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A salient feature of solid-state quantum-Hall-type topological materials in two dimensions is the presence
of conducting electronic edge states that are insensitive to scattering by disorder. Such unidirectional edge
states have been predicted and observed in many other experimental settings, including photonics,
mechanical, and acoustic structures. It is of great interest to understand how topological states behave in
the presence of interparticle interactions and nonlinearity. Here, we experimentally demonstrate backscatter-
immune unidirectional solitonlike nonlinear states on the edge of photonic topological insulators consisting of
laser-written waveguides. As a result of the optical Kerr nonlinearity of the ambient glass, the solitonlikewave
packet forms a long-lived quasilocalized coherent structure that slowly radiates power into the bulk and along
the edge. The realization of solitonlike edge states paves the way to an understanding of nonlinear and
interacting topological systems.
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I. INTRODUCTION

The field of topological photonics [1–5] shows great
promise for the discovery of new fundamental science and
its implications for advances in optical devices [6–9].
Quantum-Hall-like topological states [10–15] for electro-
magnetic waves were first proposed [1] in the context of
photonic crystals and were experimentally demonstrated
[2] using magneto-optical materials at microwave frequen-
cies. The concept of “Floquet topological insulators”—
namely, inducing topologically nontrivial behavior using
dynamical modulation—is used in waveguide arrays for the
realization of optical chiral edge states in Chern [3] and
anomalous Floquet topological insulators [16–19]. In these
systems, the component waveguides are spatially modu-
lated along the propagation axis to effectively break time-
reversal symmetry in the transverse plane and, thus, enable
the presence of topological gaps and chiral edge states.
Analogous techniques are used to realize topological states
in many other experimental platforms, such as ultracold
atoms [20,21], mechanical [22,23] circuits [24], and

exciton polaritons [25–27], and also in the context of
equatorial waves [28].
Solitons are nonlinear wave packets that balance non-

linearity with the tendency to spread due to diffraction or
dispersion. The result is a wave function that maintains its
shape as it propagates. Solitons play a central role in the
theory of nonlinear differential equations as the solutions
that form the basis for the inverse scattering transformation
[29,30] and arise naturally in nonlinear and interacting
systems such as water waves [31], photonic systems
[32–36], and Bose-Einstein condensates [37,38]. Their
ubiquity across different physical platforms speaks to the
generality of the equations describing interactions in bosonic
systems: The nonlinear diffraction of light and the temporal
dynamics of a dense Bose-Einstein condensate are both
described by the nonlinear Schrödinger equation (also called
the Gross-Pitaevskii equation). The question of how solitons
behave in topological systems, both within the bulk and
localized to the edge, is an active and open one [39–48].
Here, we observe unidirectional solitonlike wave packets

on the edge of a two-dimensional anomalous photonic
Floquet topological insulator. We also demonstrate that this
nonlinear state can propagate around a corner of the lattice
without backscattering. By solitonlike wave packet, we
mean a nonlinear quasilocalized solution with a finite
lifetime. The reason that they must be called “solitonlike”
is that they radiate power into the bulk and along the edge at
a small but nonzero rate; see Fig. 1(a). Indeed, because of
the discreteness of the system, a nonlinear wave packet
experiences a nonzero Peierls-Nabarro barrier [49], which
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causes the radiation of energy to the ambient extended
modes [50–52].
The paper is organized as follows. In Sec. II, we discuss

the driving protocol, quasienergy spectrum, and topological
characteristics of an effectively dimerized anomalous
Floquet topological insulator. In Sec. III, we study the
nonlinear dynamics through the periodically modulated
topological lattices and discuss the experimental signatures
of the unidirectional solitonlike edge states. Then, in
Sec. IV, we present the experimental results on the
observation of solitonlike edge states traveling along an
edge and around a corner of the waveguide lattices. Finally,
in Sec. V, we highlight more about the significance of this
work and its future implications.

II. NONLINEAR FLOQUET TOPOLOGICAL
INSULATOR

Weutilize a square array of optical waveguides [Fig. 1(b)],
with periodically modulated nearest-neighbor evanescent
couplings, where the Kerr nonlinearity increases the refrac-
tive index in proportion to the local intensity of light.

Through this waveguide lattice, the scalar-paraxial propa-
gationof light is governedby the followingdiscrete nonlinear
Schrödinger equation:

i
∂
∂zΦsðzÞ ¼

X

hs0i
− JmðzÞΦs0 − jΦsj2Φs; ð1Þ

where the propagation distance z plays the role of time, s
labels the lattice sites, the summation is taken over nearest-
neighbor sites, and JmðzÞ [m ¼ 1;…; 4] denote the cou-
plings at themth step.Here, the completemodulation cycle is
divided into four steps. For the mth driving step, we define
Λm ¼ R

dzJmðzÞ, which determines the transfer of optical
power from a given site to one of its nearest neighbors in the
linear regime. All four couplings JmðzÞ resemble a steplike
function with a fixed gradual rise and fall time; however, the
driving steps are engineered in a bipartite fashion such that
Λ1 ¼ Λ3 ¼ π=2ð1þ δÞ and Λ2 ¼ Λ4 ¼ π=2ð1 − δÞ—see
the Appendix A. The lattice can, thus, be considered to be
effectively “dimerized”with δ as the degree of dimerization.
The localization peak caused by this dimerization

