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Abstract
Let X → P

1 be an elliptically fibered K3 surface, admitting a sequence ωi of Ricci-
flat metrics collapsing the fibers. Let V be a holomorphic SU (n) bundle over X , stable
with respect to ωi . Given the corresponding sequence �i of Hermitian–Yang–Mills
connections on V , we prove that, if E is a generic fiber, the restricted sequence �i |E
converges to a flat connection A0. Furthermore, if the restriction V |E is of the form
⊕n

j=1OE (q j − 0) for n distinct points q j ∈ E , then these points uniquely determine
A0.

Keywords Hermitian-Yang-Mills · Holomorphic degenerations · Elliptic fibrations ·
K3 surfaces

Mathematics Subject Classification 53B35 · 53C07 · 53C26 · 53C55

1 Introduction

In this paper, we study degenerations of Hermitian–Yang–Mills connections on a K3
surface. We are motivated by the work of Gross–Wilson [1], and later Gross–Tosatti–
Zhang [2,3], who study Ricci-flat metrics on elliptically fibered Calabi–Yau’s as the
volume of the fibers tends to zero (see also [4–7]). These types of degenerations relate
to the conjectural picture ofmirror symmetry put forth byStrominger–Yau–Zaslow [8],
who postulate that mirror Calabi–Yaumanifolds are given by dual torus fibrations over
a real base with a singular affine structure. One major challenge when confronting this
conjecture is the difficulty associated with constructing Lagrangian torus fibrations on
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a given Calabi–Yau. However, if one instead considers degenerations of Calabi–Yau’s,
the fibration structure often becomes apparent in the limit.

Vafa’s extension of themirror symmetry conjecture to include holomorphic bundles
raises the question of how Yang–Mills connections behave under these degenerations
[9]. For a general abelian fibered Calabi–Yau, Fukaya makes the following conjecture:
Given a sequence of Yang–Mills connections on a family of Calabi–Yau metrics with
collapsing fibers, there exists a rectifiable set in the base of real codimension at least
2, such that on all fibers away from this set, the connections have bounded curvature,
and the restriction to each torus fiber converges to a flat connection [10, Conjecture
5.5]. In the context of SYZ mirror symmetry, a fiberwise flat connection will define a
Lagrangian submanifold L in the mirror Calabi–Yau, and Fukaya further conjectures
there exists a corresponding mirror sequence of Lagrangians converging to L. In this
paper we partially address the vector bundle portion of Fukaya’s conjecture, in the
case of a fixed holomorphic SU (n) bundle over a K3 surface.

Our setup is as follows. Let π : X → P
1 be an elliptic K3 surface. Let ωP1 be a

Kähler form on P1, and ωX a Kähler form on X . Consider the family π∗ωP1 + t2ωX ,
which approaches the boundary of the Kähler cone as t → 0, and let ωt be the unique
Ricci-flat metric in the class [π∗ωP1 + t2ωX ] given by Yau’s theorem [11]. Next, let
(V , ∂̄�) be a holomorphic SU (n) bundle over X , with a fixed metric H0. Assume
there exists a sequence ti → 0 such that the bundle V is stable with respect to ωti .
By the theorem of Donaldson, Uhlenback–Yau [12,13], there exists a corresponding
sequence of connections �i solving the Hermitian–Yang–Mills (HYM) equations:

F�i ∧ ωti = 0 and (F�i )
0,2 = 0.

Furthermore, each �i is complex gauge equivalent to �, so they define the same
holomorphic structure (see (3.1)). We now state our main result:

Theorem 1.1 With the set-up as above:

(1) There exists a finite subset Z ⊂ P
1, such that for any x ∈ P

1 \ Z, if E = π−1(x),
then the restriction �i

∣
∣
E converges smoothly, along a subsequence and modulo

unitary gauge transformations, to a flat connection on the fiber.
(2) Furthermore, if the restriction V |E is isomorphic to a direct sum of line bundles

⊕n
j=1OE (q j − 0) for n distinct points q j ∈ E, then the limiting flat connection is

uniquely determined, and given by

A0 = π

Im(τ )
(diag{q̄1, . . . , q̄n}dz − diag{q1, . . . , qn}dz̄) , (1.1)

where z is the holomorphic coordinate on the fiber, and τ determines the complex
structure. In this case, we also have the following convergence:

||�i |E − A0||L2
1(E,H0,g0,A0)

→ 0.

Here g0 is a flat reference metric on E, and the flat connection A0 is used to
compute derivatives.
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Note that in the second point above, no gauge transformations are needed for conver-
gence. The first point follows from a bubbling argument. Our sequence of connections
has bounded Yang–Mills energy, thus there can only be a finite number of bubbles, and
we show away from these bubbles the curvature of�i |E must approach zero in the C0

norm. This step closely follows two cases from Dostoglou–Salamon, from their proof
of the Atiyah–Floer conjecture [14,15]. The key difference here is that our Ricci flat
metric ωti is not a product metric, so we rely on certain convergence results for ωti .

It then follows that�i |E must approach some limiting flat connection, and the main
contribution of this paper is the explicit identification of the limit, under the assumption
that the restriction of the holomorphic bundle V |E is isomorphic to a direct sum of
line bundles ⊕n

j=1OE (q j − 0). We use the observation that, because our sequence
of connections �i all define a fixed holomorphic structure, there exists a sequence of
Hermitian endomorphisms si satisfying �i |E = esi (A0) (where this action is defined
by (3.1)). Although there is no hope of achieving C0 control of si , we prove a gauge
fixing result, and demonstrate that there exists a suitable normalization s′

i , defining
the same connection, which in addition satisfies a uniform C0 bound. This significant
step is detailed in Theorem 5.1, which in particular hinges on a Poincaré inequality
(5.1), where the explicit form of V |E is used. From here, convergence of �i |E to A0
stated in Theorem 1.1 follows from standard theory.

Next, we turn to a specific geometric setup where Theorem 1.1 applies. Although
this setup requires more assumptions, it has the benefit of producing explicit examples
of bundles where the the limiting flat connection can be identified on a generic fiber.
We now assume π : X → P

1 is a projective, elliptic K3 surface with a section σ

and singular fibers of type I1 or I I . Assume the restriction of V to a generic fiber
is semi-stable and regular (see Sect. 3 for relevant definitions). Then by the work of
Friedman–Morgan–Witten in [16], there exists a divisor DV ∈ |nσ(P1) + kl|, called
the spectral cover associated to V , where l denotes the effective divisor class of the
fibers, and k ∈ Z satisfies 0 ≤ k ≤ c2(V ). If DV is reduced and irreducible, then V is
stable with respect to π∗[ωP1 ] + t2[ωX ] for any ample class [ωX ] on X , for 0 < t2 ≤
( n

3

4 c2(V ))−1. Thus, for any sequence ti → 0 we can always find a corresponding
sequence of HYM connections �i on V . More importantly, the intersection of the
spectral cover DV with a generic fiber E precisely picks out the points q1, . . . , qn
from (1.1), and so the limiting flat connection is uniquely determined away from the
ramification points of DV .

Corollary 1.2 Assume π : X → P
1 is a projective, elliptic K3 surface with a section,

with singular fibers of type I1 or I I . Let V be a holomorphic SU (n) bundle where
the restriction to a generic fiber is semi-stable and regular, and assume the spectral
cover DV is reduced and irreducible. Then for any sequence ti → 0, there exists a
sequence of HYM connections�i on V corresponding toωti . Furthermore, away from
a finite number of fibers, there exists a HYM connection �0 uniquely determined by
DV , satisfying �0|E = A0, where A0 is defined via (1.1). Specifically, on a generic
fiber E the points q1, . . . , qn defining A0 are given by

DV ∩ E = q1 + · · · + qn .
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On E we again have the convergence

||�i |E − �0|E ||L2
1(E,H0,g0,A0)

→ 0.

