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Abstract - A new method for determing and connect-
ing all the local minima and local maxima of a function
on a compact manifold is given. The method is based on
properties of stability regions associated with the equilib-
ria of the gradient vector field. Applications of the method
include global optimization and nonlinear equation solving.

I. INTRODUCTION

In this paper we give a method for determining the
global optimum of a function on a compact manifold. The
method determines and connects all the local minima and
local maxima of a function on a compact manifold. The
aim here is only to describe the basic ideas of the method.
Detailed proofs of the results are given in [11]. Let C?
denote the set of functions from R* — R whose deriva-
tives upto second order are continuous. Given f and
hi,i =1,...,m, to be functions in C?, define

(1.1)

Assume that § is a compact differentiable manifold. Let
z* € () be given. We consider the problem of connecting all

the local minima and local maxima of f on the set Q@ C Q
defined by

Q =

Q={z€R":h(z)=0,i=1,...,m}.

the connected component of )
containing z*.

(1.2)

Clearly, Q is a-conpvected, compact differentiable manifold.

Further, Q = Q if Q is connected. The following definition
is standard in optimization literature, and is used in this

paper.

Definition 1. Consider
X={zeRr" hi(z) =0,i=1,...,m, (1.3)
yj(z)301j=17"'71}’ ’

where hi,g; € C? Let # € X and J = {j : g;(2) = 0}.
# is said to be regular if the set of gradients, {Vh:(Z),i =
1,...,m}U{vg;(Z) : j € J} is linearly independent.
Assumption A; All z € Q are regular.
The above assumption is generically true. Define the
Lagrangian L : R® x R™ — R of f over  as L(z,A) =
F(@)+ X, Ashi(z). A point Z € Q is said to be a critical

point of f over Q if I\ € R™ such that

(0L, < oL, \\"
(v L(z;,,\) = (55(:”’,\)"“’8_%(1:’,\)) = 0,
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where T' denotes transpose. By Assumption A;, the A
associated with Z is unique.

Let: Z denote the set of all critical points of f over Q;
and, MIN and M AX represent the set of all local minima
and local maxima of f over Q respectively. Assumption
A; allows Langrange multiplier rule to be used and so we
get MIN U MAX C Z. SAD = Z\(MIN U MAX)is
the set of all saddle points.

There have been many attempts to solve the problem of
global optimization. A good survey of global optimization
methods can be found in [1]. Probabilistic methods such as
simulated annealing and its variants also solve the global
optimization problem [8, 2]. Special homotopy methods
for determining all critical points of a polynomial system
are well-known [9]. Once all the critical points are known,
the global minimum is also known. However these meth-
ods have practical value only if the degree of the system
is small. Also the extension of the homotopies to gen-
eral nonlinear systems is unclear. Further, the homotopy
curve is in the complex domain and may consist of sev-
eral components. Deiner [6] uses a homotopy formulation
and gives a recursive construction that yields a one dimen-
sional web containing all the critical points. But he needs
an algorithm to find all the roots of a system of nonlinear
equations. Thus, it is not of much practical value. Canny
[4] has given a provably correct algorithm to connect all
the critical points of a polynomial over a semi-algebraic
set. Apart from its restriction to problems with algebraic
description, Canny’s method is difficult to implement and
has not been proven to be practically useful. Branin [3]
tries to get a single trajectory connecting all the critical
points by alternately maximizing and minimizing the func-
tion. Treccani [12] gives a counterexample where Branin’s
method fails.

In our approach, we form a directed graph G with all
the local minima and local maxima as its vertices. G is a
bipartite graph with MIN and MAX as partitions. An
edge connecting z; to z; has an associated weight vector
which encodes a way of connecting z; to z; via a contin-
uous path on Q. We can obtain the global optimum by
traversing this graph. In the next section we describe the
basic ideas of our method. In section 3 we give some useful
applications of our method.

II. OUR METHOD

We begin with some definitions. Let  be as defined by
(1(2)) For z € §, denote the tangent space of 2 at Z by
Tz(2).

Definition 2. Consider z*, a critical point of f over Q.
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Let: A\* denote the Lagrangian multiplier vector associated
with z*; v2L(z*, A*) denote the Hessian of L with respect
to z at z*; B be a nx(n—m) matrix whose columns form an
orthogonal basis for T,+(Q); H = BTy2L(z*,A\*)B; and
ai,...,0n—m be the eigen values of H. We say that z* is
a hyperbolic critical point if o; £0, i=1,...,(n —m).