FIG. 1. Implementation of solitonlike edge states. (a) Unidirectional propagation of a wave packet along a linear topological
insulator—because of the group velocity dispersion of the edge states, the edge wave packet diffracts (upper plot). The linear diffraction
of the edge wave packet can be almost balanced by nonlinearity that arises from optical Kerr nonlinearity. Because of the discreteness,
the solitonlike edge state radiates power along the edge and into the bulk at a finite and controllable rate (lower plot). (b) Schematic
depiction of the implementation of a photonic Floquet topological insulator using a three-dimensional waveguide array. (c) Quasienergy
spectrum of the bipartite photonic lattice (δ ¼ 0.18) showing two ungapped bulk bands (blue) with zero net Chern number and chiral
edge states (red). (d) Micrograph of the facet of a periodically driven square lattice consisting of 56 waveguides. A single-site input state,
launched at the circled site on the zigzag edge, has a significant overlap with the topological edge states.
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unambiguously proves the existence of the solitonlike
edge states in our experiments, as discussed later in
Secs. III and IV.
The linear tight-binding Hamiltonian associated with

this model changes periodically in z, Hðzþ z0Þ ¼ HðzÞ,
with a period z0 ¼ 2π=Ω. Note that the driving frequencyΩ
remains unaltered when δ is varied. The quasienergy
spectrum of this z-periodic lattice system can be obtained
by diagonalizing the propagator over one complete
period, where the propagator is given by Ûðz0Þ ¼
T exp½−i R z0

0 dz̃ Ĥðz̃Þ�, where T indicates the “time” order-
ing in z̃. Figure 1(c) shows the quasienergy spectrum for
δ ¼ 0.18, calculated using a strip geometry aligned along the
vertical direction and periodic along the horizontal direction.
The spectrum consists of two ungapped bulk bands (hence-
forth referred to as the bulk band) and one chiral edge state
(per edge) connecting the top and bottom of the bulk band.
The topological nature of the system, as well as the width

of the bulk band, can be controlled by δ. For δ ¼ 0, the bulk
band is perfectly dispersionless (flat) and the system is
topological; the bulk bandwidth increases with δ, and the
band gap closes at δ ¼ 0.5—see Appendix A. Therefore,
unidirectional propagating topological edge states exist for
0 ≤ δ < 0.5. The topology of such a periodically driven

model is governed by the Floquet winding number that
takes into account the full z evolution [16], including the
micromotion. For a finite lattice with edges, the number of
topological edge states present in a gap, which is 1 for
Fig. 1(c), is directly given by the winding number. Such
nontrivial lattices, coined as anomalous Floquet topological
insulators [16–19], are unique to periodic driving.

III. SOLITONLIKE EDGE STATES

In this work, we seek nonlinear traveling edge states that
are highly localized on the zigzag edge—amicrograph of the
input facet of the lattice is shown inFig. 1(d).We consider the
evolution governed byEq. (1)with a single-site input state on
the edge. The evolution of the normalized optical intensity
along the edge is presented in Figs. 2(a)–2(c) for δ ¼ 0.18
and three different renormalized powers ðP ≡P

s jΦsj2Þ
indicated in each figure. ForP → 0, i.e., in the linear regime,
the single-site input state has a large overlap (approximately
68%) with the topological edge states; see Fig. 2(a) and
Supplemental Movie 1 in [60]. Note that this localized input
state (which is, therefore, broad in k space) diffracts along the
edge as a result of the curvature of the edge band, shown in
Fig. 1(c). This diffraction of the input state can be almost
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FIG. 2. Unidirectional traveling solitonlike edge states. (a)–(c) Propagation of a single-site input wave packet on the edge of the
periodically driven lattice (δ ¼ 0.18) with three different renormalized powers P indicated in each image. The vertical axis shows the
waveguide number along the zigzag edge. For P → 0 (the linear regime) and P ¼ 2.1Ω [i.e., (a) and (c)], the input state spreads out
along the edge as well as penetrates the bulk (not shown here). At a certain intermediate power value (determined by δ), the input state
propagates unidirectionally with minimal radiation along the edge and into the bulk (b) up to a long propagation distance; see
Supplemental Movies 1–3 in [60]. (d) Inverse participation ratio (IPR), calculated after each driving period z0 ¼ 2π=Ω as a function of
power and propagation distance. A clear peak in the IPR is observed as a function of P, corresponding to the quasilocalized solitonlike
state. (e) Variation of IPR at z ¼ 2z0 for three different values of δ that are realized experimentally; see Fig. 3. The IPR at the peak is
higher for lower δ, and the value of P for which the peak occurs increases with δ.
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balanced by nonlinearity, i.e., by increasing the optical
power. At a certain value of renormalized power (which is
an increasing function of δ), the single-site input state
propagates unidirectionally with minimal spreading, one
lattice constant per driving period, up to a long propagation
distance; see Fig. 2(b) and SupplementalMovie 2 in [60]. On
the other hand, at higher power, the input state again exhibits
a large amount of spreading, as shown in Fig. 2(c) and
Supplemental Movie 3 in [60]. We note that the behavior
shown in Fig. 2(b) does not occur when only the edge
waveguides are present (i.e., the bulk is removed).
The localization of the state as a function of renormalized