The above setup is particularly attractive in that it allows for us to specify the limiting
flat connection in a family that varies homomorphically in the base. Thus our result is
a natural starting place to explore convergence in general, as opposed to only in the
fiber direction.

Since adiabatic limits of Yang–Mills connections are fairly well studied, we now
put our work in the context of previous results. Working on the product of two com-
pact Riemann surfaces with trivial fibration π : �1 × �2 → �1, J. Chen considers a
family of metrics collapsing the fibers, and analyzes the convergence of a correspond-
ing family of anti-self dual Yang–Mills connections [17, Theorem 4.10]. Assuming
that �2 has genus at least two, he proves that, modulo a sequence of gauge transfor-
mations and away from a bubbling set, the fiber component of the connection will
converge continuously to a flat connection. Following this work, and using Fukaya’s
gauge fixing theorem [18, Theorem 1.7], T. Nishinou improves upon Chen’s result,
demonstrating smooth convergence away from a finite number of fibers and modulo
gauge transformations, where the restriction of the limit to a fiber will be flat [19,
Theorem 1.2]. This result requires the moduli space of flat connections over �2 to be
smooth and of expected dimension, with no reducible flat connections. The failure of
such an assumption to hold over an elliptic curve is a major obstacle to extending the
above results to elliptic fibrations.

In the case of SU (2) bundles over the product of elliptic curves, in [20] Nishinou
is able to partially extend his above results, after utilizing his gauge fixing theorem
from [21, Theorem 3.11]. In some ways, our Theorem 5.1 can be thought of as a
generalization to higher rank of this gauge fixing theorem, although we have already
assumed existence of a fixed holomorphic structure. In fact, this assumption serves
as a major simplification throughout our paper, compared to the general case of a
sequence of anti-self dual Yang–Mills connections considered in [14,17–20]. Themost
notable simplification is that, because our sequence of connections�i are all complex
gauge equivalent to �, we can bypass working with a sequence of holomorphic maps
(which plays a role in [17,19,20]), as well as the more difficult type three bubbles
of Dostoglou–Salamon [14,15]. Additionally, this assumption allows us to prove the
convergence in the second point of Theorem 1.1 directly, without relying on unitary
gauge transformations.

Although our main result only applies to the restriction of�i to each fiber, one may
hope to demonstrate convergence on any compact set away from a finite number of
fibers. Nishinou achieves this in [19] and [20], as his assumptions allow a Poincaré
type inequality in a neighborhood of a fiber, even in the elliptic curve case (this
follows from the estimate in Lemma 6.43 from [18]). This estimate implies that once
C0 control of the complexified gauge transformation is demonstrated on one fiber, it
holds for nearby fibers. Unfortunately we are unable to extend Lemma 6.43 from [18]
to our setting, as our Poincare inequality (Proposition 5.2) requires a normalization
that only holds fiberwise. Another result in this direction is proven by Fu in [22],
who considers a specific rank two bundle over the product of two elliptic curves
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which is given by a two sheeted spectral cover. He defines a reference metric which
satisfies desired asymptotic behavior near the ramification points of the cover, and
then demonstrates that the a sequence of HYMmetrics will converge smoothly to this
reference metric. Because in our setting we consider a spectral cover as well, one may
hope to extend Fu’s result to the K3 surface case. Here, one major difficulty is the
problem of constructing a reference metric near the singularities of the fibration. It
is possible that the asymptotics of the metrics constructed in [23–25] may provide a
clue, and we hope to investigate these types of constructions in future work.

Finally, we remark that after an earlier draft of this paper appeared, building on
this work, the authors, along with Y. Zhang, were able to demonstrate convergence
of �i on compact sets away from a finite number of fibers, under the assumptions of
Corollary 1.2. We direct the reader to [26] for details.

Our paper is organized as follows. In Sect. 2 we describe in detail semi-flat Kähler
metrics on a K3 surface, which serve as a local model for our degenerating Ricci-flat
metrics away from the singular fibers. Next in Sect. 3 we introduce the necessary
background on holomorphic vector bundles over elliptic fibrations, and state some
preliminary results. Our bubbling argument in described Sect. 4. We then turn to
identifying the limiting flat connection, and prove our gauge fixing result is Sect. 5.
In Sect. 6 we complete the proof of our main theorem, and demonstrate convergence
of our connections.

2 Semi-Flat Kähler Metrics

In this section, we review the construction of semi-flat Kähler metrics on a K3 surface.
These metrics will not only describe the limiting behavior of the Ricci-flat metrics in
dilated coordinates, and thus play a role in our bubbling argument, but they will also be
useful for our understanding of the holomorphic structure of V . To begin, we introduce
the notion of a special Kähler metric, which lives on the base of our elliptic fibration,
and are a useful starting place to defining the semi-flat metric. We will closely follow
the paper of Freed [27].

Let B be a Riemannian manifold of real dimension two. Assume T B admits a
flat, torsion free connection ∇B , which gives a covering of B by local affine coordi-
nate charts. Furthermore, assume the coordinate transformations lie in SL(2,R). Let
(x1, x2) be coordinates in a local chart, and let φi j dxi dx j be a Hessian metric solving
the real Monge-Ampere equation

det(φi j ) = 1. (2.1)

Here, we use the notation φi j := ∂2φ

∂xi ∂x j for a smooth function φ on B. We also denote
∂φ

∂xi
by φi .

Consider the locally defined 2-form ωB = dx1 ∧ dx2. Because SL(2,R) =
Sp(2,R), any matrix A ∈ SL(2,R) preserves ωB , and thus ωB is well defined on
all of B. It defines both a natural symplectic form and a volume form. Furthermore,
∇BωB = 0, and so ∇B is a symplectic connection. Taken together, ωB and φi j define
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an almost complex structure I on T B, which in coordinates can be expressed by

I

(
∂

∂xk

)

= −φk2
∂

∂x1
+ φk1

∂

∂x2
,

for k = 1, 2. One can show explicitly that Nijenhuis tensor of I vanishes and thus it
is integrable.

Definition 2.1 (B, ωB, I ) is special Kähler if it admits a real, flat, torsion-free, sym-
plectic connection ∇B satisfying

d∇B I = 0.

To see that B is special Kähler, note in affine coordinates the flat connection ∇B is
simply given by d, and so

∂

∂xk
I pq − ∂

∂xq
I pk = 0,

which follows because φi j is a Hessian metric.
Given the complex structure I , we can give holomorphic coordinate functions on

B.

Lemma 2.2 The functions

w = x1 + iφ2 and ξ = −x2 + iφ1.

are holomorphic with respect to the complex structure I .

Proof Taking the exterior derivative gives dw = (1 + iφ12)dx1 + iφ22dx2 and dξ =
iφ11dx1 − (1 − iφ12)dx2. By our explicit representation of I it is easy to check that
I (dw) = idw and I (dξ) = idξ . �
For the remainder of the paper we choose w as our holomorphic coordinate on the
base. We would like to better understand the holomorphic vector field ∂

∂w
. First, note

that the coordinate transformation T (x1, x2) → (w, w̄) has pushforward matrix

T∗ =
(

1 + iφ12 iφ22
1 − iφ12 −iφ22

)

and T−1∗ = 1

2

(

1 1
−i φ11

1+iφ12
i φ11
1−iφ12

)

,

where we have used (2.1). We now compute the partial derivative

∂ξ

∂w
= ∂ξ

∂x1
∂x1

∂w
+ ∂ξ

∂x2
∂x2

∂w

= (iφ11)

(
1

2

)

+ (−1 + iφ12)

(−i
2

φ11

1 + iφ12

)

= i
2
φ11

(

1 + 1 − iφ12

1 + iφ12

)

= i
φ11

1 + iφ12
= i

1 − iφ12

φ22
, (2.2)
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where the last equality follows from (2.1). For simplicity we will use the notation
τ := ∂ξ

∂w
, as τ will define the complex structure of our elliptic fibers. Then, by the

explicit formula from Freed [27, Equation (1.12)], we see

∂

∂w
= 1

2

(
∂

∂x1
− τ

∂

∂x2

)

.

