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Recent observations of several peculiar over- and underluminous type Ia supernovae infer indirect
evidence for the violation of the Chandrasekhar mass limit by suggesting the existence of super- and sub-
Chandrasekhar limiting mass white dwarfs. In an attempt to explain these phenomena in the context of
general relativistic extensions, we study these objects in Palatini fðRÞ gravity. We obtain the super- and
sub-Chandrasekhar limiting masses as well as the dynamical instability criteria for white dwarfs in the
given gravitational theory. We further demonstrate that the conventional positivity condition ∂M=∂ρc > 0

withM being the WD’s mass with central density ρc is also a valid criterion for stability in Palatini gravity.
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I. INTRODUCTION

It is well known that general relativity (GR) is by far the
most adequate theory of gravitation. It successfully fulfills
the shortcomings of Newtonian gravity to explain the
various interesting phenomena like perihelion precession
of Mercury, gravitational lensing, the physics of compact
objects, and even predicts the gravitational waves [1].
Despite its triumphs, some recent cosmological observa-
tions and corresponding theoretical arguments indicate the
need for replacing GR with a more consistent theory. Quite
recently, the study of observational cosmology provides the
evidence that the Universe has undergone two phases of
acceleration; the first one is the exponential expansion of
the early Universe, called inflation [2,3], and the second
phase occurs at a later time of its evolution [4–6]. The
ΛCDM model, which is derived from GR with the cold
dark matter and the cosmological constant introduced, was
then adequately able to explain these observations at a large
scale. Nevertheless, the model lacks an explanation for the
cosmological constant problem and could not explain the
small scale structures efficiently [7]. Another questionable
issue is the lack of an effective quantum theory of gravity.
The two incredible theories of modern times, GR and
quantum field theory, successfully dominates their domains
of gravitational noninertial systems and small-scale
regimes, respectively. One of the reasons for not being
able to unify these two theories is that the quantum
gravitational effects become dominant only at the Planck

scale due to the weak interaction of gravity. Therefore,
these issues serve as a few of the motivations to go beyond
GR, towards the extended theories of gravity [8,9].
Over the years, there have been proposals for a gener-

alized and modified theory of gravity such as the scalar-
tensor theory [10,11]. A simple form of scalar-tensor theory
is the fðRÞ gravity [12] with R being the scalar curvature,
which is based on generalizing the Lagrangian of the
Einstein-Hilbert action. Instead of using an action linear in
R as in GR, fðRÞ theory considers an action in which the
Lagrangian density is an arbitrary function of R. Based on
the form of fðRÞ and the values of the model parameters,
this theory has been extensively used to study various
phenomena, including inflation [13–15], dark energy prob-
lem [16,17], gravitational waves [18,19], compact objects
like neutron stars [20–24], and also the recently inferred
super- and sub-Chandrasekhar limiting mass white dwarfs
(WDs) [25–28]. The so-called metric approach to fðRÞ
gravity, as studied in the works mentioned above, leads to
the fourth-order field equations for the metric,1 which can
impose some practical difficulties to work with. Moreover,
as shown by Chiba [29], this theory might not be com-
patible with the solar system test if the scalar field is very
light. Furthermore, the metric fðRÞ gravity is flawed with
the scalar curvature instability, which can change the
gravitational field of a body greatly [30].
On the other hand, there is another approach to the fðRÞ

gravity, called Palatini formalism. In this framework, the
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1However, when transformed to the scalar-tensor representa-
tion, one deals with the second order differential equations for the
metric, and additional equations for the Ricci scalar R, carrying
dynamical properties of this object.
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assumption on the metric dependence of the connection is
waived; therefore, one deals with the pair of independent
objects (metric gμν, connection Γα

βγ) [31,32]. Such an
approach yields a second-order field equation that is not
only compatible with the solar system test [33] but also
gives the correct Newtonian limit [34]. Unlike the metric
formalism, no such instabilities, as mentioned in [30], arise
in the Palatini approach. This is because the additional
scalar degree of freedom arising due to the generalization of
the Lagrangian density is not dynamical in nature [35]. In
metric fðRÞ gravity, the square of the mass of scalar mode is
given bym2 ¼ 1=3ff0ðR0Þ=f00ðR0Þ − R0gwithR0 being the
background Ricci scalar [36]. Hence, m2 might be negative
depending on the fðRÞ form and values of model parameter,
which gives rise to the ghost mode. In Palatini gravity, such a
massive dynamical scalar mode does not exist.
However, there have been some disagreements in the

past regarding the Newtonian limit of Palatini fðRÞ gravity.
According to Meng and Wang [37], the correct Newtonian
limit is always achieved in those models where the action
contains inverse powers of R and the weak field expansion
yields a de Sitter vacuum solution. However, it was shown
that a fðRÞ theory with a pole of order n in R ¼ 0 and
f00ðR0Þ ≠ 0 does not give a good Newtonian limit [38].
They further proposed that those fðRÞ theories with a
singular fðRÞ, satisfying the condition f00ðR0Þ ¼ 0, are
worthwhile to study. These disagreements were settled in
[39], where it was shown that the Palatini gravity models
with negative powers of R, as well as their generalizations
those include the positive powers, give rise to correct
Newtonian limit, provided the coefficients of these powers
are sufficiently small. Since the Palatini approach is more
general and comparatively easier to work with, several
phenomena are being studied using this model recently.
Cosmological theories based on the modified gravity using
Palatini variational principle has been used to study
inflation and cosmic acceleration [31,40–47]. Similarly,
Palatani fðRÞ gravity has been used to study neutron stars
and the alterations in the maximum mass limit of WDs
[48–50].
Depending on the battle between self-gravity and

thermodynamics, the end state of a star can either lead
to the formation of a compact object like WD, neutron star,
black hole, or it may lead to an explosion dispersing all
matter into space and leaving behind nothing. WDs are
compact stellar remnants, supported by the electron degen-
eracy pressure [51]. The end state of a progenitor star with
mass ð10� 2ÞM⊙ is a WD [52]. In WDs, the outward
electron degeneracy pressure balances the inward gravita-
tional force, which arises due to the Pauli exclusion
principle, and thereby it maintains a stable equilibrium
condition. However, beyond a certain mass, the electron
degeneracy pressure is no longer sufficient to stop the star
from collapsing under gravity. Taking into account rela-
tivistic effects into the degenerate electron equation of state

(EoS), Chandrasekhar made the remarkable discovery that
the mass of a nonrotating and nonmagnetized WD cannot
exceed approximately 1.44 M⊙ [53]. This is known as the
Chandrasekhar mass limit. If a WD in a binary system
slowly accretes matter from the companion such that its
mass is over this mass limit, the pressure balance no longer
sustains. In such a situation, the WD explodes releasing a
tremendous amount of energy in the form of a type Ia
supernova (SN Ia) [54]. Due to this fixed critical mass, the
peak luminosities of SNe Ia are consistent, and thus, they are
often used as a standard candle [55]. However, several
overluminous [56–59] and underluminous [60–63]
SNe Ia have been observed lately, which are proposed to
be originated from super- and sub-Chandrasekhar mass
WDs, respectively. This suggests that the Chandrasekhar
mass limit of WDs may not be unique. Over the years, it has
been extensively studied on the grounds of modified gravity
[25,26,49,64]. Earlier Mukhopadhyay and collaborators
used the metric formalism of fðRÞ gravity [25,26], and by
choosing suitable values of the model parameter, they were
able to obtain super- as well as sub-Chandrasekhar limiting
mass WDs. On the other hand, some of us obtained the
modified hydrostatic equilibrium equations for polytropic
WDs using Palatini fðRÞ gravity in theNewtonian limit [49],
both in the Einstein and Jordan frames, and studied the mass
limit ofWDs for variousmodel parameters. In addition, other
modified gravity theories like the fðR; TÞ gravity theory has
been used to study the equilibrium configuration as well as
the physical properties of WDs [65,66]. This model was
again able to provide an explanation to the violation of the
Chandrasekhar mass-limit in WDs.
In this paper, we consider the Newtonian limit of Palatini

fðRÞ gravity to study the mass–radius relation of the WDs
and their corresponding stability analysis in the case of
degenerate EoS for electrons. We also check whether the
standard stability criterion is valid for the considered model
of gravity.
This paper is organized as follows. In Sec. II and Sec. III,

we recall the formalism of Palatini fðRÞ gravity in the
Einstein as well as the Jordan frames, and the hydrostatic
equilibrium equations for the WDs in the Newtonian
regime in both these frames, respectively. We also discuss
the modified equations for radial oscillations in order to
examine the stability of the WDs in this gravity model. In
Sec. IV, we present a discussion on the numerical results
concerning the mass-radius relations and stability analysis
of the modified gravity induced WDs. We conclude our
work in Sec. V while in the Appendix, we recall the
relativistic stellar equations.