power and propagation distance can be quantified by the
inverse participation ratio, defined as IPR ¼ P

s jΦsj4=
ðPs jΦsj2Þ2. When all the light is localized at a single site,
the inverse participation ratio is at its maximum value of 1.
Figure 2(d) presents the IPR that is calculated stroboscopi-
cally, i.e., after each driving period for the above-mentioned
single-site input state.Up to approximately 20driving cycles,
the IPR exhibits a clear peak as a function of renormalized
power at a given propagation distance—this peak corre-
sponds to solitonlikewave packet propagationwith maximal
lifetime. Unlike the intensity distribution along the edge in
Figs. 2(a)–2(c), the IPR in Fig. 2(d) accounts for the entire
wave function, including the bulk and edge. We note that the
localization feature shown in Figs. 2(a)–2(d) can be con-
trolled by tuning δ, i.e., by changing the bulk bandwidth.
Indeed, the lifetime of the solitonlike edge state shown in
Fig. 2(b) can be increased arbitrarily by reducing δ (see
Appendix B) and diverges as δ → 0, i.e., the flat-band limit.
To show how this localization peak depends on δ, we
compute the IPR as a function ofP for three different values
of δ, namely, 0.13, 0.18, and 0.26, associated with exper-
imentally achieved parameters. Figure 2(e) shows the varia-
tion of IPR as a function of P for each value of δ, calculated
after a fixed propagation distance z ¼ 2z0. Here, a clear peak
in IPR can be observed for all three values of δ.
Two key observations can be made about the peaks in

Fig. 2(e): First, the IPR at the peak decreases with δ, and,
second, the value of P at which the peak occurs increases
with δ. These features can be explained as follows. In the
limit of δ → 0 (i.e., flat-band limit), the edge dispersion is
linear [53], and the single-site input state overlaps only with
the edge states; hence, this input state propagates along the
edge without diffraction in the linear regime (P → 0). As δ
increases, there is less of an initial overlap on the edge
modes, causing the degree of overall localization to
decrease as light spreads into the bulk. Furthermore, the
bulk bandwidth increases as δ increases, implying a faster
radiation rate away from the edge and a lower height of the
IPR peak. As power increases (at fixed δ), coupling to bulk
modes is induced at first, and then, as power is further
increased, it acts to trap the wave packet on the edge,
leading to an increase in IPR with power. At a specific
value of the renormalized power (P ¼ 1.05Ω for δ ¼ 0.18),

the radiation into the bulk is minimal (i.e., the coupling to
the bulk modes is reduced [54]), and the state propagates a
long distance without significant diffraction along the edge,
corresponding to the long-lived solitonlike object and,
hence, a peak in the IPR. In other words, for a given set
of parameters of the Hamiltonian, the optimal solitonlike
wave packet with the longest lifetime is observed at the
renormalized power where the IPR exhibits a peak. For
further details on nonlinear wave packet dynamics near the
peak, see Appendix B. At powers past the IPR peak, there is
more power than that which is necessary to form the above-
mentioned optimal nonlinear quasilocalized state (unlike
traditional solitons [34–36]), leading to excess radiation
along the edge and into the bulk and a corresponding
decrease in IPR. The amount of power required to opti-
mally trap the wave packet along the edge increases with δ,
causing a shift in the peak to a higher power with increasing
δ. A detailed explanation of the mechanism of localization
can be found in Appendix B.

IV. EXPERIMENTS

We experimentally demonstrate the unidirectional
solitonlike edge states by injecting intense laser light into
laser-written modulated waveguide arrays with previously
mentioned driving protocols. Here, we observe the output
states after a fixed propagation distance, as a function of
power and for three separate values of δ ¼ f0.13; 0.18;
0.26g. Using femtosecond-laser writing [55], three sets of
periodically modulated square lattices, each consisting of 56
waveguides and with two driving periods, are fabricated
inside a 76-mm-long borosilicate glass substrate. Each
waveguide in the lattices supports only the fundamental
mode at the operating optical wavelength of 1030 nm. At
z ¼ 0, the lattice sites are well separated (27 μm intersite
spacing) such that all evanescent couplings are negligibly
small. To switch on the coupling between any two neighbor-
ing waveguides, the interwaveguide separation is reduced to
14 μm, and then thewaveguides are kept straight and parallel
where the evanescent coupling reaches a fixed and maximal
value; see Figs. 1(b) and 5(a). The couplings are switched off
by then separating the waveguides. We control δ simply by
increasing (decreasing) the length of the straight sections of
the coupled waveguide pairs in the odd (even) driving step.
Nonlinear characterization of the photonic lattices is