Next we construct a hyper-Kähler structure on T B. Quotienting out T B by a lattice
� will give a local model for our elliptic fibration X away from the singular fibers. To
begin, consider the following extension of our Hessian metric to T B:

g = φi j

(

dxidx j + dyidy j
)

.

With this metric we define three complex structures which make up a hyper-Kähler
triple.

By a slight abuse of notation, let I denote the complex structure on T B induced
from the complex structure I on the base. In particular I can be expressed as

I

(
∂

∂xk

)

= −φk2
∂

∂x1
+ φk1

∂

∂x2
and I

(
∂

∂ yk

)

= φk2
∂

∂ y1
− φk1

∂

∂ y2

for k = 1, 2. The corresponding Kähler form is given by

ωI = dx1 ∧ dx2 − dy1 ∧ dy2. (2.3)

In this complex structure the fibers are holomorphic subvarieties.
Next, we consider a complex structures J where the fibers are special Lagrangian,

defined by

J

(
∂

∂xk

)

= ∂

∂ yk
and J

(
∂

∂ yk

)

= ∂

∂xk
.

Using the metric g the corresponding Kähler form is

ωJ = φi j dx
i ∧ dy j .

Finally, one can define the complex structure K = J I , which together with g gives
the Kähler form

ωK = dx1 ∧ dy2 − dx2 ∧ dy1.

It is easy to see that ωI , ωJ and ωK are closed, and by a lemma of Hitchin [28] it
follows that I , J , and K are integrable complex structures. In the standard fashion we
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can construct the following top dimensional holomorphic forms:

�I = ωK + iωJ

�J = ωI + iωK

�K = ωI + iωJ ,

giving hyper-Käher triple. Note the metric and complex structures defined above are
invariant under translation in the y−coordinates. Thus, if � is the standard lattice
〈1, 1〉, the entire setup will descend to the elliptically fibered manifold T B/�.

We now construct complex coordinates on T B/�. We have a complex coordinate
w on the base B, and in the fiber direction we define

z = τ y1 + y2. (2.4)

Here, τ represents the complex period of the elliptic curve, and is defined above in
(2.2). By definition τ := ∂ξ

∂w
, and since ξ is a holomorphic function, τ is holomorphic

in w as well. This leads to the following:

Lemma 2.3 The coordinates (w, z) are holomorphic coordinates on T B/� with
respect to I .

Proof Lemma 2.2 shows that w is holomorphic, and so it remains to be seen that
dz(V ) = 0 for all vector fields V of type (0, 1). Taking the exterior derivative of z
gives

dz = τdy1 + y1
∂τ

∂w
dw + dy2, (2.5)

where we used τ is holomorphic. At first glance, the term y1 ∂τ
∂w

dw may seem out
of place, however, it is important to remember that unless τ is constant, our local
picture is not the cartesian product of the base with an elliptic curve, and so this term
is expected.

Consider the vector field

∂

∂ z̄
= 1

2

(
∂

∂ y1
− iφ11

1 + iφ12

∂

∂ y2

)

.

From the explicit form of dz, we see that in order for ∂
∂ z̄ to be anti-holomorphic, it

needs to be killed by the form dw on the base.
Using the definition of I , and the fact that det(φi j ) = 1, we compute

I

(
∂

∂ z̄

)

= 1

2

(

φ12 − iφ11φ22

1 + iφ12

)
∂

∂ y1
+ 1

2

(

−φ11 + iφ11φ12

1 + iφ12

)
∂

∂ y2

= 1

2
(−i)

∂

∂ y1
+ 1

2

(

− φ11

1 + iφ12

)
∂

∂ y2
= −i

∂

∂ z̄
,
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which demonstrates this vector field is of type (0, 1). By Lemma 2.2 it follows that

dw
(

∂
∂ z̄

)

= 0. Additionally, we have

(τdy1 + dy2)

(
∂

∂ z̄

)

= 1

2
(τ − τ) = 0.

So dz( ∂
∂ z̄ ) = 0. Since ∂

∂w̄
and ∂

∂ z̄ span all local (0, 1) vector fields, we conclude that
(w, z) are holomorphic coordinates. �

We conclude this section with a more detailed discussion of how the Ricci-flat
Kähler metrics behave in the limit. We recall our setup from the introduction. Let
π : X → P

1 be an elliptic K3 surface, and denote by Zπ the image of the singular
fibers. Let ωP1 be the Fubini-Study metric on on P1, and ωX a Kähler form on X . Let
ωt be the unique Ricci-flat metric in the class [π∗ωP1 + t2ωX ]. The convergence we
need is local, so we fix a small, simply connected open set U ⊂ P

1 away from Zπ ,
and define XU := π−1(U ). On U we can consider the Kähler form ωB along with
the Hessian metric φi j , which on this small open set is equivalent to ωP1 . On XU we
have the fixed background metric ωX , but we also have the Kähler form ωI as defined
above, called the semi-flat metric, and we denote it by ωI =: ωSF for emphasis.

We will need the following uniform equivalence result. By [2, Lemma 4.1], there
exists a constant C so that for t small enough

C−1
(

π∗ωP1 + t2 ωX

)

≤ ωt ≤ C
(

π∗ωP1 + t2 ωX

)

. (2.6)

We also need a result that demonstrates how ωt degenerates. Consider the projection
p : U ×C → (U ×C)/� =: XU , and the coordinate transformation Lt : U ×C →
U × C defined by

Lt (x, y) = (x,
y

t
). (2.7)

This coordinate transformation is a dilatation, designed so that the size of the fibers
of π with respect to the metric L∗

t p
∗ωt are fixed. We will use the following result of

Hein-Tosatti from [4, Proof of Theorem 1.1], which demonstrates how the semi-flat
metric serves as a model for the limiting behavior of ωt .

Proposition 2.4 (Hein-Tosatti [4]) There exists a constant C so that for t small enough

C−1 p∗ (

π∗ωB + ωSF
) ≤ L∗

t p
∗ωt ≤ Cp∗ (

π∗ωB + ωSF
)

.

This estimate also appears in [7], with the extra assumption that X is projective. For
more details on convergence results, we direct the reader to [2,3].
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3 Holomorphic Bundles over Elliptic Manifolds

In this section, we provide the necessary background on holomorphic vector bundles,
including the relevant notions of stability needed to construct our sequence of HYM
connections. We also introduce the construction of a spectral cover associated to V ,
following Friedman–Morgan–Witten [16] (see also [29–31]), and conclude the section
with the construction of �0 used in Corollary 1.2.

To begin, suppose (X , ω) is a compact Kähler manifold of complex dimension m.
Let (V , ∂̄�) be a holomorphic bundle over X . For any Hermitian metric H0 on V ,
there exists a unique connection, called the Chern connection, compatible with both
the metric and the holomorphic structure, which we denote by �. The degree of V is
defined by the following integral:

deg(V , ω) = i
∫

X
Tr(F�) ∧ ωm−1.

Given two metrics on V , the curvatures of the two corresponding Chern connections
will differ by a ∂∂̄-exact term, demonstrating that the degree is independent of a choice
of metric. Furthermore, the degree does not depend on the representative of the Kähler
class [ω]. However, for m > 1, changing the class may change the degree.

Definition 3.1 (V , ω) is stable if, for all proper, torsion-free subsheaves F ⊂ E ,

deg(F, ω)

rk(F)
<

deg(V , ω)

rk(V )
.

(V , ω) is semi-stable if the above expression holds with a weak inequality.

Note that if F is not locally free, its degree is defined by computing the degree of
det(F), which is always a line bundle.

