a proof for the convenience of the reader.

Proposition 3 Suppose T = dd¢ as above in a neighbourhood of g with holomorphic

coordinates 7 = (z', . .., z") such that z(q) = 0. We then have
W(T,q) = lim ;f T Aoy
’ 0+ Th—1p2n-2 Ben (0,1) cr >

where Bcn (0, r) is the ball of radius r around the origin with respect to the Euclidean
metric wcn = @aém%
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Note that quantity on the right above is increasing in r (cf. [4, pg. 390]), and hence
the limit, in particular, exists.

Proof First suppose that ¢ is smooth. We let

1
v(dd€e,0,1) := —/ ddp A iy,
nn—lth—Z Ben (0.1) C

1
wi (@) = / @(1,0)do (9),
§2n—1

O02n—1

where 07,—1 = 27" /(n — 1)! is the volume of the unit sphere in S=1 < C”", and
do is the standard Riemannian measure on S2~! Let S~ be the sphere of radius 7
centred at the origin, do; the Riemannian measure on it and let dp/dv be the normal
derivative of ¢. Differentiating in ¢,

d 1 ad
m(@) _ / % 0ydo
dt 02p—1 Jsen—1 Ot

1 g
= o 1T Jean 3y 4
o2p—117" S?”il v

2 ol
= 7 / Agw (C'"
oon—11 Ben (0,1) n:

2 _ wnfl
SO V=19dp A —Z"
021121 J B 0.0) (n—D!
2 1
= T T / dd o A wéﬁl
om—1(n =D 771 Jp 0.0
v(T,O0,1)

t

Note that in the third line we have the §—Laplacian Ay, and hence the factor of 2 on
application of Green’s formula. Integrating the above equality from r to 1, we obtain
the so-called Jensen-Lelong formula (cf. [2, pg. 163]):

! . dt
m1(@) — pr (@) =/ v(dd“e,0,1) —.

By regularization, the above equality also holds for a general, possibly non-smooth,
plurisubharmonic function ¢. Changing variables s = log ¢ and dividing by logr we
have

pe(p)  p(p) 1 /0
log r logr logr J;

v(dd e, 0,e%)ds,

ogr
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and letting r — 0T we obtain

wr (@)
r—>0+ logr

11m v(T,0,r) =
-0t

Next proceeding as in [2, pg. 165], by Harnack inequality and maximum principle,
we have that

im @ SUP_ 5 e (0,r) P(2) ~ i SUP_ e By (0,r) P(2)
r—0+ logr — r5o0+ log r r—0F log r '

O
We require the following modification, which as far as we can tell, seems to be new.

Proposition 4 Let T be a non-negative current on CP" in a Kdihler class, and q €
CP". Then

1

O(T,q,r) = / T A')
Q)= sin® =2 (r /N/2) JBepn(q.r) cr

is increasing in r. Here Bcpn(q,r) is the ball of radius r with respect to wcpn.
Moreover, we also have that

1i151+®(T,q,r) =v(T,q). 2)

Note that the factor in the denominator is precisely the volume of a ball of radius
r in CP"~! with respect to the Fubini-Study metric ¢ pn—-1 upto a factor of (n — 1)!.

Proof Let us first assume that T is a smooth (1, 1) Kéhler form. We use homogenous
coordinates [&y : & : -+ : & ] on CP" withg = [1 : 0 : --- : 0], and the usual
in-homogenous coordinates Z; = g—(‘) on & # 0. Then

w = ~/—1001og |§|* = /=180 log(1 + |Z|?).
We then compute

1

2n=15in?"=2 (r /\/2)
1

T Adlog(l + |Z|%)
T 2(r/v/2) ./Bcpn (q.r) s

A (dd€log(1 + |Z|%))" 2.

O(T,q,r) =

/ T A (dd® log ¢!
Bcpn(q.r)

Now, it is well known fact that

zd(CP"(q Z) |Eo|2_ 1
V2 €2 1+1Z)>
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For instance exploiting the U (n) symmetry one needs to check this only for CP!
which can be done easily. We then have that for any Z € 9 Bcpr(q, 1),

Z|?

1+ |z

r

dlog(1+1Z%) =
g |Z| 7

d°log | Z|? = sin’ ( )dC log | Z|2.

Putting this back in the formula above we have that
1 . .
(T, q,r) = —_1/ T AdClog|Z|> A (dd€log|Z1P)" 2. (3)
2" Jobepn(an)
So if r| < rp, then integrating by parts we have

1 . _
®(T7qu2)_®(T1Q9rl):F'/ T/\(ddLlog|Z|2)n la
Acpn(q.r1.12)

where Acpn(q, r1,r2) = Bepn(q,r2) \ Bepn(g, r1). Now if ju: CP" —-» CP"Lis
the projection from ¢ to [y = 0], then we have

O(T,q,r)—O(T,q,r) = T A (Wrocpn—1)""1 = 0.