performed using intense laser pulses for which the optical
fieldΦs is a function of both propagation distance and time.
The laser pulses may undergo undesired effects such as
self-phase modulation (generating new wavelengths) and
chromatic dispersion. To access the self-focusing non-
linearity with a minimal self-phase modulation, we use
temporally stretched down-chirped laser pulses. The effect
of chromatic dispersion is estimated to be insignificant
for the maximum length scale (i.e., 76 mm propagation
distance) considered here. Additionally, nonlinear loss due
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to multiphoton absorption is measured to be negligible;
see Appendix C.
To experimentally probe the unidirectionally traveling

solitonlike edge states, we launch 2 ps laser pulses into the
desired edgewaveguide [see Fig. 1(d)] and then calculate the
inverse participation ratio from themeasured intensity profile
at the output of the lattices. The relationship between the
average input power Pin and the renormalized power P is
experimentally determined to be P ¼ 0.046 mm−1 per unit
Pin in milliwatts; see Appendix C. The nonlinear charac-
terization of the modulated photonic lattices is presented in
Fig. 3(a), where the measured IPR at z ¼ 2z0 is plotted as a
function of the average input power Pin for three different
values of δ. As a function of Pin, the IPR first increases,
exhibits a peak at a particular power, and then decreases for
higher power—in all three cases, a clear peak in the IPR is
observed, as expected; see Fig. 2(e). We show the measured
normalized output intensity patterns jΦsj2=P for δ ¼ 0.26 in
Figs. 3(b)–3(d); see also Supplemental Movie 4 in [60].
Figure 3(b) corresponds to the linear case—most of the light
propagates unidirectionally (i.e., leftward) along the edge;
however, a small amount of light penetrates into the bulk.
Importantly, note that the light diffracts, i.e., spreads out,
along the edge,which is expected fromour numerical results.
The solitonlike state, corresponding to the IPR peak, is
shown in Fig. 3(c). Figure 3(d) shows the delocalized output
intensity at a higher power.
Comparing Figs. 2(e) and 3(a), we observe that the

measured IPRs in the linear regime agree well with the

expected values; however, the measured heights of the IPR
peaks are lower than the expected values, and this effect is
more prominent for larger values of δ. This lower IPR is
caused by both linear losses and a small background due to
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FIG. 3. Observation of solitonlike states traveling unidirectionally along the edge of the topological lattice. (a) Experimentally
measured inverse participation ratio at z ¼ 2z0 for δ ¼ f0.13; 0.18; 0.26g—for all cases, a clear peak in the IPR is visible. (b)–(d) Output
intensity distributions for δ ¼ 0.26measured at three different power values indicated in each image. The input state propagates two unit
cells along the bottom edge with minimal spreading when the average input power is Pin ¼ 5.1 mW, i.e., (c). The white circle in each
image indicates the lattice site where light is launched at the input. Each image is normalized, and the field of view is smaller than the
lattice size.
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FIG. 4. Solitonlike edge states traveling unidirectionally around
a corner. (a),(b) Experimentally measured output intensity pat-
terns for Pin ¼ 5.1 mW associated with the IPR peak in Fig. 3(a).
Here, δ ¼ 0.26; the white circles indicate the lattice sites where
the light is launched at the input. The inset shows the path of the
most intense site. In both cases [i.e., (a) and (b)], the state
propagates two lattice constants: the first around the corner, the
second along the edge.
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the linear diffraction of the pulse tails (front and rear) in
time. Having said that, the observed peaks along with
the intensity pattern in Fig. 3(c) clearly agree with the
theoretical predictions in Fig. 2 and demonstrate the
solitonlike edge states in the topological lattice.
In another set of experiments, we observe the solitonlike

state traveling around a corner. Figures 4(a) and 4(b) show
the experimentally measured output intensity patterns after
two driving periods for two different input excitations
indicated by the white circles. These intensity patterns are
associated with the IPR peak in Fig. 3(a), i.e., δ ¼ 0.26 and
Pin ¼ 5.1 mW. These results imply that the solitonlike
state can propagate unidirectionally around a corner (i.e., a
defect) without backscattering. However, because of non-
linear mode mixing, a defect can, in general, cause extra
radiation—see Appendix D for further details.

V. CONCLUSION

In conclusion, we have demonstrated solitonlike edge
states propagating unidirectionally along the edge of a
discrete nonlinear Floquet topological insulator. These non-
linear topological states appear away from the continuum
limit, meaning they are highly localized on the edge, and the
power required to form such solitonlike waves is compara-
tively higher than the traditional low-power, spatially broad
nonlinear topological waves [40]. This work represents a key
development in the understanding and use of topological
protection against disorder in nonlinear devices. Since the
theory of topological materials is linear at its core, we expect
that a new theoretical framework will be necessary for
describing the nonlinear optics of topological structures.
Thiswill be particularly important if topological protection is
to be applied to nonlinear applications such as optical
switching, on-chip frequency combs and supercontinuum
generation, photon entanglement generation and manipula-
tion, and others.
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APPENDIX A: TOPOLOGICAL
CHARACTERIZATION OF THE PERIODICALLY

DRIVEN LATTICE

In the following sections, we discuss the topological
properties of the lattice, show how the lifetime of the
solitonlike edge states can be controlled, and present
further experimental details. We also discuss what happens
when the solitonlike edge state encounters a single defect
on the edge with variable on-site energy.