On any complex manifold, the space of one forms decomposes into the eigenspaces
for±iwith respect to the complex structure. This allows us to write the any connection
� as � = �1,0 + �0,1. Using this decomposition, one can define an action of the
complexified gauge group on the space of connections. Specifically, if σ ∈ GL(V ),
then

σ(�) = σ ∗−1�1,0σ ∗ + σ ∗−1∂σ ∗ + σ�0,1σ−1 − ∂̄σσ−1, (3.1)

Note that if σ is in fact unitary, the above action reduces to the standard action of the
unitary gauge group. In this case, we use the standard notation u∗� for the unitary
action.

We now turn to the HYM equations on a general Kähler manifold:

iF� ∧ ωm−1 = m deg(V , ω)

rk(V)Vol(X)
I dV ωm and (F�)0,2 = 0. (3.2)
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For any metric g on X and connection � on V , the Yang–Mills energy is defined by
the following integral

YM(�, g) :=
∫

X
|F�|2H0,g dVg.

Critical points of this energy functional are called Yang–Mills connections, and one
can check using the Kähler identities that HYM connections are are special class of
Yang–Mills connections which are compatible with the complex structure on X .

Note that second equation in (3.2) stipulates that � is compatible with the holo-
morphic structure on V . By definition this second equation is satisfied by the Chern
connection�, and one can check this compatibility is preserved along the action (3.1).
This leads to the following question: Given a holomorphic vector bundle with fixed
metric H0, does there exist a solution �̂ to (3.2) in the orbit of (3.1)? A definitive
answer to this question was given by Donaldson, Uhlenbeck–Yau, in the following
fundamental result.

Theorem 3.2 (Donaldson [12], Uhlenbeck–Yau [13]) A holomorphic bundle V over
(X , ω) admits a unique Hermitian–Yang–Mills connection in the complex gauge orbit
of the Chern connection if and only if it is stable.

In fact, one can prove that if �̂ is the unique Hermitian–Yang–Mills connection, it can
be expressed as �̂ = es(�), where s is a trace free Hermitian endomorphism of V .

Given this background, we return to our setup. Let π : X → P
1 be an elliptically

fibered K3 surface, and let ωt be the unique Ricci-flat Kähler metric in the class
[π∗ωP1 + t2 ωX ]. Assume (V , ∂̄�) is a holomorphic SU (n) bundle over X . This
implies the curvature F� is trace free, and so deg(V , ωt ) = 0 for all t . Furthermore,
assume that (V , ∂̄�) is stable with respect to ωti for some sequence ti → 0. Let gti be
the Kähler metrics associated to ωti . By the theorem of Donaldson–Uhlenbeck–Yau
there exists a corresponding sequence of HYM connections �i on V . Note that in our
particular setting, the HYM equations take the simpler form

F� ∧ ω = 0 and (F�)0,2 = 0.

We will need the following Lemma, which states that the Yang–Mills energy of a
HYM connection is a topological invariant. This result is standard, and can be found,
for instance, in [32]. We include a proof for the reader’s convenience.

Lemma 3.3 The Yang–Mills energy of �i with respect to the metric gti , is fixed, i.e.

YM(�i , gti ) = YM(�, gt0).

Proof Let i�ω denote the adjoint of wedging with the Kähler form ω. Then, the
equation F� ∧ ω = 0 can be equivalently expressed as i�ωF� = 0. Equality (4.4.5)
in [33] shows that for any complex surface X one has

∫

X
Tr(F�i ∧ F�i ) = ||F�i ||2L2(H0,gti )

− ||i�ωti
F�t ||2L2(H0,gti )

.
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Since F�i is HYM with respect to gti , the right most term vanishes, and so

YM(�i , gti ) =
∫

X
Tr(F�i ∧ F�i ).

The right-hand side above yields a topological invariant [c2(V ) − 1
2c

2
1(V )] ∪ X , and

is thus independent of i , proving the lemma. �
We now review the Friedman–Morgan–Witten construction of stable holomorphic

bundles on elliptic fibrations with sections, and is needed for Corollary 1.2. We begin
by looking at a single fiber. Let E be an elliptic curve, and 0 ∈ E the identity of the
group law. Denote the trivial line bundle byO, and given a point q ∈ E , letOE (q−0)
be the line bundle associated to the divisor q − 0. We also define a sequence of rank r
bundles (denoted Ir ) inductively, with I1 = O and Ir the unique nontrivial extension
of Ir−1 by O. Recall the following theorem of Atiyah (Theorem 5 from [34]):

Theorem 3.4 (Atiyah [34]) Any semi-stable, degree zero bundle V over E is isomor-
phic to a direct sum of bundles of the form OE (q − 0) ⊗ Ir , i.e.

V ∼=


⊕

j=1

OE (q j − 0) ⊗ Ir j .

Definition 3.5 A semi-stable bundle is called regular if in the above direct sum qi �= q j

for i �= j .

Note that bundles of the form OE (q j − 0) ⊗ Ir j do not admit flat connections unless
r j = 1. However, we can instead replaceOE (q j −0)⊗Ir j with its Seshadri filtration
OE (q j − 0)⊕r j , and define all bundles with the same Seshadri filtration to be S-
equivalent. We then see the S-equivalence class of an SU (n) bundle is determined by
n points q1, . . . , qn (counted with multiplicities) satisfying q1 + · · · + qn = 0.

Thus, we can describe the moduli space of S-equivalence classes of SU (n) bundles
as follows. Let W := H0(E,O(n0)) be the space of meromorphic functions φ that
have a pole of at most order n at 0, with no other poles. By Abel’s Theorem φ must
have n zeros satisfying q1 + · · · + qn = 0. If φ has a pole of order less than n at 0, we
interpret this as some of the qi are 0. The zeros of φ are preserved under multiplication
by an element of C∗, and so the moduli space is PW ∼= P

n−1.
Next consider a projective elliptic fibration π : X → P

1, with singular fibers of
type I1 or I I (this extra assumption gives that X coincides with itsWeierstrass model).
Over each generic point x in the base there is an elliptic curve Ex := π−1(x) and a
moduli spacePn−1

x of SU (n) bundles. Friedman–Morgan–Witten demonstrate that the
projective spaces glue together to form a Pn−1 bundle over the base, which we denote
byW. A holomorphic SU (n) bundle V over X which restricts to a semi-stable bundle
on each fiber determines a section s of W, which in turn defines a divsor DV ⊂ X .
Specifically, each point x in the base determines n points in Ex , thus DV is an n-fold
ramified cover of P1. More precisely, in Sect. 4 of [16] it is demonstrated:
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Theorem 3.6 (Friedman–Morgan–Witten [16]) Let π : X → P
1 be an elliptic fibra-

tion with a section σ , with singular fibers of type I1 or I I . Let V be a holomorphic
bundle of rank n over X. Assume that the restriction of V to a generic fiber of π is
semi-stable and regular. Then, there exists a divisor

DV ∈ |nσ(P1) + kl|,

called the spectral cover associated to V , where l denotes the effective divisor class
of the fibers of π , k ∈ Z satisfies 0 ≤ k ≤ c2(V ). For a generic x ∈ P

1\Zπ , if
V |Ex

∼= ⊕
j=1OE (q j − 0) ⊗ Ir j , then

DV ∩ Ex =


∑

j=1

r jq j ∈ |nσ(x)|.

If V admits a spectral cover DV which is reduced and irreducible, then DV has a
finite number of ramification points. Let ZD denote the image of these ramification
point under π . Then, for any x ∈ P

1\(Zπ ∪ ZD), we have DV ∩ Ex = ∑n
j=1 q j with

all q j distinct, and thus

V |Ex
∼= OE (q1 − 0) ⊕ · · · ⊕ OE (qn − 0).

This verifies the holomorphic structure assumption on V |Ex in Theorem 1.1. Further-
more the points q j vary holomorphically in x . The condition that DV be reduced and
irreducible also guarantees that the bundle V is stable with respect to ωt for small
t . This can be used to construct many examples of connections �i that satisfy the
assumptions of our main theorem.