II. PALATINI f ðRÞ GRAVITY

Let us begin by briefly describing Palatini fðRÞ gravity
and the corresponding field equations. As already men-
tioned, this formalism considers the metric and the con-
nection to be independent of each other. Therefore, to
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obtain the field equations, the action must be varied with
respect to both variables. Even though the form of the
action resembles fðRÞ gravity in the metric formalism, the
Riemann and Ricci tensors no longer depend on the metric;
instead, they are constructed with the independent con-
nection. More specifically, one can denote Rμν ≡ RμνðΓÞ,
where Γ represents the connection. We now recall the main
properties of the so-called game of frames [67] and the
current interpretation, and therefore, for the reader’s con-
venience, we provide the most relevant equations in
both cases.

A. Jordan frame formulation

The generalized action in Palatini fðRÞ gravity is
given by

S ¼ 1

2κ2

Z ffiffiffiffiffiffi
−g

p
fðRÞd4xþ Smðgμν;ψÞ; ð2:1Þ

where κ2 ¼ −8πG=c4, g ¼ detðgμνÞ, and Sm is the matter
action which depends on the metric gμν and matter field ψ ,
and is independent of the connection. The Ricci scalar
appearing in Eq. (2.1) is built of two structures, gμν and Γ,
that is, R ¼ gμνRμνðΓÞ.
Varying Eq. (2.1) with respect to gμν gives the following

modified field equations [68]:

f0ðRÞRμν −
1

2
fðRÞgμν ¼ κ2Tμν; ð2:2Þ

where f0ðRÞ ¼ dfðRÞ=dR, while Tμν is the energy-
momentum tensor, given by

Tμν ¼ −
2ffiffiffiffiffiffi−gp δSm

δgμν
;

which is further assumed to have the perfect-fluid form.
On the other hand, the result of variation with respect to Γ
can be written in the following form:

∇λð
ffiffiffiffiffiffi
−g

p
f0ðRÞgμνÞ ¼ 0; ð2:3Þ

where ∇λ is the covariant derivative ruled by Γ. Defining a
new metric tensor ḡμν ¼ f0ðRÞgμν allows us to rewrite
Eq. (2.3) as

∇λð
ffiffiffiffiffiffi
−ḡ

p
ḡμνÞ ¼ 0; ð2:4Þ

providing that the connection Γ is Levi-Civita with respect
to ḡμν. It results that the independent connection is an
auxiliary field which can be integrated out. Therefore, all
physical degrees of freedom are given by the metric tensor
g. It is quite evident that one may obtain the standard GR
equations by choosing the linear fðRÞ. Then it will turn

out from Eq. (2.3) that Γ is the Levi-Civita connection of
the metric g.
In order to present some useful interpretation of the field

equations, taking the trace of Eq. (2.2) with respect to g, we
obtain

f0ðRÞR − 2fðRÞ ¼ κ2gμνTμν ¼ κ2T; ð2:5Þ

which provides the structural equation (T is the trace of the
energy-momentum tensor). It is worthwhile to note that,
unlike metric formalism, no kinetic term, such as □f0ðRÞ,
arises in Eq. (2.5). This ensures that the oscillatory mode
appearing in the metric formalism does not exist in the
Palatini approach. In the case of vacuum or pure radiation
(T ¼ 0), the theory reduces to the Einstein vacuum solution
with the cosmological constant, independently of the fðRÞ
form [34].
In this paper, we will work with the simplest extension of

the GR—that is, with the Starobinsky model [69], given by

fðRÞ ¼ Rþ αR2; ð2:6Þ

where αR2 is the higher-order correction to the GR with α
being the model parameter. When its sign is specified, it
will provide both the regimes of mass limit in WDs.

B. Scalar-tensor representation and Einstein frame

Let us now briefly describe the Palatini gravity in the
Einstein frame. Firstly, we use the fact that the theory
possesses a scalar-tensor representation; however, the
scalar field appearing there, as already discussed, does
not carries any extra degree of freedom [70,71]. Provided
f00ðRÞ ≠ 0,2 the action in Eq. (2.1) can be rewritten in a
mathematically equivalent form, given by [72–74]

Sðgμν;Γλ
ρσ; χÞ ¼

1

2κ2

Z
d4x

ffiffiffiffiffiffi
−g

p ½f0ðχÞðR − χÞ þ fðχÞ�

þ Smðgμν;ψÞ; ð2:7Þ

where χ is a new scalar field. Redefining it via Φ ¼ f0ðχÞ
with the constraint χ ¼ R, one may rewrite action (2.7) into
the form of Palatini-Brans-Dicke gravity as [74]

Sðgμν;Γλ
ρσ;ΦÞ¼ 1

2κ2

Z
d4x

ffiffiffiffiffiffi
−g

p ½ΦR−UðΦÞ�þSmðgμν;ψÞ;

ð2:8Þ

where UðΦÞ ¼ χðΦÞΦ − fðχðΦÞÞ. Performing now the
conformal transformation of the metric g, one writes the
action in the Einstein frame as

2The linear Lagrangian is excluded in that case.
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Sðḡμν;ΦÞ ¼ 1

2κ2

Z
d4x

ffiffiffiffiffiffi
−ḡ

p ½R̄ − ŪðΦÞ� þ SmðΦ−1ḡμν;ψÞ;

ð2:9Þ

for which the field equations are obtained by variation with
respect to ḡ and Φ,

R̄μν −
1

2
ḡμνR̄ ¼ T̄μν −

1

2
ḡμνŪðΦÞ; ð2:10Þ

0 ¼ ΦR̄ − ðΦ2ŪðΦÞÞ0; ð2:11Þ

where prime denotes here the derivative with respect to Φ.
Moreover, it can be shown that the following relations are
true: for the conformal metric ḡμν ¼ gμνΦ, one is equipped
with R̄μν¼Rμν, R̄¼ ḡμνR̄μν ¼Φ−1R, ḡμνR̄ ¼ gμνR, ŪðΦÞ ¼
UðΦÞ=Φ2, and T̄μν ¼ Φ−1Tμν. The structural equation in
this case is given by

ΦŪ0ðΦÞ þ T̄ ¼ 0; ð2:12Þ

where T̄ ¼ ḡμνT̄μν and again it demonstrates the non-
dynamical aspect of Φ [recall that ΦðRðΓÞÞ]. This repre-
sentation is useful as it allows us to study particular
physical problems represented by simpler equations, whose
solutions afterwards can easily be transformed to the
physical Jordan frame [71,75].