In this section, we discuss the topological characteriza-
tion of the noninteracting (i.e., linear) periodically driven
bipartite square lattice presented in the main text.
Each Bloch band in a lattice system can be characterized

by a standard topological invariant such as the Chern
number. The Chern numbers of all bands must add up to
zero:

P
j Cj ¼ 0. For static systems, the sum of Chern

numbers of all bands below a specific band gap is equal to
the number of right-moving edge states minus the number
of left-moving ones on a given edge. In other words, by
computing the band structure considering a strip geometry,
the Chern number of any band can be determined by
counting the number of topological edge states within the
band gaps. In general, this static bulk-edge correspondence
is not necessarily applicable to a periodically driven
system, as we discuss below.
When a Hamiltonian is driven periodically in time

(or z in our photonic system), Floquet theory can be
used to analyze the system—quasienergy bands can be
computed, and, analogously to static systems, a Chern
number can be defined for each quasienergy band. In fact,
applying a time-periodic driving, also known as Floquet
engineering, has recently emerged as a powerful tech-
nique to generate novel effective Hamiltonians and
topological phases, which are otherwise inaccessible in
static systems.
It was theoretically proposed and then experimentally

demonstrated [16–18] that chiral edge states with topo-
logical robustness can exist in a Floquet topological
insulator with Chern-zero bulk bands, unlike in static
systems. The topology of such nontrivial materials, coined
as anomalous Floquet topological insulators, is captured by
an integer-valued invariant known as the winding number.
In this section, we describe a method for the calculation of
this topological invariant [16,56] which describes the
topology of our two-dimensional lattice system that is
periodically driven along the propagation direction z with a
driving period z0 ¼ 2π=Ω.
As mentioned in the main text, the linear tight-binding

Hamiltonian associatedwith our bipartite square lattice (with
δ as the degree of dimerization) changes periodically in z:
Hðzþ z0Þ ¼ HðzÞ. The complete modulation cycle is di-
vided into four steps [Fig. 1(b)], and the variation of the
couplings J1–4 as a function of the propagation distance is
shown in Fig. 5(a). For themth driving step, we defineΛm ≡R
dzJmðzÞ (the integration is taken over each driving step).

Note that the steplike coupling functions have a fixed gradual
rise and fall time; however, the flat section is dimerized such
that Λ1;3 ¼ π=2ð1þ δÞ and Λ2;4 ¼¼ π=2ð1 − δÞ.
The quasienergy spectrum of this z-periodic lattice is

obtained by diagonalizing the propagator over one
complete period, where the propagator is given by
Ûðz0Þ ¼ T exp½−i R z0

0 dz̃ Ĥðz̃Þ�, where T indicates the time
ordering in z̃. We numerically calculate the quasienergy
spectrum as a function of δ [Fig. 5(b)]. For all values of δ
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considered here, there are two ungapped bulk bands and
one band gap which closes at δ ¼ 0.5.
To capture the existence of edge states, we then calculate

the spectrum using a strip geometry terminated in the vertical
direction and arrayed periodically along the horizontal
direction. Topological unidirectional edge states (one per
edge) appear for 0 ≤ δ < 0.5. As an example, we present the
spectrum associated with δ ¼ 0.25, where the red lines
indicate the topological edge states on the upper and lower
edges of the lattice [Fig. 5(c)]. For δ > 0.5, we observe
topologically trivial edge states; see an example in Fig. 5(d).
By counting the number of topological edge states on a given
edge, we conclude that the Floquet winding number is unity
for 0 ≤ δ < 0.5 and zero for δ > 0.5.
In our experiments, we observe small but unavoidable

disorder in Λ1–4 with an estimated standard deviation

σexp ¼ 0.05. To verify that this small disorder does not
close the band gap, we calculate the bulk quasienergy
spectrum as a function of the disorder strength σ in Λ1–4;
see Fig. 5(e). For these calculations, we redefine
Λ̃1–4 ¼ Λ1–4ð1þ λ̃Þ, where λ̃ is a random variation of
Λ1–4 taken from the normal distribution with zero mean
and a standard deviation parameter σ. For each σ value, we
consider 25 separate realizations of disorder, and the error
bars in Fig. 5(e) indicate the standard deviation of the
maximum (minimum) quasienergies. It is evident that the
quasienergy gap does not close until σ ≲ 0.4.