Theorem 3.7 (Theorem 7.4 in [16]) If the spectral cover DV constructed above is
reduced and irreducible, then V is stable with respect to π∗[ωP1 ] + t2[ωX ] for any
ample class [ωX ] on X, for all 0 < t2 ≤ ( n

3

4 c2(V ))−1.

We end this section with the construction of�0 from Corollary 1.2, which is a local
HYM connection that determines the limit A0 = �0|E on each fiber. Although the
limiting connection A0 is expressed in holomorphic coordinates in (1.1), here we find
it easier to work with our coordinates (x1, x2, y1, y2) from the previous section. Both
viewpoints are, of course, equivalent.

Consider XU := π−1(U ) for some simply connected U ⊂ P1\(Zπ ∪ ZD). As a
first step, we consider the case where V has rank one. Since it has degree zero, the
bundle V is topologically trivial along each fiber and thus topologically trivial on XU .
We equip V with a trivial metric H0, and fix a unitary frame. For a fiber Ex we have
assumed the restriction V |Ex

∼= OE (q − 0), with q varying holomorphically in the
base. We decompose q as follows

q(x1, x2) = θ1(x
1, x2) − τθ2(x

1, x2). (3.3)
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Recall Ex is determined by the quotient Tx B/�, and so the point q can be lifted to
a point q̃ in Tx B ∼= C. Now, if τ(x1, x2) gives the complex structure on Ex , we can
define the holomorphic structure on V by

∂̄q := ∂̄ − π q̃

Im(τ )
dz̄,

where z is the complex coordiante defined in (2.4). At the end of the section we will
demonstrate that the connections we construct are independent of the lift from q to q̃ ,
and therefore well defined.

Given the above holomorphic structure, and using that H0 is the trivial metric, the
Chern connection can be computed as

�0 = 2π i
(

θ1dy
1 + θ2dy

2
)

.

Since each θ j only depends on the base coordinates, �0|Ex is flat on each fiber. Using
(3.3), one can check that the expression for �0|Ex =: A0 is equivalent to (1.1) in the
statement of the main theorem. The holonomy around each period in Ex is given by
e2π i θ1 and e2π i θ2 , respectively.

Proposition 3.8 The connection�0 isHYMwith respect to all three complex structures
I , J , and K , on XU .

Proof As a first step we show

φi j ∂

∂xi
θ j = 0 (3.4)

and

∂

∂xi
θ j = ∂

∂x j
θi . (3.5)

To see this, because both τ and q are holomorphic in the base, one can compute

0 = ∂

∂w̄
q = 1

2

(
∂

∂x1
− τ̄

∂

∂x2

)

(θ1 − τθ2)

= 1

2

(
∂

∂x1
θ1 − τ̄

∂

∂x2
θ1 − τ

∂

∂x1
θ2 + |τ |2 ∂

∂x2
θ2

)

.

Now, using (2.2), the norm of τ is given by

|τ |2 = (1 − iφ12)(1 + iφ21)

φ2
22

= 1 + φ2
12

φ2
22

= φ11

φ22
,
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where for the last equality we used det(φi j ) = 1. Thus

0 = 1

2φ22

(

φ22
∂

∂x1
θ1 + (i − φ12)

∂

∂x2
θ1 − (i + φ12)

∂

∂x1
θ2 + φ11

∂

∂x2
θ2

)

.

Since both the real and imaginary parts vanish, (3.4) and (3.5) follow. In particular
(3.5) allows us to simplify our notation and denote ∂

∂xi
θ j as θi j , where the indices

commute.
The curvature of �0 is now given by

F�0 = 2π i θi j dxi ∧ dy j .

Right away it follows that F�0∧ωI = 0 for all t . Furthermore, (3.4) implies F�0∧ωJ =
0 and (3.5) gives F�0 ∧ ωK = 0. Thus �0 is a holomorphic and HYM with respect to
each complex structure. �

We now turn to the general case. Assume V |Ex
∼= ⊕n

j=1OE (q j − 0), with each q j

is distinct. As before write q j = θ
j
1 − τθ

j
2 , and construct diagonal matrices �1 and

�2 with eigenvalues θ
j
1 and θ

j
2 , respectively. Consider the connection

�0 = 2π i
(

�1dy
1 + �2dy

2
)

, (3.6)

Its curvature is given by

F�0 = 2π i�i j dx
i ∧ dy j .

It is clear that F�0 |Ex = 0 for every fiber in XU . Furthermore, by Proposition 3.8 we
have

F�0 ∧ ωI = F�0 ∧ ωJ = F�0 ∧ ωK = 0.

Thus �0 is a local HYM connection with respect to each complex structure, although
we only focus on I in this paper.

Finally, we demonstrate that the lift of each point qi in Ex to C is well defined.
Recall that in the coordinates (y1, y2), our lattice � is the standard lattice given by
〈1, 1〉. Now, suppose we have another connection � satisfying

�0 − � = 2π i
(

M1dy
1 + M2dy

2
)

,

where M1 =diag(α1, . . . , αn) and M2 =diag(β1, . . . , βn) are both diagonal matrices
of integers, which means both �0 and � define the same points on Ex . If u is the
gauge transformation given by

u = diag(e2π i(α1y
1+β1y2), . . . , e2π i(αn y

1+βn y2)),
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we have �0 − � = −duu−1. Furthermore because all the αi and βi are integers, u
descends to a smooth gauge transformation on the torus fibers, and thus the connections
are gauge equivalent on XU . Finally, since the points qi add up to 0 in the group law
on Ex , we can find a lift to C where the points still add to 0, and �0 will be trace free.

4 Bubbling

We now present our bubbling argument, following the first two cases from [14].
Consider a sequence of Hermitian–Yang–Mills connections �i , corresponding to
ωti ∈ [ωP1 + t2i ωX ] as ti → 0. Currently our argument depends on the sequence
of connections we choose, although one can hope that with further analysis the set
where bubbles occur can be uniquely identified by (V , ∂�).

Choose a compact set K ⊂ P
1\Zπ , where as before Zπ is the image of the singular

fibers under π . In a neighborhood U of any point x ∈ K , we can choose affine
coordinates (x1, x2) where x is at the origin, and coordinates (x1, x2, y1, y2) on
XU := π−1(U ). The curvature of �i can be decomposed as

F�i = FBi + FAi + κi ,

where FBi and FAi denote the base and fiber directions of the curvature, and κi denotes
the mixed terms. For each x ∈ K we define the quantity

mi (x) := ||FBi ||L∞(Ex ,H0,gX ) + 1

t2i
||FAi ||L∞(Ex ,H0,gX ) + ||κi ||2L∞(Ex ,H0,gX ),

where gX is the metric associated to the fixed Kähler form ωX .

Proposition 4.1 There exists a finite number of points {p1, . . . , p} ⊂ K such that for
any compact set K ′ ⊂ K \ {p1, · · · , p},

lim
i→∞ t2i ||mi ||L∞(K ′) = 0.

In particular, for any x ∈ K \ {p1, · · · , p},

lim
i→∞ ||FAi ||L∞(Ex ) = 0.

Proof Let xi be a sequence of points in K for which t2i mi (xi ) does not approach zero.
We will show a finite amount of energy must bubble off along this sequence. Thus, by
the total energy bound (Lemma 3.3), there can only be a finite number of points in K
where bubbling occurs.