III. STELLAR STRUCTURE EQUATIONS AND
CORRESPONDING STABILITY ANALYSIS

In this section, we will recall the hydrostatic equilibrium
equations in the Newtonian regime, given in the Einstein
and Jordan frames. The full relativistic equations used here
were obtained in [76], and for the reader’s convenience, we
recall them in the Appendix. Thereafter, we derive the
modified radial oscillation equations for the stability
analysis of the Palatini fðRÞ gravity induced WDs.

A. Stellar structure equations

The Newtonian limit approximation is applicable to
systems exhibiting weak gravitation and slowly varying or
static gravitational field. In order to studyWDs inNewtonian
regime, one considers pðrÞ ≪ ρðrÞ, 4πr3pðrÞ ≪ MðrÞ and
2GMðrÞ=r ≪ 1q, where pðrÞ is the pressure, ρðrÞ is the
density, and MðrÞ is the mass of the object at a radius r.
Therefore, in the Einstein frame, from Eqs. (A5) and (A6),
the pressure-balance and mass-estimate equations are given
by [77]

dp
dr̃

¼ −
GMρ

Φr̃2
ð3:1Þ

and

dM
dr̃

¼ 4πr̃2ρ: ð3:2Þ

Let us comment thatp and ρ are the physical quantities,while
only r̃ indicates that we are dealing with the Einstein frame’s
radial coordinate (see detailed discussion in [77–79]). The p
and ρ in the case of our WDs model are related to each other
by the Chandrasekhar EoS for degenerate electrons, given
by [53]

p ¼ πm4
ec5

3h3

h
xFð2x2F − 3Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2F þ 1

q
þ 3sinh−1xF

i
;

ρ ¼ 8πμemHðmecÞ3
3h3

x3F; ð3:3Þ

where xF ¼ pF=mec, pF is the Fermi momentum, me is the
mass of electron, h is the Planck’s constant, μe is the mean
molecular weight per electron, and mH is the mass of
hydrogen atom. For our work, we choose μe ¼ 2 indicating
the carbon-oxygen WD. Moreover, in the Newtonian limit,
T ≈ −ρc2. Therefore, from Eq. (2.6), Φ ¼ f0ðRðTÞÞ
becomes

Φ ¼ 1þ 2ακ2c2ρ: ð3:4Þ

Thus, Eqs. (3.1) and (3.2) are the hydrostatic balance
equations for WDs in the Newtonian limit in the
Einstein frame.
One can also obtain the corresponding hydrostatic

balance equations in the Jordan frame, through the con-
formal transformation, r̃2 ¼ Φr2, which are given by [49]

dp
dr

¼ −
GMρ

Φ3
2r2

�
1þ 1

2
r
Φ0

Φ

�
ð3:5Þ

and

dM
dr

¼ 4πr2ρΦ3
2

�
1þ 1

2
r
Φ0

Φ

�
: ð3:6Þ

These are the Newtonian hydrostatic equilibrium equations
in the Jordan frame. Here, prime (‘ 0’) is the derivative with
respect to the coordinate r while Φ0 can be obtained
from Eq. (3.4).

B. Modified equations for radial oscillations

In the Newtonian gravity, a nonrotating, nonmagnetized
finite temperature star, whose matter content is given by
polytrope (with the polytropic parameter γ), is unstable
against adiabatic radial perturbations if γ < 4=3. Later,
Chandrasekhar showed that due to the strong gravity in the
framework of GR, instability may arise at a larger value of γ
[80]. Similarly, stability analysis for compact stars has been
done in the framework of modified gravity theory [81,82],
demonstrating that this critical value of γ differs, and also

SARMAH, KALITA, and WOJNAR PHYS. REV. D 105, 024028 (2022)

024028-4



depends on the model’s parameter [83] in the case of
nonrelativistic regime. In more general context, it was also
shown that in the case of a relativistic star, one deals with
the similar to GR stability condition, that is, it depends on
an EoS, but also on the fðRÞmodel in Palatini gravity [76].
Let us nowdiscuss in details the stability problem.A star is

stable under radial perturbations if the frequencies of normal
modes are real. However, Pretel et al. considered the same
stability equations for GR and solved them to examine the
stability of neutron stars in modified gravity [82]. Moreover,
in GR, ∂M=∂ρc > 0 provides the necessary stability cri-
terion, whereM is the mass of and ρc is the central density of
the star. In this work, we will also examine whether this
criterion is valid for Palatani fðRÞ gravity with the given
EoS (3.3). To do so, one needs to derive and solve the
modified equations for radial oscillations. Since we are
interested in the WDs in the Newtonian regime, we do not
take the relativistic effects into account.
When a nonrotating, spherically symmetric star in

hydrostatic and thermal equilibrium is subjected to a small
radial perturbation, it will cause oscillations in the radial
direction such that a fluid element located at r0 will be
displaced to r0 þ δrðt; r0Þ maintaining its spherical sym-
metry. Here, δr is the Lagrangian perturbation of the WD’s
radius. In our discussion of stability analysis, the radial
oscillations are assumed to be adiabatic in nature, such that
any heat exchange mechanism is ignored [51,84]. Even
though such an adiabatic approximation significantly
simplifies the analysis and gives accurate values of ampli-
tude within the star, it does not provide any information
about the thermodynamics of the star.
The radial oscillation equations can be derived using the

Eulerian as well as the Lagrangian formalisms. The
Eulerian perturbation ðΔfÞ and the Lagrangian perturba-
tion ðδfÞ of a variable f are related by

δf ¼ Δf þ df0
dr

δr: ð3:7Þ

In general, Lagrangian formalism is convenient while
dealing with the systems bearing 1 degree of freedom.
Since we assume spherically symmetric WDs in this work,
we derive the equations for radial oscillations utilizing the
Lagrangian formalism. Considering small oscillations
about the equilibrium position, the perturbed radius
r̃ðt; r̃0Þ, density ρðt; r̃0Þ, and pressure pðt; r̃0Þ are given by

r̃ðt; r̃0Þ ¼ r̃0

�
1þ δr̃ðt; r̃0Þ

r̃0

�
; ð3:8Þ

ρðt; r̃0Þ ¼ ρ0

�
1þ δρðt; r̃0Þ

ρ0

�
; ð3:9Þ

pðt; r̃0Þ ¼ p0

�
1þ δpðt; r̃0Þ

p0

�
; ð3:10Þ

where δr̃ðt; r̃0Þ, δρðt; r̃0Þ, and δpðt; r̃0Þ are the Lagrangian
perturbation in the radius, density, and pressure, respec-
tively. The subscript zero in the above relations denote the
quantities in the static state. Moreover, we assume the
perturbations to be small enough such that, jδr̃=r̃0j ≪ 1,
jδρ=ρ0j ≪ 1, and jδp=p0j ≪ 1, and hence, we can apply
the linear theory by preserving only the linear terms,
neglecting the higher-order ones. Since the adiabatic
approximation is assumed, the mechanical structure of
the star can be described by the mass-radius relation. Now,
the mass conservation and the conservation of momentum
equation are given by

∂M
∂r̃ ¼ 4πr̃2ρ ð3:11Þ

and

ρ
d ⃗ṽ
dt

¼ −ð∇̃pþ ρ∇̃ψÞ; ð3:12Þ

where ⃗ṽ is the fluid velocity and ψ is the gravitation
potential such that, ∇̃p ¼ −ρ∇̃ψ in equilibrium. Note that
the “Tilde” in the above equations denote the quantities in
the Einstein frame and d=dt is given by

d
dt

≡ ∂
∂tþ ðv⃗ · ∇̃Þ:

Since the quantities are now functions of both r0 and time t,
we explicitly introduce partial derivatives. Perturbing
Eqs. (3.11) and (3.12) and replacing r̃, ρ, p with their
perturbed values from Eqs. (3.8)–(3.10), we obtain

r̃0
∂ðδr̃=r̃0Þ

∂r̃0 ¼ −
�
3
δr̃
r̃0

þ δρ

ρ0

�
ð3:13Þ

and

r̃0ρ0

�
δ̈r̃0
r̃0

�
¼ −

∂p0

∂r̃0
�
δp
p0

þ 4
δr̃
r̃0

þ δΦ
Φ0

�
− p0

∂ðδp=p0Þ
∂r̃0 ;

ð3:14Þ

where δΦ is the Lagrangian perturbation in Φ. Let us
consider that the perturbations behave as a plane wave,
such that a quantity f can be written as

δfðt; r̃0Þ
f0

¼ δfðr̃0Þ
f0

eiσt; ð3:15Þ

where σ is the characteristic frequency. Accordingly,
Eqs. (3.13) and (3.14) become

dζ̃
dr̃

¼ −
1

r̃

�
3ζ̃ þ 1

Γ
δp
p

�
ð3:16Þ
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and

dðδp=pÞ
dr̃

¼ −
1

p
dp
dr̃

�
δp
p

þ 4ζ̃ þ δΦ
Φ

þ σ2r̃3Φζ̃

GM

�
; ð3:17Þ

where

δΦ
Φ

¼ 2κ2c2αρ
ΦΓ

�
δp
p

�
: ð3:18Þ

Here, ζ̃ ¼ δr̃ðr̃0Þ=r̃0 and Γ ¼ ð∂ lnp=∂ ln ρÞ. We have
introduced ordinary spatial derivatives in Eqs. (3.16) and
(3.17) because of the r̃-dependent variables, and we have
also skipped the subscripts zero for simplicity as all the
quantities appearing are in their static configuration. Thus,
Eqs. (3.16) and (3.17) are the two linear, first-order, time-
independent, coupled differential equations governing the
radial oscillation in Palatani fðRÞ ¼ Rþ αR2 gravity in the
Newtonian regime. It is quite evident that the above
equations reduce to the Newtonian radial oscillation equa-
tions if Φ ¼ 1.
We also obtain the corresponding modified equations for

radial oscillations in the Jordan frame by following the
conformal transformation r̃2 ¼ Φr2. Since ζ̃ is related to ζ
from the Jordan frame by the relation,

ζ̃ ¼ ζ þ 1

2

δΦ
Φ

; ð3:19Þ

the corresponding radial oscillation equations are

dζ
dr

þ 1

2

dðδΦ=ΦÞ
dr

¼ −
1

r

�
1þ r

2

Φ0

Φ

��
3

�
ζþ 1

2

δΦ
Φ

�
þ 1

Γ
δp
p

�

ð3:20Þ

and

dðδp=pÞ
dr

¼−
1

p
dp
dr

�
δp
p
þ4ζþ3

δΦ
Φ

þσ2r3Φ5
2

GM

�
ζþ1

2

δΦ
Φ

��
:

ð3:21Þ

These two equations must be solved simultaneously with
the appropriate boundary conditions in order to determine
the frequencies of normal modes. Since we are dealing with
metric theory, that is, the independent connection is not
coupled to the matter fields in Eq. (2.1), the particles are
moving along the connection given by g; hence, the
physical variables are given in the Jordan frame only.
However, we demonstrate in the next section that the
solutions in both frames do not quantitatively differ because
of slight modifications introduced by the theory.

IV. RESULTS AND DISCUSSION

In this section, we present the results obtained by solving
the stellar structure equations together with the modified
radial oscillation equations derived in the previous section.
Our numerical solutions have a form of the mass-radius
relation of the WDs and their corresponding stability
analysis. Although the Jordan frame is the physical one,
we present our results in both frames, demonstrating similar
behavior of the curves.

A. Mass-radius relations in Palatini f ðRÞ gravity
In order to obtain the interior solution of the WD, we

numerically solve the stellar structure equations (3.1) and
(3.2) for the Einstein frame, while Eqs. (3.5) and (3.6) for the
Jordan frame along with the Chandrasekhar EoS, given by
Eq. (3.3). The boundary conditions used at the center of the
WDareMðr ¼ 0Þ ¼ 0 andρðr ¼ 0Þ ¼ ρc and on the surface
ρðr ¼ RÞ ¼ 0withR being the radius of theWD. In order to
avoid any violation of the conventional physical laws, α is
chosen in such away that it is well within the bound given by
[85] (see also [86]), that is, jαj≲ 5 × 1015 cm2. Let us notice
that in the case of neutron stars (since the curvature is higher
in high density regime), the bound should be reduced to
∼1012 cm2 [87], while when electric forces taken into
account, to∼109 cm2 in the case of Palatini theories [88,89].
Figure 1 illustrates the variation ofR and ρc with respect

toM of WDs for different values of α in the Einstein frame.
The different mass-radius curves indicate that the interior
structure of the WDs with high density gets modified due to
the influence of Palatini fðRÞ ¼ Rþ αR2 gravity. We know
that the Starobinsky model of fðRÞ gravity reduces to GR
on choosing α ¼ 0. This is also evident from Fig. 1, where
the mass-radius curve corresponding to α ¼ 0 mimics the
Newtonian case, with a mass limit of about 1.44 M⊙.

FIG. 1. Upper panel: mass-radius relation, Lower panel: varia-
tion of mass with respect to ρc for WDs for different values of α in
the Jordan frame in Palatini fðRÞ gravity. In the label, the values
of α are shown in cm2 unit.
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Moreover, all the curves merge at low densities, indicating
that the effect of modified gravity is negligible in this
regime. This is because R is nearly proportional to the
density, and hence, in the low-density regime, R2 or any
other higher-order corrections do not contribute signifi-
cantly. However, as ρc increases beyond 109 g cm−3, the
curves deviate from the Newtonian case due to the
increased contribution of the αR2 term; thereby showing
the effect of modified gravity on the mass-radius relation of
WDs at the high-density regime. For the case of α < 0, the
curves follow the usual trend of increasing mass with
increasing ρc and overshoot the Chandrasekhar mass-limit,
thus indicating super-Chandrasekhar WDs. As evident
from Fig. 1, the mass increases with increasing α and
can go beyond 2 M⊙ for high α, entering already the mass
range reserved usually for neutron stars. On the other hand,
for α > 0, as ρc increases, the mass increases to a maximum
value, and then the curve starts turning back, revealing the
sub-Chandrasekhar limiting mass WDs. In the next sub-
section, we show that the portion of the curve corresponds
to a decrease in the mass with increasing ρc of the WDs is
unstable. Thus, in this case, the limiting mass is the
maximum mass attained before the curve starts receding.
From Fig. 1, we see that the mass limit decreases further
from the Chandrasekhar mass-limit for more positive
values of α.
The mass-radius relations, as well as the variation of

mass with ρc in the Einstein frame, are plotted in Fig. 2.
Since it is evident from Eq. (3.4) that for WDs, Φ ≈ 1,
applying the conformal transformation r̃2 ¼ Φr2 will not it
change too much, and therefore we obtain almost similar
curves as in Fig. 1. Moreover, the mass-radius curves in
metric formalism are given by Das and Mukhopadhyay
[26]. It is evident that for fðRÞ ¼ Rþ αR2 gravity, the
results (i.e., the mass-radius curves) are similar in metric or
Palatini formalisms. This is because Palatini and metric are

just two different formalisms to explain the same phenom-
ena. Hence, even if the modified stellar structure equations
look different, they eventually result in similar mass-radius
curves.