APPENDIX B: FINITE LIFETIME OF
SOLITONLIKE EDGE STATES

Because of the discreteness of the system and the
associated Peierls-Nabarro barrier experienced by the wave
packet as it moves through the lattice [49], confined
traveling nonlinear waves will not, in general, live forever
and cannot, therefore, be called solitons. As shown in the
main text, the optimal solitonlike wave packet propagates
with minimal radiation. In this section, we discuss the
dependence of the lifetime of the solitonlike edge wave
packets on the dimerization parameter δ. Nonlinear wave
packet dynamics near the IPR peak is also elaborated.
In the main text, we present numerical results showing

unidirectional traveling solitonlike edge states, in Fig. 2, for
δ ¼ 0.18. Figure 6(a) shows the same variation of IPR,
presented in Fig. 2(d), for a longer propagation distance.
Up to approximately 20 driving cycles, the IPR exhibits a
clear peak as a function of the renormalized power at a
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FIG. 6. IPR and power on the edge for two different values of δ.
(a),(c) The variation of IPR, calculated after each driving period,
as a function of renormalized power and propagation distance for
δ ¼ 0.18 and 0.13, respectively. (b),(d) The variation of the
fraction of total normalized power on the zigzag edge, for
different values of renormalized powers indicated in the figures,
corresponding to δ ¼ 0.18 and 0.13, respectively.
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FIG. 5. (a) The variation of the couplings J1–4 as a function of
the propagation distance. The couplings resemble a steplike
function with a fixed gradual rise and fall time. (b) Bulk
quasienergy spectrum of the driven bipartite lattice as a function
of δ. The blue (white) region indicates the linear bulk band (band
gap); the band gap closes at δ ¼ 0.5. (c),(d) Quasienergy spectra
calculated using a strip geometry for δ ¼ 0.25 (topological) and
δ ¼ 0.75 (trivial), respectively, indicated by the vertical dashed
lines in (b). Topological unidirectional edge states (one per edge)
appear for 0 ≤ δ < 0.5. For δ > 0.5, the edge states are trivial.
(e) Quasienergy spectrum as a function of disorder strength σ in
Λ1–4. The error bars indicate the standard deviation of maximum
(minimum) quasienergies. The unavoidable small disorder
present in the experiments (σexp ¼ 0.05) does not close the band
gap.
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given propagation distance. In this case, the fraction of light
on the zigzag edge Pedge=P is plotted in Fig. 6(b) for four
different renormalized powers P, indicated in the figure. In
the linear regime P → 0, the single-site input state largely
overlaps (approximately 68%) with the edge states; hence,
some light penetrates into the bulk in the beginning
(0 ≤ z=z0 ≲ 5), and, then, Pedge=P remains unaltered—
see the solid blue line in Fig. 6(b). As shown in
Supplemental Movie 1 in [60], the remaining light on
the edge spreads because of the curvature of the edge band.
When nonlinearity is introduced, the edge overlapP
i jhΦðzÞjψ iij2 [i.e., the overlap of the linear topological

edge states ψ i with the normalized wave packet ΦðzÞ]
varies as a function of the propagation distance and the
strength of nonlinearity. At small power P ¼ 0.6Ω, the
wave packet strongly couples to bulk modes and, thus,
radiates away from the edge; see the blue dashed line in
Fig. 6(b). Furthermore, this is below the power threshold
for the formation of the optimal solitonlike wave packet,
meaning that there is still significant diffraction along
the edge. At a specific value of the renormalized power

P ¼ 1.05Ω associated with the IPR peak, the radiation into
the bulk reduces (i.e., the edge overlap increases), and,
importantly, the state propagates a long distance without
significant diffraction along the edge, corresponding to the
long-lived solitonlike object and, hence, a peak in the IPR
[see the solid red line in Fig. 6(b)]. At higher power
P ¼ 2.1Ω, the radiation increases again (see the dotted
dark blue line), and the state diffracts during propagation.
In Figs. 7(a) and 7(b), the propagation of nonlinear edge

states is shown in the vicinity of the power value associated
with the IPR peak. For a given set of parameters, the
solitonlike state associated with the IPR peak has minimal
radiation and, hence, the longest lifetime; see Figs. 2(b)
and 7(c). Near the IPR peak (i.e., at a smaller and/or larger
value of renormalized power), the nonlinear edge states
propagate with excess radiation; see Fig. 7(c).
The radiation rate of the optimal solitonlike edge state

increases with increasing δ. Figures 6(c) and 6(d) present
the same results as Figs. 6(a) and 6(b) except with a lower
value of δ ¼ 0.13. In this case, the clear peak in the IPR can
be observed up to a longer propagation distance z ≈ 55z0.
The result in Fig. 6(d) is qualitatively similar to Fig. 6(b);
however, the important difference is that the dynamics is
slower at this smaller value of δ—the optimal solitonlike
edge state (the solid red line) has a comparatively longer
lifetime. In the limit of δ → 0, the edge spectrum has linear
dispersion [53], and the bulk is dispersionless. In this case,
nondiffracting unidirectional edge transport is observed for
an arbitrarily long propagation distance in the limit of zero
nonlinearity, P → 0.