The proof closely follows the arguments of [14,17,19,21] and is divided into two
cases. Thefirst case occurswhen t2i mi (xi ) is unbounded, and the secondwhen t2i mi (xi )
stays bounded above, yet is also bounded away fromzero.Unlessmentioned otherwise,
all bundle norms in this section are with respect to H0, so we suppress H0 from our
notation for simplicity.
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Case 1 t2i mi (xi ) is unbounded.
Given our sequence of points xi , there exists corresponding points ai in Exi where

the supremum is obtained, and without loss of generality we can assume (xi , ai ) →
(x0, a0). Let Dr (xi ) denote a disc of radius r in the metric gP1 (corresponding to
ωP1 ) in the base. We will show there exists a universal constant ε0 > 0, so that the
inequality

lim inf
i→∞

∫

π−1(Dr (xi ))
|F�i |2gi dVgi > ε0 (4.1)

holds for any small r > 0. Since the total energy is finite, a standard covering argument
then shows that there can only be finitely many bubbles of this type.

Suppose (4.1) does not hold. Then there exists an r0 so that for sufficiently large i ,

∫

π−1(Dr0 (xi ))
|F�i |2gi dVgi ≤ ε0.

It follows from (2.6) that there is a universal constant c > 0, so that the gi -geodesic ball
Bi := Bcr0ti (xi , ai ) is contained in π−1(Dr0(xi )). In particular we have the following
bound

∫

Bi
|F�i |2gi dVgi ≤ ε0.

We now rescale our coordinates and metrics. Consider the coordinate change

λi (x, y) =
(

ti (x + xi ), y + ai
)

,

and let ω̃i = t−2
i λ∗

i ωi . To compare this to the scaling Lti , defined in (2.7) in Sect. 2,
note that pulling the metric back by Lti dilates the shrinking fibers, while ω̃i is a
combination of shrinking the base coordinates and then dilating the metric. Thus both
scalings have the same effect, although with different coordinates.

By (2.6), ω̃i is uniformly equivalent to the Euclidean metric in the scaled coordi-
nates, which we denote by g̃0. Moreover the ball Bi pulls back to a g̃i -geodesic ball
B̃i , which contains a Euclidean ball B̃. The ball B̃ can be chosen to have uniform size
independent of i .

Now, if �̃i is the pull-back connection to these new coordinates, then the HYM
equation is again satisfied

F�̃i
∧ ω̃i = 0 and (F�̃)0,2 = 0. (4.2)

Change of variables, and the scale invariance of theYang–Mills energy in dimension
four, implies

||F�̃i
||2
L2(B̃,g̃0)

≤ ||F�̃i
||2
L2(B̃i ,g̃i )

= ||F�i ||2L2(Bi ,gi )
≤ ε0.
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Since g̃i is uniformly equivalent to g̃0 on B̃ for large i , and �̃i satisfies (4.2), we can
apply the standard ε-regularity argument for Yang–Mills connections on a fixed ball B̃
[35, Theorem 4.8]. Thus, for ε0 small enough (depending only on the real dimension
4 of X), the above L2 control implies

|F�̃i
|2g̃i (0) ≤ C,

for some constant C independent of i . Equivalence of metrics implies control of F�̃i
with respect to g̃0, which in components gives the following bound

|FB̃i
|g̃0(0) + |FÃi

|g̃0(0) + |κ̃i |2g̃0(0) ≤ C .

Scaling back, we see

t2i |FBi |gX (0) + |FAi |gX (0) + t2i |κi |2gX (0) ≤ C .

Hence we achieve control of t2i mi (0), which we have assumed diverges, a contradic-
tion. Let W1 denote the set of points in K at which bubbles of this type appear.
Case 2 t2i mi (xi ) is bounded above and away from zero.

In this case an instanton on C × E bubbles off. We follow the outline of [19,21],
and use an energy quantization result of Wehrheim.

Suppose xi → x0 ∈ K\W1, and let D2ρ(xi ) denote a disc of radius 2ρ in the metric
gP1 in the base. Suppose there exists constants δ and � so that

δ < t2i mi (xi ) ≤ sup
D2ρ(xi )

t2i mi < �.

The rightmost inequality holds since for large enough i we can assume D2ρ(xi ) ⊂
K\W1. By making ρ smaller if necessary, we can furthermore assume that
π−1(D2ρ(xi )) is topologically a product between a ball in C and an elliptic curve
E , although the complex structure may vary.

We preform the same scaling as in Case 1, and define ω̃i = t−2
i λ∗

i ωi . Again this
involves rescaling the metric and applying a dilation. The disk D2ρ(xi ) pulls back to
D̃2ρ/ti (0), the geodesic disk with respect to the Euclidean metric g̃0 in the scaled coor-
dinates. Starting fromProposition 2.4, the arguments used in the proof of [36, Theorem
1.1] (cf. pages 2936-2937) give that ω̃i converge sub-sequentially and smoothly to a
limiting flat product metric ω∞ on C × E .

Our sequence of scaled connections �̃i is defined on π−1(D̃2ρ/ti (0)), and for any
point p ∈ D̃2ρ/ti (0), we have

|FB̃i
|g̃0(p) + |FÃi

|g̃0(p) + |κ̃i |2g̃0(p) = t2i |FBi |g0(p) + |FAi |g0(p) + t2i |κi |2g0(p)
< sup

D2ρ(xi )
t2i mi < �.

This implies |F�̃i
|g̃i is uniformly bounded. By strong Uhlenbeck compactness [37,

Corollary 1.4 and Theorem 1.5], this bound implies there exists a subsequence of
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connections which converges smoothly, modulo unitary gauge transformations, to a
limiting connection �̃∞ on the trivial SU (n) bundle over C × E . The connection
�̃∞ will be ASD with respect to the limiting product metric ω∞. Furthermore, by
assumption, we have

|FB̃i
|g̃0(0) + |FÃi

|g̃0(0) + |κ̃i |2g̃0(0) > δ,

and it follows that the limiting connection is not flat. An energy quantization result of
Wehrheim [38, Remark 1.2] implies there exists a universal constant ε0 > 0 so that

YM(�̃∞, g̃0) ≥ 2ε0.

This implies that there exists an R > 0, so that for i sufficiently large,

ε0 <

∫

D̃ R
2

(0)×E
|F�̃i

|2g̃i dVg̃i =
∫

π−1(DRti (xi ))
|F�i |2gi dVi .

Thus there can be only finitely many bubbles of this type, and denote the set of all
such bubbles by W2. This concludes the proof of Proposition 4.1. �

We conclude this section by noting that Proposition 4.1, in conjunction with our
convergence argument in Sect. 6, implies that on a generic fiber, the connections Ai

will converge to a limiting flat connection A0. The following section is devoted to
identifying this limiting flat connection explicitly.

5 Gauge Fixing over an Elliptic Curve

In this section we work on a fixed fiber of π , denoted E for simplicity, satisfying
V |E ∼= ⊕n

j=1OE (q j − 0) with each q j distinct and q1 + · · · + qn = 0. By the results
of Sect. 3, if V defines a spectral cover DV which is reduced and irreducible, this
happens generically.

Equip E with the fixed Kähler form ω0 = dy1 ∧ dy2 and let g0 denote the corre-
sponding metric. Recall that E carries the complex coordinate z = τ y1 + y2. Denote
the restriction V |E by V0. Since V0 is of the form

⊕n
j=1OE (q j −0), it can be naturally

identified with E × C
n , equipped with the complex structure

∂̄A0 := ∂̄ − π Q

Im(τ )
dz̄,

where Q is a diagonal matrix with entries q̃i (recall q̃i are the lifts of the points qi to
C). Let H0 be the trivial metric on Cn , and let A0 be the Chern connection associated
to ∂̄A0 and H0. Using (3.3), in addition to dz|E = τdy1 + dy2, one can explicitly
check that that A0 = �0|E , where �0 is given by (3.6).