B. Stability analysis of the modified
gravity induced white dwarfs

Let us now study the stable and unstable branches of the
mass-radius curves by stability analysis of the WDs in
Palatini fðRÞ gravity. As mentioned in Sec. 33.2, a star in
hydrostatic equilibrium may either be stable or unstable
against small radial perturbations. According to GR, a
branch is considered to be stable if it follows ∂M=∂ρc > 0,
which is also known as the positivity condition—a neces-
sary condition for stability [51,90]. It ensures that the stars
whose mass increases with the increase in ρc are stable,
whereas the stars with decreasing mass with the increase in
ρc are unstable [91]. We want to examine whether this
condition is also valid in the considered theory of gravity
with the given equation of state. In other words, whether the
WDs on the receding branch of the mass-radius curves in
Figs. 1 and 2 are unstable or not under radial perturbations.
To do so, one needs to solve the modified radial oscillation
equations derived in Sec. III B with appropriate boundary
conditions in both the Jordan and the Einstein frames and
look for the normal modes of frequencies that are real. The
sufficient condition for stability in modified gravity is
σ2 > 0, where σ is the characteristic frequency of the
normal mode [see Eq. (3.15)]. This is so because the
perturbations travel as plane waves ð∼eiσtÞ and if σ2 < 0,
i.e., σ is imaginary, the amplitude of oscillations may grow
in time, making the star unstable.
We now numerically solve the modified equations for

radial oscillations (3.16) and (3.17) for the Einstein frame,
and Eqs. (3.20) and (3.21) for the Jordan frame. In the case
of Einstein frame, the boundary conditions on the surface
of the WD, i.e., at r̃ ¼ R, are given by

ζ̃ðr̃ ¼ RÞ ¼ 1;

δp
p

þ 4ζ̃ þ δΦ
Φ

þ σ2R3Φζ̃

GM
¼ 0: ð4:1Þ

The latter condition makes sure that dðδp=pÞ=dr̃ in
Eq. (3.17) is finite everywhere. Moreover, in order to
ensure the physical regularity of the solutions, ζ̃ and dζ̃=dr̃
in Eq. (3.16) must be finite at the center, making the term in
the parenthesis of rhs equal to 0. Thus, the boundary
condition at the center of the star, i.e., at r ¼ 0, is given by

3ζ̃ þ 1

Γ
δp
p

¼ 0: ð4:2Þ

In the same way, we also find the appropriate boundary
conditions in the Jordan frame. At the surface, the follow-
ing conditions need to be satisfied:

FIG. 2. Same as Fig. 1 except here the Einstein frame is
considered.
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ζðr ¼ RÞ ¼ 1;

δp
p

þ 4ζ þ 3
δΦ
Φ

þ σ2R3Φ5
2

GM

�
ζ þ 1

2

δΦ
Φ

�
¼ 0; ð4:3Þ

whereas at the center, the boundary condition is given by

3

�
ζ þ 1

2

δΦ
Φ

�
þ 1

Γ
δp
p

¼ 0: ð4:4Þ

We now integrate the radial oscillation equations from
the surface to the center of the stars using these boundary
conditions for a range of ω2. Here, ω2 is the square of the
dimensionless frequency, given by ω2 ¼ σ2R3=GM. The
values of ω2 which satisfies Eqs. (4.2) and (4.4) in the
Einstein and Jordan frame, respectively, are the correct
normal mode frequencies for the radial oscillations.

In Figs. 3 and 4, the normal mode frequencies correspond
to the minima in each curve. If the minima occur for
ω2 < 0, that particular WD is unstable under radial
perturbation and usually does not exist in nature. As we
have discussed in the previous section, the WD structure is
not much different in Einstein and Jordan frames. Hence, the
normal mode frequencies are also almost the same in both
the frames. It is evident from the figures that the WDs
up to ρc ¼ 2 × 109 g cm−3 are all stable, mimicking the
Newtonian case. However, at high enough densities due to
the increased contribution ofαR2 term,modified gravitymay
render extra stability to the WD or make the WD unstable
under radial perturbations. Considering the case of α ¼
4 × 1015 cm2 in Figs. 3(a) and4(a), we see that theWDswith
ρc ≳ 1010 g cm−3 are unstable as the first minimumoccurs at
ω2 < 0. From the mass–radius curves in Figs. 1 and 2, we
notice that these range of WDs lie on the receding branch of

FIG. 3. Absolute value of lhs of Eq. (4.2) at the center of the
WD in the Einstein frame for a set of trial values of ω2. The label
shows ρc of the WDs in the unit of g cm−3.

FIG. 4. Absolute value of lhs of Eq. (4.4) at the center of the
WD in the Jordan frame for a set of trial values of ω2. The label
shows ρc of the WDs in the unit of g cm−3.
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the mass-radius curve, for which ∂M=∂ρc < 0. Thus, the
WDs,which are unstable in theNewtonian regime of Palatini
fðRÞ gravity, also violate the positivity condition. On the
other hand, for α ¼ −4 × 1015 cm2, modified gravity brings
extra stability to the WDs with ρc ≳ 1010 g cm−3 as the first
minimum shifts towardsmore positive values ofω2, which is
evident fromFigs. 3(b) and 4(b). From themass-radius curve
corresponding to positive values of α, we also notice that this
branch satisfies the positivity condition, i.e., ∂M=∂ρc > 0.
Thus, in this case, the high-density modified gravity induced
WDs are more stable than the intermediate-density WDs. In
this way, we examine the stability of WDs in Palatani fðRÞ
gravity, thereby establishing that the positivity condition is
also a valid condition for stability analysis in Palatini fðRÞ
gravity in the Newtonian regime.

V. CONCLUSIONS

The recent observations of several over- and underlumi-
nous SNe Ia suggest the violation of the Chandrasekharmass
limit for WDs. This has led to an extensive study of
super- and sub-Chandrasekhar limiting mass WDs, on the
grounds of Newtonian and relativistic modified gravity
[25,26,49,65,92]. In this work, we have focused on the
WDs in the Newtonian limit of Palatini gravity with the
quadratic Lagrangian fðRÞ ¼ Rþ αR2.
Solving the modified stellar structure equations for the

given gravity model with the Chandrasekhar EoS, the
mass–radius relations of the WDs were obtained for
positive and negative values of the parameter α within
the physically accepted bounds. Positive values of α turn
out to provide sub-Chandrasekhar limiting mass WDs,
whereas negative values give the super-Chandrasekhar
ones. It should be noticed that there is no turn back in
the super-Chandrasekhar branch and this is the reason why
the maximum mass is only limited by the maximum
possible density. At high densities, various nuclear reac-
tions, for instance, pycnonuclear reaction and inverse β
decay, may be triggered [93]. However, the rate of such
reactions are quite uncertain, and hence, we have hypo-
thetically extended our curves to approximately
1011 g cm−3. Analyzing the stellar structure equations or
the mass-radius curves, it is clear that the Palatini gravity
model reduces to the Newtonian case for α ¼ 0 with the
conventional Chandrasekhar mass limit. It is also evident
that the deviations from the Newtonian case are profound at
high densities of the WDs, i.e., about ρc ≳ 109 g cm−3 due
to the significant contribution of αR2 term, which even-
tually leads to a possible explanation for the violation of the
Chandrasekhar mass limit.
Regarding the stability problem, generally, modified

gravity models can induce extra stability to the high-density
WDs, or it can make them unstable. Let us notice that such
an analysis of compact stars in the framework of modified
gravity, however with respect to the GR criterion (that is,

using the same radial oscillation equations as for the GR case
without any modifications) might be confusing [82].
Because of that fact, we have examined our model with
respect to the appropriate modifications of the radial
oscillation equations provided by the Palatini gravity, and
also confirmed that the positivity condition ∂M=∂ρc > 0
still holds in this particular case.
As a concluding remark, let us comment that many

theories of gravity modify the Newtonian limit of the
hydrostatic equilibrium equations [94]; therefore, they also
alter other stellar equations, such as, for example,
Schwarzschild criterion to determine the energy transport
through a given star [95], or energy produced in its core
[96–99]. Some parts of stellar evolution, for instance,
Hayashi tracks [95], main sequence [100], and cooling
models [101] are also affected by modified gravity such
that it can also have an impact on the properties of WDs and
their formation processes. Research along these lines is
essential to understand those fascinating objects and fully
exploit the upcoming observational events. Detections of
various compact objects, including WDs, by the use of
gravitational wave detectors, such as aLIGO, Einstein
Telescope, LISA, TianQin, BBO, DECIGO [102,103] can
put constraints on these theories of gravity, or they might
shed light on features of the GR extensions [19].
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APPENDIX: RELATIVISTIC EQUATIONS FOR
STELLAR STRUCTURE IN PALATINI GRAVITY