APPENDIX C: MORE EXPERIMENTAL DETAILS

1. Fabrication

Topological photonic lattices consisting of periodically
modulated single-mode optical waveguides are created
using femtosecond (fs) laser writing, an on-chip device
fabrication technique [55,57,58]. This technique allows
us to precisely control the waveguide paths in a three-
dimensional geometry, which is crucial for realizing the
nontrivial topology considered in this work. Laser pulses at
1030� 4 nm wavelength, 500 kHz pulse repetition rate,
and 260 fs pulse width are generated using a commercially
available Yb-doped (Menlo BlueCut) fiber laser system.
Each waveguide in the lattice is inscribed by translating a
borosilicate (Corning Eagle XG) glass substrate—which is
mounted on a high-precision x-y-z (Aerotech) translation
stage—once through the focus of the femtosecond laser
beam. The laser pulse energy and translation speed of
fabrication are optimized to obtain low-loss single-mode
optical waveguides near the 1030 nm wavelength. The
maximal insertion (propagationþ bendþ input coupling)
loss for the entire lattice is measured to be 7.5 dB, and no
significant polarization-dependent loss is detected in our
experiments.
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FIG. 7. Nonlinear edge states near the power value associated
with the IPR peak. (a),(b) Propagation of a single-site input wave
packet on the edge of the periodically driven lattice (δ ¼ 0.18)
with two different renormalized powers P indicated in each plot.
The optimal solitonlike propagation of the nonlinear edge state
with minimal radiation (i.e., with the longest lifetime) is asso-
ciated with the IPR peak; see Fig. 2(b) and the solid red line in (c).
As shown in (a) and (b), there exist similar nonlinear states with
excess radiation near (i.e., before and after) the IPR peak. (c) The
variation of the fraction of total normalized power on the zigzag
edge, for different values of renormalized powers indicated in the
figures.
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2. Nonlinear characterization

Figure 8(a) presents a simplified schematic of the non-
linear characterization setup. We use laser pulses at 5 kHz
repetition rate generated by the Menlo BlueCut system. The
average input power can be tuned in our experiments by
using a combination of a half wave plate and a polarizing
beam splitter. A parallel grating pair is used to temporally
stretch (and down-chirp) the pulses to 2 ps. To gauge the
nonlinear loss due to multiphoton absorption, we measure
the average output power as a function of the average input
power for all nonlinear characterizations, and a linear
variation is observed, as shown in Fig. 8(b). This linear
variation of Pout with the input power Pin implies that
nonlinear losses can be ignored in our experiments.
As mentioned in the main text, the temporal shape of the

laser pulses can cause undesired effects such as self-phase

modulation (i.e., generation of new wavelengths) and chro-
matic dispersion. To access self-focusing nonlinearity with a
minimal self-phase modulation, we use temporally stretched
and down-chirped laser pulses. In this situation, a maximal
spectralwidth of<20 nm is observed in our experiments; see
Fig. 8(c). In thiswavelength range, the evanescent coupling J
varies only by ΔJ=J ¼ �4%, which is of the order of the
unavoidable small disorder present in the lattice. Hence, we
can safely ignore the effects of self-phase modulation in our
experiments. The effect of chromatic dispersion is negligibly
small for the maximal propagation distance (76 mm) con-
sidered in our experiments [44].

3. Estimation of P

The renormalized power P is experimentally calibrated
by characterizing a two-waveguide directional coupler with
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FIG. 8. Nonlinear characterization. (a) Simplified schematic of the nonlinear characterization setup. Here, WP is a half wave plate,
PBS is a polarizing beam splitter, G1;2 is a parallel grating pair, L1;2 are air-coated convex lenses, and BS is a beam splitter. Laser pulse
trains at 1030� 4 nm wavelength, 5 kHz pulse repetition rate, and 260 fs pulse duration are generated using a Yb-doped fiber laser
(Menlo BlueCut) system. The parallel grating pair is used to temporally stretch (and down-chirp) the pulses to 2 ps. The intensity
patterns at the output of the photonic lattices are imaged on a CMOS camera, and the optical spectrum (intensity vs wavelength) is
measured using an optical spectrum analyzer (OSA). (b) The variation of average output power Pout with the input power Pin. The linear
variation implies that nonlinear losses due to multiphoton absorption processes can be ignored in our experiments. Here, three datasets
are shown, and the dashed line indicates a linear fit. (c) Self-phase modulation (SPM) induced by Kerr nonlinearity. Here, the normalized
spectral powers are shown for five sets of average input powers. The spectral width in the linear regime (shown in blue) is approximately
8 nm (FWHM). At higher powers, the spectrum changes due to SPM; however, the maximal spectral width after 76 mm of propagation
is measured to be less than 20 nm for the maximal required nonlinearity. (d) The renormalized power P is estimated by characterizing a
nonlinear directional coupler. The data in red (blue) are the measured normalized intensity I1ð2Þ at the output of waveguide 1 (2) (light is
launched into waveguide 1). The solid lines are obtained by solving Eq. (C1) and fitting P at the input to be 0.046 mm−1 for unit input
power in milliwatts.
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a known coupling strength and linear loss coefficient. The
paraxial propagation of light in a nonlinear directional
coupler is governed by [59]

i
∂
∂zΦ1;2 ¼ −JΦ2;1 − jΦ1;2j2Φ1;2 − iαΦ1;2; ðC1Þ

where J is the coupling strength, α is a measure of linear
loss, and jΦ1;2j2 is proportional to the optical power at
waveguide 1 and 2, respectively. It should be mentioned
thatP ¼ ðjΦ1j2 þ jΦ2j2Þ is not a conserved quantity during
propagation when optical losses are present—here, we
experimentally estimate Pðz ¼ 0Þ. In the experiments, we
launch light at waveguide 1; the variation of normalized
output intensities jΦ1;2j2=ðjΦ1j2 þ jΦ2j2Þ with average
input power is presented in Fig. 8(d). The solid lines are
obtained by solving Eq. (C1) and fitting P at the input to be
0.046 mm−1 for unit input power in milliwatts.