Assumption A, All critical points of f over  are hy-
perbolic.

The above assumption holds generically [10]. By com-
pactness of €, there will only be a finite number of hy-
perbolic critical points of f over Q [7]. Two differntiable
manifolds A and B in §2 are said to be transversal if either
T,;(A) + To(B) = T-(Q) V2 € ANB,or ANB=¢.

Let # = dz/dt and consider the following differential-
algebraic systems (in z and A):

<hi,&>=0, i=1,...,m; (2.1)

& =vsL(z,)), <vh,&t>=0, i=1,...,m (2.2)

These systems denote the vector fields in which & is the
projection of — v f(z) and v f(z) onto T;(Q). Given
zo € Q, let ®(t,z0) and ®*(¢,20) denote the solutions
of (2.1) and (2.2) respectively, with z(0) = zo. All so-
lutions of (2.1) and (2.2) which start in Q will remain in
Q and asymptotically reach one of the critical points of f
over Q [5].
Let  be a critical point of f over Q. Define,

W= (z)={reQ: tl_iglo o~ (t,z) =z},

& =-y.L(z, ),

and,
wHz)={zreQ: Jim o*(t,z) = z}.

If € MIN then W~ (z) denotes the region of attraction
of . Similarly, if 2 € MAX, then W+(Z) is the region of
attraction of Z.

Assumption A3 W1(z) and W~ (3) intersect trans-
versally for all Z,5 € Z.

Assumption Az is also generic [5]. Given £ € R” and
€>0,let Be(z) = {2 : ||¢— || < €}, where || || denotes the
euclidean norm in R"*. We define a local maximum y to be
adjacent to a local minimum z if Ve > 032 € B.(z) such
that lim,_,, ®*(¢,2) = y. Similarly a local minimum z is
said to be adjacent to a local maximum y if Ve > 0,3z €
B.(y) such that lims_o, ®(¢,2) = . With z and y as
given above, it is easy to see that y is adjacent to z iff is
adjacent to y. Hence we can simply talk in terms of z and
y being adjacent. As stated before, our aim is to connect
all the local maxima and local minima of f over 2. We
form a directed graph G as follows. The set of vertices of
Gis MINUMAX. An edge is connected from vertex z
to vertex y if & and y are adjacent. The following theorem
is proved in [11]. The proof uses the results in [5? strongly.

Theorem 1. Suppose Assumptions A;, Az and Az
hold. Then G is connected.

Two important remarks should be made here. First,
Theorem 1 may not hold if § is not compact. Second, if
we take Z as the set of vertices and define a corresponding

graph G (an extension of G) then Theorem 1 will hold if
G is replaced by G. In fact, the proof of this modified

theorem is much easier. We have chosen G instead of G
because saddle points are difficult to reach, i.e., only a
set of measure zero starting points in § will reach saddles
under the flow defined by (2.1) or (2.2).

Consider the construction of G. Let z be a local min-

imum and y1,. ..,y be the local maxima adjacent to z.

We ne=d an algorithm A1 which takes 2 as input and for
any given € > 0, outputs y; and perturbations p; such that
lIpi]| < € and limsoo dt(t,z+pi) =y, fori=1,...,L
In other words At connects a local minimum to all its ad-
jacent local maxima. We also need an algorithm A~ which
takes a local maximum as input and outputs all its adja-
cent local minima with the corresponding perturbations.
An exact realization of AT and A~ is hard. For practi-
cal implementation, A* and A~ are replaced by heuristic
approximations. Some powerful heuristics for the imple-
mentation of A* and A~ are described in detail in [11]
and briefly sketched further below.

The construction of G is given by the following concep-
tual algorithm.

Algorithm form_graph(z*)
point).

1:Set Vi=¢,Vo=¢, E=9,V =¢.
Chcose a small € > 0 for use in At and A~.
2: Integrate (2.1) to find & = lim;_.c @~ (¢, 2*).
Set: Vi ={z}, V = {&}
3: While (V # ¢) do
Begin
Pick z € V. Set V = V\{z}.
If z € MIN, apply At to find all its adjacent
local maxima yi, ...,y and corresponding pe-
rturbations py, ..., pr such that lim, ..o 7 (2,
THp) =Y, i = 1,...,1,i|p,-|| < e.