1. Schematic way to get Tolman-Oppenheimer-Volkoff
(TOV) in modified gravity

Let us notice that field equations of many modified
theories of gravity can be written in the following form
[104,105]:

σðψ iÞðGμν −WμνÞ ¼ κ2Tμν; ðA1Þ

where Gμν ¼ Rμν − gμνR=2 is the usual Einstein tensor and
Wμν is an additional term including the theory modifica-
tions. They can have a geometric origin, for example, as it
happens in this work. ψ i represents some field while σðψ iÞ
is a coupling factor to gravity. For such a model, assuming
the following spherically symmetric metric,

ds2 ¼ −BðrÞc2dt2 þ AðrÞdr2 þ r2dθ2 þ r2 sin θ2dϕ2;

ðA2Þ
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the generalized TOV equations are given by [106]

�
Π
σ

�0
¼ −

GMðrÞ
r2 ðQσ þ Π

σÞð1þ
4πr3Πσ
MðrÞ Þ

1 − 2GMðrÞ
r

þ 2σ

κ2r

�
Wθθ

r2
−
Wrr

A

�

ðA3Þ

and

MðrÞ ¼
Z

r

0

4πr02
Qðr0Þ
σðr0Þ dr

0; ðA4Þ

where Q, Π are the generalized energy density and
pressure, respectively. MðrÞ stands for the stellar mass
within a radius r. The physical interpretation of the terms
appearing in the TOV equations because of the modifica-
tions, can be found in [79,107].

2. TOV equations for Palatini f ðRÞ gravity
Comparing Eq. (2.10) with Eq. (A1), we notice that they

have the similar form, and thus, the modified TOV
equations for Palatini fðRÞ gravity can be written as [49,76]

d
dr̃

�
Π

Φðr̃Þ2
�

¼ −
GAMðr̃Þ

r̃2

�
Qþ Π
Φðr̃Þ2

��
1þ

4πr̃3 Π
Φðr̃Þ2

Mðr̃Þ
�

ðA5Þ

and

Mðr̃Þ ¼
Z

r̃

0

4πx̃2
Qðx̃Þ
Φðx̃Þ2 dx̃: ðA6Þ

Here, the metric component A (A2) is given by

A ¼ 1 −
2GMðr̃Þ

r̃
: ðA7Þ

The tilde in Eqs. (A5) and (A6) denotes the quantities in the
Einstein frame, and it is related to the Jordan frame by the
conformal transformation r̃2 ¼ Φr2, where Φ is the scalar
field introduced in §II. Moreover, the conformally related
energy density ðQ̄Þ and pressure ðΠ̄Þ can be written as

Q̄ ¼ ρ̄þ Ū
2κ2c2

¼ ρ

Φ2
þ U
2κ2c2Φ2

¼ Q
Φ2

; ðA8Þ

Π̄ ¼ p̄ −
Ū
2κ2

¼ p
Φ2

−
U

2κ2Φ2
¼ Π

Φ2
; ðA9Þ

where ρ and p denote the density of matter and pressure of
the fluid, respectively.
For the quadratic model, Φ is given by

Φ ¼ f0ðRÞ ¼ 1þ 2αR ¼ 1 − 2ακ2T; ðA10Þ

while from the structural equation (2.5), one obtains the
second expression in the above formula.

[1] S. M. Carroll, Spacetime and geometry. An introduction
to general relativity (Cambridge University Press,
Cambridge, 2004).

[2] A. H. Guth, Phys. Rev. D 23, 347 (1981).
[3] P. Coles, Astron. Geophys. 44, 3.16 (2003).
[4] A. G. Riess et al., Astron. J. 116, 1009 (1998).
[5] S. Perlmutter et al., Astrophys. J. 517, 565 (1999).
[6] D. Huterer and M. S. Turner, Phys. Rev. D 60, 081301

(1999).
[7] A. Del Popolo and M. Le Delliou, Galaxies 5, 17

(2017).
[8] S. Capozziello and M. de Laurentis, Phys. Rep. 509, 167

(2011).
[9] E. N. Saridakis et al., Modified Gravity and Cosmology:

An Update by the CANTATA Network (Springer, Cham,
2021).

[10] V. Faraoni, Cosmology in Scalar-Tensor Gravity
(Springer, Dordrecht, 2004).

[11] A. Naruko, D. Yoshida, and S. Mukohyama, Classical
Quantum Gravity 33, 09LT01 (2016).

[12] H. A. Buchdahl, Mon. Not. R. Astron. Soc. 150, 1 (1970).

[13] S. Bhattacharjee, J. R. L. Santos, P. H. R. S. Moraes, and
P. K. Sahoo, Eur. Phys. J. Plus 135, 576 (2020).

[14] V. K. Oikonomou, Phys. Rev. D 97, 064001 (2018).
[15] S. D. Odintsov and V. K. Oikonomou, Phys. Rev. D 99,

064049 (2019).
[16] S. Capozziello and M. De Laurentis, Ann. Phys. (Berlin)

524, 545 (2012).
[17] S. Nojiri and S. D. Odintsov, Int. J. Geom. Methods Mod.

Phys. 04, 115 (2007).
[18] T. Katsuragawa, T. Nakamura, T. Ikeda, and S.

Capozziello, Phys. Rev. D 99, 124050 (2019).
[19] S. Kalita and B. Mukhopadhyay, Astrophys. J. 909, 65

(2021).
[20] A. V. Astashenok, S. Capozziello, and S. D. Odintsov,

J. Cosmol. Astropart. Phys. 12 (2013) 040.
[21] A. V. Astashenok, S. Capozziello, and S. D. Odintsov,

Phys. Rev. D 89, 103509 (2014).
[22] A. Ganguly, R. Gannouji, R. Goswami, and S. Ray, Phys.

Rev. D 89, 064019 (2014).
[23] S. Capozziello, M. De Laurentis, R. Farinelli, and S. D.

Odintsov, Phys. Rev. D 93, 023501 (2016).