APPENDIX D: SOLITONLIKE EDGE STATE
ENCOUNTERING A SINGLE DEFECT ON THE

EDGE OF THE TOPOLOGICAL LATTICE

In the main text, we experimentally demonstrate that the
solitonlike edge state can travel around a corner without
backscattering. In this section, we consider a more general
situation, i.e., what happens when the solitonlike edge state
encounters a single defect on the edge with variable on-site
energy. We show that the solitonlike nonlinear state is not
largely affected by a weak defect; however, it can scatter and
fall apart in thepresence of a strong one. Importantly, because
of the underlying topological properties, backscattering is
not allowed even in the nonlinear case, simply because of the
absence of a backward-propagating linear mode.
Consider the periodically driven square lattice discussed

in the main text with δ ¼ 0.18. As shown in Fig. 9(a), the
on-site energy of a single site on the edge is detuned by Δ
with respect to the other waveguides. This corresponds to
adding an extra term −Δδs;s0Φs on the right-hand side of
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FIG. 9. A single defect on the edge. (a) Schematic of the driven square lattice discussed in the main text with δ ¼ 0.18 and a detuned
site indicated by the magenta color. The nonlinear solitonlike state is injected at a single site (indicated by an arrow) and then detected
after the state travels through a defect site. (b) Normalized peak power detected after propagation of z ¼ 5z0 as a function of the detuning
of the on-site energy of the defect site. (c)–(e) Output intensity pattern associated with (b) for three different detunings Δ=Ω ¼ 0, 0.3,
and 0.8, respectively. For zero or small disorder [i.e., (c) and (d), respectively], the solitonlike state propagates unidirectionally with
minimal radiation. For a comparatively larger disorder Δ=Ω ¼ 0.8, the solitonlike state falls apart as shown in (e). (f) For an extensive
detuning Δ=Ω ¼ 20, the nonlinear state travels around the defect site—this is similar to the situation wherein the defect site is removed.
The white circle indicates the site at which light is injected at the input.
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Eq. (1), where s0 indexes the detuned site and δi;j is the
Kronecker delta function. In our numerical calculations, the
optimal solitonlike state is injected at a single site [indi-
cated by an arrow in Fig. 9(a)] and then detected after the
state travels through the detuned site. The normalized peak
power after propagation of z ¼ 5z0 is plotted in Fig. 9(b) as
a function of the detuned on-site energy of the defect
site. The associated output intensity patterns for three
different detunings, Δ=Ω ¼ 0, 0.3, and 0.8, are shown in
Figs. 9(c)–9(e), respectively. For zero or a small detuning
[i.e., Figs. 9(c) and A5(d), respectively], the solitonlike
state propagates unidirectionally with small radiation.
Unlike the linear case, a small on-site defect can increase
the radiation and, hence, reduce the lifetime of the non-
linear state. For a comparatively larger detuning
Δ=Ω ¼ 0.8, which is of the order of the band gap, the
solitonlike state falls apart, as shown in Fig. 9(e). In
Fig. 9(f), we consider Δ=Ω ¼ 20, implying that the defect
site is effectively isolated from the lattice. In this case, the
nonlinear state travels around the defect site.
In summary, the solitonlike state in our discrete photonic

lattice can travel unidirectionally without backscattering,
because there is no state available to backscatter. Under
certain conditions, the nonlinearity can enhance radiation
because of the complex nonlinear mode mixing.

APPENDIX E: DESCRIPTION OF THE
SUPPLEMENTAL MOVIES

1. Movies 1–3
Propagation of a single-site input wave packet on the

edge of the periodically driven lattice (δ ¼ 0.18) with three
different renormalized powers P, indicated in each movie.
The white circle in each image indicates the site where the
light is launched at the input. Unlike Figs. 2(a)–2(c) in the
main text, the full two-dimensional lattice is shown in these
movies. For P → 0 (Movie 1) and P ¼ 2.1Ω (Movie 3),
the input state spreads out along the edge as well as
penetrates the bulk. At a certain intermediate power value
(P ¼ 1.05Ω, Movie 2), the input state propagates unidirec-
tionally up to a long propagation distance with minimal
radiation.

2. Movie 4

Experimentally measured intensity patterns (left) and
calculated inverse participation ratio (right) at propagation
distance z ¼ 2z0 for the driving parameter δ ¼ 0.26—a
clear peak in the IPR is visible as a function of input power.
The input state propagates two unit cells along the bottom
edge with minimal spreading when the average input power
is near Pin ¼ 5.1 mW. The white circle indicates the lattice
site where light is launched at the input. Each image is
normalized, and the field of view is smaller than the
lattice size.
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