(z* € Qis a given

Set: V=V U[{y1, -, m}\Va};

Vo = Vo U{w1,...,u}; and,

E= EU {(xiylypla 1): R )(z)ylyplyl)}-

Else

If z € MAX, apply A~ to find all the adjacent
local minima 2, ...,z and corresponding pert-

urbations g, ..., ¢, such that lim;_,o ®~ (¢, 2+

g)=z,i=1,...,nlall <e

Set: V=VU[{z,...,2}\W1];

‘/1 = VlU{zl)“'lzr}; a'ndl

E=FEU {(1',211111, _1)) T y(zyZM(Ir, —l)}
End.

At the end of the above procedure we get two partitions of
vertices V; and V5 and an edge-list, E. With probability
one we can say that the Z determined in step 2 is a local
minimum [5]. By Theorem 1, the graph determined by
Vi, Vo and E is the same as G. Thus V) is the set of
local minima and V5 is the set of local maxima of f over
Q. Each ¢ € E is of the form ¢ = (z,y,p,5). s =1
implies that z is a local minimum, y is a local maximum
and lim¢.oo <I>+St,x + p) = y. Similarly s = —1 implies
that z is a local maximum, y is a local minimum, and
limy_co @~ (t,2 +p) = y.

Now we briefly give the ideas behind three heuristics for
the implementation of A~. The ideas for A* are similar.
Let z* € MAX. The aim is to determine a set of “small”
perturbation vectors with the property that, the solutions
of (2.1), starting from the initial conditions generated by
applying these perturbations on z*, will lead to the set
of all adjacent local minimizers of z*. Since a solution of
(2.1) is a solution of (2.2) with ¢ reversed, a study of (2.2)
near z* is helpful.

Let H(z*) and ai,...,Qn_m, be as in Definition 2.
Generically, ai,...,a,_m, are distinct. For i = 1,...,n,
let v; denote the normalized eigen—direction in Ty~ (£2) cor-
responding to the eigenvalue a;. It is a well known fact in
the theory of dynamical systems [10] that a solution of (2.2)
terminating at £* will asymptotically reach z* along one
of the v; axes. This observation leads us to the eigen—azis
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heuristic: choose {d:ﬂv;} as a set of perturbation vectors,
where # is a small positive number. -

Let oy denote the largest element of {a;} (o is the
element nearest to zero). It can be shown [10] that only
a set of measure zero initial conditions in W*(z*) lead
to solutions of (2.2) which approach z* along axes other
than vg. Thus we get the dominating eigen—azis heuristic:
concentrate the choice of perturbation vectors around the
direction, vi. One way of implementing this heuristic is as
follows. Let: Ct denote the cone in T;+(§2) with apex at
z*, apex angle = # (a small amount, say 5 degrees) and
axis along vx; C~ denote the symmetrically opposite cone
at z* with axis along —vi; and NTOL be a positive inte-
ger, say NTOL = 3 (larger the NTOL, better the heuristic
but more is the computational effort). Choose the pertur-
bation vectors from C+ and C~ randomly with a uniform
distribution until NTOL consecutive perturbations fail to
yield a new minimizer.

In the above heuristics, if perturbations are not chosen
carefully along the eigen axes, the solutions of (2.1) can go
to saddle points. So it may be useful to try perturbations
away from the eigen axes. The third heuristic, called as
eigen—orthant heuristic, is based on this observation. We
choose one perturbation vector from the interior of each
of the 2"~™ orthants of the coordinate system for Ty« ()
formed by vy, ..., V. If (n—m) is large then this heuris-
tic is not suitable and it can be replaced by a modification.

In numerical experiments we have found the dominat-
ing eigen—axis heuristic to be the most effective. We also
note that, saddle points are encountered when the above
heuristics are used. However there is no harm in including
them in an extended graph of the extrema.

III. APPLICATIONS

Now we describe some examples in constrained global
optimization and nonlinear equation solving which have
been solved using our method. When applying our
method, we will assume that the generic assumptions A,
A, and A3 always hold.

Constrained global optimization:
global solution of

Consider the

min f(z) st. z€X 3.1)
where f € C? and X is as given by (1.3). Assume: X is
compact and connected and, Vz € X, z is a regular point.
Suppose z° € X is given. To solve (3.1) using the ideas of
section 2, we introduce new varaibles z ='(21,...,%) and
define,

Q={(z,2):z€R*,z€ R,
hi(z)=0,i=1,...,m,
gj(z)+zj2=0,j=1,...,l}.