=3
@m)m! Acpn(q,ri,r2)

This proves the monotonicity for smooth currents. For a general positive current 7 we
can proceed by regularization. In fact in our case we can firstletr; < r, < R < 7/+/2.
Then B(qg, R) is contained in Euclidean ball (of radius tan R) with respect to the in-
homogenous coordinates. We can then use the standard convolution to find sequence
of smooth non-negative forms 7; converging weakly to T'. Then since r; < r2 < R,

T 4,r2) = (T, q,r1) = lim (@(T,-, q.1) — O(T}.q. n)) > 0.

If rp = 7/~/2, then the result follows by the monotonic convergence.
Next, to compute the limit, we again first work with smooth Kahler forms. If T is
smooth then in formula (3), we observe that

dC|Z|2 B dC|Z|2

dlog|Z|* = = .
s |Z|? tan(r /+/2)

where notice that d(g, Z) = r implies that

|Z|2 = tan’ (L)

/2

Then we have

1 , .
(T, q,r) = —/ T Ad€log|Z|* A (dd€ log | Z|*)" 2
271 JoBepniq.n
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1
2= lgan2=2(r /4/2)
1
_ T A (dd€|Z)?)"!
21 tan21-2(r /\/2) ~/;3CP" (q.r) -
1

—1
= AN Cl)n
— — Ccn >
" ltzn 2/;<gn(0,l)

where we integrated by parts in the third line and set 1 = tan(r /+/2), and noted that
in terms of the Z-coordinates Bcpr (g, r) = Bcen (0, t). Once again by regularization,
as above, the above formula holds for general possibly non-smooth currents. Letting
t — 07 and applying Proposition 3 we obtain (2). O

/ T Ad°|Z)* A (dd€)Z|7)" 2
Bcpn(g,r)

Example 5 (The “model” case) On CP” consider the current T = /=133 log |£,|*> =
2r[§, =0],andg =[1 : 0 : --- : 0]. We regard this as the model case for reasons
given in Section 3. Then for any r > O,

/ T A w%}}l =21 / w%}}l
Bcpn(g.r) Bcpn(q,r)N{,=0}

—1
=2JT/ wn n—1
B Cp

cpr=1,r
.
= (27)" sin?" 2 (—)
V2

and so ©(T, g, r) = 27 and is independent of r. Note that if we consider a modified

. 1
(T, q,r) = —/ T AL,
(27-[)11—1’2}1—2 Bcpn(q,r) cr

where we have 2"~2 in the denominator as in the usual Euclidean case, then for T

and ¢ as above, we would have that

sin?"~2(r //2)

O(T,q,r) =27 s

It is easy to see that this function is decreasing in r. The increasing property of
®(T, g, r) is crucial for our proof of Theorem 2.

3 Proof of the Theorem

In [7], Lott introduces the following current:

_ d
Top = o+ V=100V, ¥, := log cos> (7”5)
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where p is some fixed point in M and d, is the distance function from p. Note that
a priori, T, p is only defined (and also smooth) away from the cut-locus of p. Using
the Hessian comparison theorem in [11], which holds away from the cut-locus, Lott
observed that T is in fact a global non-negative current if w satisfies (1).

If o =wcpr,and p =[0:0:---: 1], then as observed before
2
0052 <da)(cpn,p) _ |sﬂ|2 i
V2 €]
and so

Toepn.p = N =193 log [£,]%,

is precisely the current considered in Example 5 above.

Proof of Theorem First note that by the proof of the Frankel conjecture (cf. [8,10]), M
is biholomorphic to CP”. So from now on we set M = CP". Let p, g € CP" such

that d,, ,(q) = 7/v/2.
We claim that

v(Tw,p,q) = v(w+nwdd“VY, p) = 2m.

To see this, we fix holomorphic coordinates z := (z', ..., z") near ¢ with z(¢) = 0.
Then C~'iz(x)| < d(g,x) < Clz(x)| for some constant C > 0, and hence it is
enough to show that

SUPB(q.¢) Yo, p

> 2,
e—0F log e -

since w being smooth does not contribute to the Lelong number. It is more convenient
to work with

T dp

2 V2

Then v, = 2logsind,. Note that by the diameter upper bound we have §,(z) > 0
for all z, and that §,, is Lipshitz with constant 1/ /2. Then for any x € CP",

Sp =

1
Sp(x) == —2d(61,x),

and so supp(, o Yw,p < C + 2loge. But then

SUPB(q.¢) Yo.p - C ) s—0T 2
loge ~ loge '

But then by monotonicity, if @ € c[wcpn], putting R = 7/+/2, we have
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1 _ .
2mc = W/(c T A& =0Ty p.q, R) > hrg+ O(Tw.p,q.7)
pPn r—
=v(Tp,p,q) = 2m,

and so ¢ > 1. On the other hand note that the bisectional curvature lower bound gives

Ric(w) > (n + Do,

and so ¢ < 1 since [Ric(w)] = (n + 1)[wcpn], aEd hence ¢ = 1. But then the
lower bound on the Ricci curvature, and the 4/—109-lemma imply that @ must be
Kihler-Einstein and hence isometric to wc pn. O
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