Now, given our sequence of connections�i on V , we have the sequence of restricted
connections Ai := �i |E on V0. Again, because our sequence of connections arises
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from the Donaldson–Uhlenbeck–Yau Theorem, we know that Ai lies in the complex-
ified gauge orbit of A0, and thus Ai and A0 define isomorphic complex structures. As
a result, after transforming A0 by a unitary gauge transformation if necessary, we can
write Ai = esi (A0) for a trace free Hermitian endomorphism si . The main result of
this section is:

Theorem 5.1 Let es(A0) be a connection on V0 given by the action of a trace free
Hermitian endomorphism s. There exists constants ε0 > 0, and C0 > 0, depending
only on g0, A0, and H0, so that the following holds. If the curvature of es(A0) satisfies

||Fes(A0)||2C0(g0,H0)
≤ ε0,

then there exists another trace free Hermitian endomorphism s′ which satisfied both

es(A0) = es
′
(A0) and ||s′||C0(g0,H0)

≤ C0.

Because V0 is poly-stable, and not stable, the above theorem is the best C0 control
that one can expect. For example, since A0 is flat, if es is a diagonal matrix of constants
c1, . . . , cn , then es(A0) will still be flat. However, one eigenvalue ci can be arbitrarily
large while still preserving the condition det(es) = 1 (recall that es ∈ SL(V0)). Thus,
one can never expect C0 control for s. The main idea of the above theorem is that,
by a suitable choice of normalization, one can construct a related complex gauge
transformation that yields the same connection, yet with the desired C0 control.

We first demonstrate several preliminary results. For the remainder of the section,
unless specified, all norms are taken with respect to the metrics g0 and H0, and we
remove this from our notation for simplicity.

Proposition 5.2 Let s be a trace free Hermitian endomorphism such that the diagonal
entries of s have zero average when integrated over E. Then there exists a constant
Cp, independent of s, so that

||s||L2(E) ≤ Cp||∂̄A0s||L2(E). (5.1)

Proof Note that diagonal entries of s can always be defined as the entries that preserve
each subbundle OE (qi − 0) ⊂ V0. Now, assume that the inequality does not hold.
Then there exists a sequence of endomorphisms sk satisfying the assumptions of the
proposition, along with the inequality

∫

E
|∂̄A0sk |2 ≤ 1

k

∫

E
|sk |2.

Let s̃k := sk/||sk ||L2(E). Then

∫

E
|∂̄A0 s̃k |2 ≤ 1

k
.
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Because s is Hermitian with respect to H0, we have |∂̄A0 s̃k | = |∂A0 s̃k |. This allows us
to conclude that the sequence s̃k converges weakly in L2

1 (and strongly in L2) to an
endomorphism s∞ satisfying

||s∞||L2(E) = 1 and ||∂̄A0s∞||L2(E) = 0.

Now, because Q is diagonal, if s∞ has entries (ai j ), then the diagonal entries of
∂̄A0s∞ are of the form ∂̄ aii . Since ||∂̄A0s∞||L2 = 0, we see the diagonal entries of s∞
are constant. Furthermore, by assumption the diagonal entries of s̃k have zero average,
and by strong convergence in L2 we conclude the diagonal entries of s∞ must also
have zero average. Thus these entries vanish entirely. Now, because the points qi are
distinct, the automorphism group of V0 is precisely n dimensional [16, Lemma 1.13].
Thus if the diagonal entries of s∞ vanish, s∞ must vanish entirely. In other words, if
s∞ had any non-vanishing off diagonal entries, they would define a holomorphic map
between line bundlesOE (qi − 0) andOE (q j − 0) for distinct points qi and q j , which
is impossible. So s∞ = 0 yet ||s∞||L2(E) = 1, a contradiction. �

Next consider the following function spaces, equipped with the L2 norm.

Definition 5.3 Let Herm0(V0) be the space of trace free Hermitian endomorphisms
of V0, and furthermore let Herm⊥0(V0) denote the subspace consisting of those endo-
morphisms whose diagonal entries have zero average on E .

Consider ϒ(·) ∈ End(gl(V0)), defined by

ϒ(s) = eads − 1

ads
.

From the definition of the complexified gauge action (3.1), we have

∂es (A0) = ∂A0 + e−s(∂A0e
s) and ∂̄es (A0) = ∂̄A0 − (∂̄A0e

s)e−s . (5.2)

This allows one to compute

es(A0) = A0 + ϒ(−s)∂A0s − ϒ(s)∂̄A0s (5.3)

(for instance, see [39, Appendix A]).
Define the map N(s) := es(A0), which maps Herm0(V0) into the affine space of

connections centered at A0, equipped with the L2 norm. Let A denote the image of
the map N. Using (5.3), we see the derivative of N at 0 is given by

L(s) := N′(0)(s) = ∂A0s − ∂̄A0s.

The tangent space toHerm0(V0) is againHerm0(V0). Note that for any s ∈ Herm0(V0),
if ŝ is a diagonal matrix of constants given by the averaging the diagonals of s over E ,
then L(s) = L(s − ŝ), and so both Herm0(V0) and Herm⊥

0 (V0) have the same image
under L . Proposition 5.2 shows that L has trivial Kernel onHerm⊥

0 (V0). Thus, not only
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can we conclude that the restriction of L to Herm⊥
0 (V0) is invertible, but (5.1) shows in

addition that L has bounded inverse. The contraction mapping principle implies there
exists a small neighborhood U ⊂ A of the connection A0, and a set V ⊂ Herm⊥

0 (V0)
in the tangent space to Herm0(V0) at 0, so that V −→ U is a diffeomorphism onto its
image.

Summing up, we have proved the following:

Lemma 5.4 There exist constants δ0 and �0, which depend only on A0, H0 and g0,
so that the following holds. If A ∈ A satisfies ||A − A0||L2(E) < δ0, there exists
s ∈ Herm⊥

0 , such that

A = es(A0),

and

||s||L2(E) ≤ �0||es(A0) − A0||L2(E).

We now turn to one final lemma. Consider the same constant δ0 > 0 from above,
and let C0 > 0 be a fixed constant, to be determined in the proof of Theorem 5.1.

Lemma 5.5 Let s be a trace free Hermitian endomorphism, and A a flat connection
on V0. Given constants δ0 > 0 and C0 > 0, there exists a constant ε0, depending only
on H0, g0, δ0, and C0, so that if ||s||C0 ≤ C0 and ||Fes(A)||C0(E) < ε0, then

||es(A) − A||L2(E) <
δ0

2
.

Proof To begin, we see how the curvature of A is related to the curvature of es(A).
Using (5.2) one can compute

e−s Fes (A)e
s − FA = ∂̄A(e−2s∂Ae

2s) = e−2s
(

∂̄A∂Ae
2s − ∂̄Ae

2se−2s∂Ae
2s

)

,

which implies

− �g0Tr(e
2s) + |e−s∂Ae

2s |2g0 = Tr(e2s i�ω0Fes(A)). (5.4)

Integrating over E yields

∫

E
|e−s∂Ae

2s |2 < eC0ε0.

The C0 bound for s, along with det(es) = 1, demonstrates the eigenvalues of es are
bounded above and below. Thus the left hand side above controls the L2 norm of the
difference es(A) − A, and so

||es(A) − A||L2(E) < Cε0.

Here C only depends on C0, g0, and H0. Choose ε0 small so Cε0 < δ0/2. �
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As we turn to the proof of Theorem 5.1, recall that the constants δ0 and �0 depend
only on A0, H0 and g0. Thus, by the above lemma, if we can show C0 depends only
on these quantities, ε0 will depend only on these quantities.

Proof of Theorem 5.1 Our first task is to specify C0. Fix an endomorphism s ∈
Herm0(V0) satisfying

||Fes(A0)||2C0 ≤ ε0.

Using this curvature bound, along with the inequality

−�g0 |s|2 ≤ |s||Fes(A0)|

(see for instance Proposition A.6 in [39]), we can apply Moser iteration to conclude

max{|s|2, 1} ≤ C1||s||L2(1 + ε0). (5.5)

Here C1 only depends on g0 and H0. We now set C0 := 2C1�0. This shows C0, and
subsequently ε0, depends only on the initial setup.