It is easy to verify that Q is a smooth connected compact
manifold and that, ¥(z,z) € Q, (z,z) is a regular point.
Now we set 2;® = \/—g;(z%) and use form_graph(z°, z°)
to get the set of all the local minima and local maxima of
(3.1). This set contains all the global minima and global
maxima. Suppose the unconstrained global minimum of a
function f is to be found and it is known to exist. This
problem can be tackled by choosing a large radius R, set-
ting X = {z : ||z||> < R?} and solving (3.1).

Example 1. Consider the minimization of the six hump
camel back function defined by

Critical Coordinates Adjacent
Point from
minl | (-0.0898,0.7126) -
max1 (-1.23,-0.1623)
max? (3,1.5) minl
maxa (-1.0137,1.5)
min2 (1.703,0.796)
min3d | (0.0898,-0.7126) maxl1
mind | (-1.6071,-0.5686)
max4 (-3,-1.5) min2
maxd (3,1.5)
max6 (1.23,0.1623) min3
max7 (1.0137,-1.5)
mind (1.607,0.5686) max2
min6 (1.7036,-0.796) max6
max8 (3,-1.5) min6

Table 1: Results of Example 1

f(z) = 4% — 212} + 23/3 + 2122 — 423 + 42},
subject to
-3<2;<3,-15<2,<1.5.

This function is known to contain 6 local minima, two of
which are also global minima. The set of local minima
and maxima obtained by the heuristics described are ad-
equately detailed in Table 1. The last column represents
the critical point to which the critical point in t::~ first col-
umn was found adjacent. The columns in Tables 2 and 3
(obtained in further examples) should also be interpreted
in the same way. The critical point minl ws found by
following the negative gradient field from (0..,0.1). Then
form_graph(minl) yielded the results shown in Table 1.

Example 2. Now consider the minimization of the
Treccani function defined by

(@) = 21 + 42 + 42} + 23,

subject to »
-3<r <£3,-3<22,<3.

This function contains two local minima which are also
global minima. The set of local minima and maxima ob-
tained by the heuristics described are adequately detailed
in Table 2. The critical point minl was found by fol-
lowing the negative gradient field from (0.1,0.1). Then
form._graph(minl) yielded the results shown in Table 2.
Finding all solutions of a system of nonlinear

equations: Consider the solution of
o(z) =0 (3.
where g : R® — R" and each component of g is in C2

Suppose we want to find all the solutions of (3.2) whose
norm is bounded by a fixed number r. In other words, we
have to find

S={z:g(z)=0,2Tz <r?}.
If f(z) = |lg(2)||> and X = {z : 2Tz < r?} then S is

nothing but the set of all global minma of (3.1) with f-
value sero. Thus S can be determined by our method.
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Critical | Coordinates | Adjacent
Point from
minl (0,0) -
max1 (3,3)
max2 (3,-3) minl
max3 (-1,-3)
max4 (-1,3)
min2 (-2,0) max3
maxb (-3,-3) min2
maxb (-3,3)

Table 2: Results of Example 2

Critical Coordinates Adjacent
Point from
minl (0.1,0.1,0.1,0.1) -
maxl 0.0168,-3.971,0.474,0.00157
max2 0.474,0.00157,0.0168,-3.971)
max3 (0.498,0.0028,-0.039,3.968 minl
max4 (3.968,0.498,0.0028,-0.039
maxb | (-3.971,0.474,0.00157,0.0168)
sadl {-0.039,3.968,0.498,0.0028)
min2 (-0.9,-0.9,-0.9,-0.9) max]
max6 | (0.00157,0.0168,-3.971,0.474) min2

Table 3: Results of Example 3

Example 3. Consider the problem of finding all the
roots of the following system of nonlinear equations.

(zy—0.1)" + 22— 0.1

g1 =

g2 = (z2-01)%+23-0.1
gs = (:c3—0.1)2+:z:4—0.1
ga = (24—01) 42z, -01

The system has two roots. The starting point used was
(0.1,0.2,0.3,0.4) and r=4. The local minima and maxima
of f(:c% = |L5[]‘(:c)||2 obtained by the heuristics are given
in Table 3. The critical point minl was found by follow-
ing the negative gradient field from (0.1,0.2,0.3,0.4). Then
form_graph(min1) yielded the results shown in Table 3. It
is easy to verify that both the local minima are the roots
of the given set of equations.
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