SARMAH, KALITA, and WOJNAR PHYS. REV. D 105, 024028 (2022)

024028-10

https://doi.org/10.1103/PhysRevD.23.347
https://doi.org/10.1046/j.1468-4004.2003.44316.x
https://doi.org/10.1086/300499
https://doi.org/10.1086/307221
https://doi.org/10.1103/PhysRevD.60.081301
https://doi.org/10.1103/PhysRevD.60.081301
https://doi.org/10.3390/galaxies5010017
https://doi.org/10.3390/galaxies5010017
https://doi.org/10.1016/j.physrep.2011.09.003
https://doi.org/10.1016/j.physrep.2011.09.003
https://doi.org/10.1088/0264-9381/33/9/09LT01
https://doi.org/10.1088/0264-9381/33/9/09LT01
https://doi.org/10.1093/mnras/150.1.1
https://doi.org/10.1140/epjp/s13360-020-00583-6
https://doi.org/10.1103/PhysRevD.97.064001
https://doi.org/10.1103/PhysRevD.99.064049
https://doi.org/10.1103/PhysRevD.99.064049
https://doi.org/10.1002/andp.201200109
https://doi.org/10.1002/andp.201200109
https://doi.org/10.1142/S0219887807001928
https://doi.org/10.1142/S0219887807001928
https://doi.org/10.1103/PhysRevD.99.124050
https://doi.org/10.3847/1538-4357/abddb8
https://doi.org/10.3847/1538-4357/abddb8
https://doi.org/10.1088/1475-7516/2013/12/040
https://doi.org/10.1103/PhysRevD.89.103509
https://doi.org/10.1103/PhysRevD.89.064019
https://doi.org/10.1103/PhysRevD.89.064019
https://doi.org/10.1103/PhysRevD.93.023501


[24] A. V. Astashenok and S. D. Odintsov, Phys. Rev. D 94,
063008 (2016).

[25] S. Kalita and B. Mukhopadhyay, J. Cosmol. Astropart.
Phys. 09 (2018) 007.

[26] U. Das and B. Mukhopadhyay, J. Cosmol. Astropart. Phys.
05 (2015) 045.

[27] A. V. Astashenok, S. Capozziello, and S. D. Odintsov,
J. Cosmol. Astropart. Phys. 01 (2015) 001.

[28] A. V. Astashenok, Int. J. Mod. Phys. Conf. Ser. 41,
1660130 (2016).

[29] T. Chiba, Phys. Lett. B 575, 1 (2003).
[30] A. D. Dolgov and M. Kawasaki, Phys. Lett. B 573, 1

(2003).
[31] S. Fay, R. Tavakol, and S. Tsujikawa, Phys. Rev. D 75,

063509 (2007).
[32] T. P. Sotiriou, Classical Quantum Gravity 23, 1253 (2006).
[33] J. D. Toniato, D. C. Rodrigues, and A. Wojnar, Phys. Rev.

D 101, 064050 (2020).
[34] M. Ferraris, M. Francaviglia, and I. Volovich, Classical

Quantum Gravity 11, 1505 (1994).
[35] T. P. Sotiriou, Phys. Lett. B 645, 389 (2007).
[36] H. R. Kausar, L. Philippoz, and P. Jetzer, Phys. Rev. D 93,

124071 (2016).
[37] X.-H. Meng and P. Wang, Gen. Relativ. Gravit. 36, 1947

(2004).
[38] A. E. Domínguez and D. E. Barraco, Phys. Rev. D 70,

043505 (2004).
[39] T. P. Sotiriou, Gen. Relativ. Gravit. 38, 1407 (2006).
[40] T. P. Sotiriou, Phys. Rev. D 73, 063515 (2006).
[41] S. Nojiri and S. D. Odintsov, Gen. Relativ. Gravit. 36, 1765

(2004).
[42] M.Amarzguioui, Ø. Elgarøy, D. F.Mota, and T.Multamäki,

Astron. Astrophys. 454, 707 (2006).
[43] M. Szydłowski, A. Stachowski, A. Borowiec, and A.

Wojnar, Eur. Phys. J. C 76, 567 (2016).
[44] A. Borowiec, A. Stachowski, M. Szydłowski, and A.

Wojnar, J. Cosmol. Astropart. Phys. 01 (2016) 040.
[45] A. Borowiec and A. Kozak, J. Cosmol. Astropart. Phys. 07

(2020) 003.
[46] L. Järv, A. Karam, A. Kozak, A. Lykkas, A. Racioppi, and

M. Saal, Phys. Rev. D 102, 044029 (2020).
[47] I. D. Gialamas, A. Karam, T. D. Pappas, and V. C. Spanos,

Phys. Rev. D 104, 023521 (2021).
[48] G. Herzog and H. Sanchis-Alepuz, Eur. Phys. J. C 81, 888

(2021).
[49] A. Wojnar, Int. J. Geom. Methods Mod. Phys. 18,

2140006-60 (2021).
[50] S. Banerjee, S. Shankar, and T. P. Singh, J. Cosmol.

Astropart. Phys. 10 (2017) 004.
[51] S. L. Shapiro and S. A. Teukolsky, Black Holes, White

Dwarfs and Neutron Stars: The Physics of Compact
Objects (Wiley-VCH, New York, 1986).

[52] G. R. Lauffer, A. D. Romero, and S. O. Kepler, Mon. Not.
R. Astron. Soc. 480, 1547 (2018).

[53] S. Chandrasekhar, Mon. Not. R. Astron. Soc. 95, 207
(1935).

[54] K. Nomoto, K. Iwamoto, and N. Kishimoto, Science 276,
1378 (1997).

[55] B. S. Wright and B. Li, Phys. Rev. D 97, 083505
(2018).

[56] D. A. Howell, M. Sullivan, P. E. Nugent, R. S. Ellis, A. J.
Conley, D. Le Borgne, R. G. Carlberg, J. Guy, D. Balam, S.
Basa, D. Fouchez, I. M. Hook, E. Y. Hsiao, J. D. Neill, R.
Pain, K. M. Perrett, and C. J. Pritchet, Nature (London)
443, 308 (2006).

[57] R. A. Scalzo et al., Astrophys. J. 713, 1073 (2010).
[58] M. Yamanaka et al., Astrophys. J. 707, L118 (2009).
[59] J. M. Silverman, M. Ganeshalingam, W. Li, A. V.

Filippenko, A. A. Miller, and D. Poznanski, Mon. Not.
R. Astron. Soc. 410, 585 (2011).

[60] A. V. Filippenko, M.W. Richmond, D. Branch, M. Gaskell,
W. Herbst, C. H. Ford, R. R. Treffers, T. Matheson, L. C.
Ho, A. Dey, W. L.W. Sargent, T. A. Small, and W. J.M.
van Breugel, Astron. J. 104, 1543 (1992).

[61] M. Turatto, A. Piemonte, S. Benetti, E. Cappellaro, P. A.
Mazzali, I. J. Danziger, and F. Patat, Astron. J. 116, 2431
(1998).

[62] M. Modjaz, W. Li, A. V. Filippenko, J. Y. King, D. C.
Leonard, T. Matheson, R. R. Treffers, and A. G. Riess,
Publ. Astron. Soc. Pac. 113, 308 (2001).

[63] S. Taubenberger et al., Mon. Not. R. Astron. Soc. 385, 75
(2008).

[64] U. Das and B. Mukhopadhyay, Int. J. Mod. Phys. D 24,
1544026 (2015).

[65] G. A. Carvalho, R. V. Lobato, P. H. R. S. Moraes, J. D. V.
Arbañil, E. Otoniel, R. M. Marinho, and M. Malheiro, Eur.
Phys. J. C 77, 871 (2017).

[66] K. M. Utami and A. Sulaksono, Am. Inst. Phys. Conf. Ser.
2320, 050029 (2021).

[67] S. J. Gabriele Gionti, Phys. Rev. D 103, 024022 (2021).
[68] A. De Felice and S. Tsujikawa, Living Rev. Relativity 13, 3

(2010).
[69] A. A. Starobinsky, Phys. Lett. 91B, 99 (1980).
[70] A. Kozak and A. Borowiec, Eur. Phys. J. C 79, 335 (2019).
[71] V. I. Afonso, G. J. Olmo, and D. Rubiera-Garcia, Phys.

Rev. D 97, 021503 (2018).
[72] T. P. Sotiriou and V. Faraoni, Rev. Mod. Phys. 82, 451

(2010).
[73] M. Szydłowski, A. Stachowski, and A. Borowiec, Eur.

Phys. J. C 77, 603 (2017).
[74] A. Stachowski, M. Szydłowski, and A. Borowiec, Eur.

Phys. J. C 77, 406 (2017).
[75] V. I. Afonso, G. J. Olmo, E. Orazi, and D. Rubiera-Garcia,

Phys. Rev. D 99, 044040 (2019).
[76] A. Wojnar, Eur. Phys. J. C 78, 421 (2018).
[77] A. Wojnar, Eur. Phys. J. C 79, 51 (2019).
[78] A. Mana, L. Fatibene, and M. Ferraris, J. Cosmol.

Astropart. Phys. 10 (2015) 040.
[79] A. Sergyeyev and A. Wojnar, Eur. Phys. J. C 80, 313

(2020).
[80] S. Chandrasekhar, Astrophys. J. 140, 417 (1964).
[81] J. M. Z. Pretel, S. E. Jorás, R. R. R. Reis, and J. D. V.

Arbañil, J. Cosmol. Astropart. Phys. 04 (2021) 064.
[82] J. M. Z. Pretel, S. E. Jorás, and R. R. R. Reis, J. Cosmol.

Astropart. Phys. 11 (2020) 048.
[83] A. Wojnar, Acta Phys. Pol. B Proc. Suppl. 13, 249 (2020).
[84] C. J. Hansen, S. D. Kawaler, and V. Trimble, Stellar

interiors: Physical principles, structure, and evolution
(Springer, New York, 2004).

[85] J. Näf and P. Jetzer, Phys. Rev. D 81, 104003 (2010).

STABILITY CRITERION FOR WHITE DWARFS IN PALATINI … PHYS. REV. D 105, 024028 (2022)

024028-11

https://doi.org/10.1103/PhysRevD.94.063008
https://doi.org/10.1103/PhysRevD.94.063008
https://doi.org/10.1088/1475-7516/2018/09/007
https://doi.org/10.1088/1475-7516/2018/09/007
https://doi.org/10.1088/1475-7516/2015/05/045
https://doi.org/10.1088/1475-7516/2015/05/045
https://doi.org/10.1088/1475-7516/2015/01/001
https://doi.org/10.1142/S2010194516601307
https://doi.org/10.1142/S2010194516601307
https://doi.org/10.1016/j.physletb.2003.09.033
https://doi.org/10.1016/j.physletb.2003.08.039
https://doi.org/10.1016/j.physletb.2003.08.039
https://doi.org/10.1103/PhysRevD.75.063509
https://doi.org/10.1103/PhysRevD.75.063509
https://doi.org/10.1088/0264-9381/23/4/012
https://doi.org/10.1103/PhysRevD.101.064050
https://doi.org/10.1103/PhysRevD.101.064050
https://doi.org/10.1088/0264-9381/11/6/015
https://doi.org/10.1088/0264-9381/11/6/015
https://doi.org/10.1016/j.physletb.2007.01.003
https://doi.org/10.1103/PhysRevD.93.124071
https://doi.org/10.1103/PhysRevD.93.124071
https://doi.org/10.1023/B:GERG.0000036052.81522.fe
https://doi.org/10.1023/B:GERG.0000036052.81522.fe
https://doi.org/10.1103/PhysRevD.70.043505
https://doi.org/10.1103/PhysRevD.70.043505
https://doi.org/10.1007/s10714-006-0328-8
https://doi.org/10.1103/PhysRevD.73.063515
https://doi.org/10.1023/B:GERG.0000035950.40718.48
https://doi.org/10.1023/B:GERG.0000035950.40718.48
https://doi.org/10.1051/0004-6361:20064994
https://doi.org/10.1140/epjc/s10052-016-4426-9
https://doi.org/10.1088/1475-7516/2016/01/040
https://doi.org/10.1088/1475-7516/2020/07/003
https://doi.org/10.1088/1475-7516/2020/07/003
https://doi.org/10.1103/PhysRevD.102.044029
https://doi.org/10.1103/PhysRevD.104.023521
https://doi.org/10.1140/epjc/s10052-021-09662-z
https://doi.org/10.1140/epjc/s10052-021-09662-z
https://doi.org/10.1142/S0219887821400065
https://doi.org/10.1142/S0219887821400065
https://doi.org/10.1088/1475-7516/2017/10/004
https://doi.org/10.1088/1475-7516/2017/10/004
https://doi.org/10.1093/mnras/sty1925
https://doi.org/10.1093/mnras/sty1925
https://doi.org/10.1093/mnras/95.3.207
https://doi.org/10.1093/mnras/95.3.207
https://doi.org/10.1126/science.276.5317.1378
https://doi.org/10.1126/science.276.5317.1378
https://doi.org/10.1103/PhysRevD.97.083505
https://doi.org/10.1103/PhysRevD.97.083505
https://doi.org/10.1038/nature05103
https://doi.org/10.1038/nature05103
https://doi.org/10.1088/0004-637X/713/2/1073
https://doi.org/10.1088/0004-637X/707/2/L118
https://doi.org/10.1111/j.1365-2966.2010.17474.x
https://doi.org/10.1111/j.1365-2966.2010.17474.x
https://doi.org/10.1086/116339
https://doi.org/10.1086/300622
https://doi.org/10.1086/300622
https://doi.org/10.1086/319338
https://doi.org/10.1111/j.1365-2966.2008.12843.x
https://doi.org/10.1111/j.1365-2966.2008.12843.x
https://doi.org/10.1142/S0218271815440265
https://doi.org/10.1142/S0218271815440265
https://doi.org/10.1140/epjc/s10052-017-5413-5
https://doi.org/10.1140/epjc/s10052-017-5413-5
https://doi.org/10.1063/5.0038106
https://doi.org/10.1063/5.0038106
https://doi.org/10.1103/PhysRevD.103.024022
https://doi.org/10.12942/lrr-2010-3
https://doi.org/10.12942/lrr-2010-3
https://doi.org/10.1016/0370-2693(80)90670-X
https://doi.org/10.1140/epjc/s10052-019-6836-y
https://doi.org/10.1103/PhysRevD.97.021503
https://doi.org/10.1103/PhysRevD.97.021503
https://doi.org/10.1103/RevModPhys.82.451
https://doi.org/10.1103/RevModPhys.82.451
https://doi.org/10.1140/epjc/s10052-017-5181-2
https://doi.org/10.1140/epjc/s10052-017-5181-2
https://doi.org/10.1140/epjc/s10052-017-4981-8
https://doi.org/10.1140/epjc/s10052-017-4981-8
https://doi.org/10.1103/PhysRevD.99.044040
https://doi.org/10.1140/epjc/s10052-018-5900-3
https://doi.org/10.1140/epjc/s10052-019-6555-4
https://doi.org/10.1088/1475-7516/2015/10/040
https://doi.org/10.1088/1475-7516/2015/10/040
https://doi.org/10.1140/epjc/s10052-020-7876-z
https://doi.org/10.1140/epjc/s10052-020-7876-z
https://doi.org/10.1086/147938
https://doi.org/10.1088/1475-7516/2021/04/064
https://doi.org/10.1088/1475-7516/2020/11/048
https://doi.org/10.1088/1475-7516/2020/11/048
https://doi.org/10.5506/APhysPolBSupp.13.249
https://doi.org/10.1103/PhysRevD.81.104003


[86] A. Masó-Ferrando, N. Sanchis-Gual, J. A. Font, and G. J.
Olmo, Classical Quantum Gravity 38, 194003 (2021).

[87] G. J. Olmo, Phys. Rev. Lett. 95, 261102 (2005).
[88] P. P. Avelino, J. Cosmol. Astropart. Phys. 11 (2012) 022.
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