Themain idea of the proof is as follows.We construct a path of Hermitian endomor-
phisms, so that the curvature of the induced connections along this path is bounded by
ε0. We show the endpoint of our path satisfies the conclusion of the theorem, and then
apply a method of continuity argument to conclude our desired result for s. Naively,
one may first try to connect es to I dV0 by the path ets for t ∈ [0, 1]. However, for
arbitrary initial s it is not clear that curvature stays bounded by ε0 along this path,
which is an important for the argument. Instead, we follow the Yang–Mills flow.

Following Donaldson [12, Sect. 1.1], we consider a path of complex gauge trans-
formations g(t), satisfying

ġ(t)g(t)−1 = −i�Fg(t)(A0) g(0) = es .

On a Riemann surface, the above flow is referred to as the Kempf–Ness flow, and given
a solution, the corresponding connections A(t) := g(t)(A0) solve theYang–Mills heat
flow:

Ȧ(t) = −d∗
A(t)FA(t) A(0) = es(A0).

By a Theorem of Rade [40, Theorem 2], there exists a limiting Yang–Mills connection
A∞ for which

||A(t) − A∞||L2
1

≤ c t−β.

Since V0 is polystable, the limit connection A∞ is also flat, and in the unitary gauge
orbit of A0, and so there exists a unitary gauge transformation u∞ for which A∞ =
u∗∞A0.
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Consider the trivial flow u∞(t) = u∞, which again satisfies the Kempf–Ness flow
equation

u̇∞(t)u∞(t)−1 = −i�Fu∞(t)(A0) = −i�FA∞ = 0.

Define η(t) ∈ Herm0(V0), and a path of unitary gauge transformations u(t), by the
equation

u∞u(t)eη(t) = g(t). (5.6)

Thus, u(t)eη(t) relates our two solutions of the Kempf–Ness flow. By Proposition 4.13
in [41], both u(t) and η(t) are bounded in L2

2. In fact, this L
2
2 bound is proven follow-

ing the general argument of [42]. The authors demonstrate that if M is a complete,
connected, simply connectedRiemannianmanifold of nonpositive sectional curvature,
which admits a function� : M → Rwhich is convex along geodesics, then given two
negative gradient flow lines of �, the geodesic distance between these two flow lines
stays bounded. In our case, the role of M is taken by the space of Hermitian metrics,
and the function � is Donaldson’s functional (see [12,41,42], for a precise definition
of �).

The bound on η(t), along with convergence of FA(t) to zero in L2, allows us to
conclude by Lemma 5.5 that there exists a T sufficiently large, so that

||(u∞u(T )eη(T )u(T )−1u−1∞ )
(

(u∞u(T ))∗A0
) − (u∞u(T ))∗A0||L2 ≤ δ0

2
.

For simplicity we denote the fixed unitary gauge transformation u∞u(T ) by u, and
define the path of Hermitian endomorphism eκ(t) by ueη(t)u−1. Then the above esti-
mate can be written

||eκ(T )(u∗A0) − u∗A0||L2 ≤ δ0

2
. (5.7)

It is along the path eκ(t) that we can now apply our method of continuity argument.
Let Ã(t) be the path of connections given by eκ(t)(u∗A0). Since Ã(t) =

(u∞u(t)u−1)∗A(t), where A(t) solves the Yang–Mills flow and u(t) is given by (5.6),
we conclude that ||FÃ(t)||C0(E) ≤ ε0 for all t ∈ [0, T ]. This follows because the
curvature is decreasing along the Yang–Mills flow, and the action of a unitary gauge
transformation will not affect this norm. Also, the path Ã(t) is smooth for t ∈ [0, T ].

To set up the method of continuity, consider the set I ⊆ [0, T ] consisting of times t
for which there exists a trace free Hermitian endomorphism κ ′(t)which satisfies both

eκ ′(t)(u∗A0) = eκ(t)(u∗A0) (5.8)

and

||κ ′(t)||C0(g0,H0)
≤ C0. (5.9)
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We prove I = [0, T ]. First, we demonstrate T ∈ I to conclude I is non-empty. By
the estimate (5.7), we can apply Lemma 5.4 to Ã(T ), and conclude there exists a trace
free Hermitian endomorphism κ ′(T ) satisfying both (5.8) and an L2 bound. By our
Moser iteration bound this L2 control can be improved to C0, and so κ ′(T ) satisfies
(5.9) as well. Thus T ∈ I . We now need that I is both open and closed with respect
to the topology induced from the C2 topology on Herm(V0). For the rest of the proof
we use the notation A := u∗A0.

Our next step is to show I is open. Let t0 ∈ I , and consider the corresponding
endomorphism eκ0 . Construct a small neighborhood of eκ0 with radius ρ > 0, where
ρ is chosen so

||eκ − eκ0 ||C2(E) < ρ

implies

||eκ(A) − eκ0(A)||L2(E) < δ0/2.

Now, because eκ0 ∈ I , there exists an endomorphism eκ ′
0 satisfying both eκ0(A) =

eκ ′
0(A) and ||κ ′

0||C0 ≤ C0. Given our choice of ε0, by Lemma 5.5 we have

||eκ0(A) − A||L2 = ||eκ ′
0(A) − A||L2 < δ0/2.

By the triangle inequality ||eκ(A0) − A0||L2 < δ0, and thus Lemma 5.4 implies there
exists an endomorphism κ ′ ∈ Herm⊥

0 such that eκ (A) = eκ ′
(A) and

||κ ′||L2 ≤ �0||eκ ′
(A) − A||L2 < �0

(we assumed δ0 < 1). By our Moser iteration bound (5.5), we conclude

||κ ′||C0 < 2�0C1 = C0,

which completes the proof of openness.
Finally we prove I is closed. Let ti be a sequence of times in I converging to t ,

and let κi be the corresponding sequence of endomorphisms converging to κ in the C2

topology. For each i , there exists κ ′
i which are uniformly bounded in C0 and satisfy

eκi (A) = eκ ′
i (A). The complexified gauge action gives

eκi ◦ ∂̄A ◦ e−κi = eκ ′
i ◦ ∂̄A ◦ e−κ ′

i ,

from which we conclude ∂̄A(e−κi eκ ′
i ) = 0. Since A = u∗A0, this implies

∂̄A0(u
−1e−κi eκ ′

i u) = 0. Since A0 has only diagonal entries, we see the diagonal entries
of u−1e−κi eκ ′

i u must be constant. As before it then follows that the off diagonal terms
must vanish, otherwise one would have a holomorphic map between line bundles
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OE (qi − 0) and OE (q j − 0) for distinct points qi and q j . Taking the complex con-
jugate and using the fact that κi and κ ′

i are Hermitian, we see that hi := u−1eκ ′
i e−κi u

will be a diagonal matrix of constants.
Now,C2 convergence of κi together with theC0 control of κ ′

i gives that thematrices
hi are uniformly bounded above and below. Since each hi is a diagonal matrix of
constants, after passing to a subsequence the hi converge in C0 to a limit h. This
allows us to define an endomorphism eκ ′ := uhu−1eκ , and by convergence of hi and
κi we have

eκ ′
i = uhiu

−1eκi → eκ ′

in C0. Since eκ ′
i is Hermitian, so is eκ ′

, and thus κ ′ is Hermitian and satisfies (5.9).
Furthermore, since for each i we have ∂̄A(uhiu−1) = 0, we in fact have uhiu−1eκi →
eκ ′

in C1, and as a result we conclude eκ ′
(A) = eκ(A). Thus (5.8) is also satisfied and

t ∈ I .
Thus, I is open, closed, and nonempty, and as a result eκ(0) ∈ I . In particular, there

exists a κ ′(0) satisfying both eκ(0)(A) = eκ(0)′(A) and ||κ(0)′||C0 ≤ C0. Now, define
s′ by

es
′ = u−1eκ(0)′u.

We see s′ satisfies the desired C0 bound. Furthermore,

es
′
(A0) = u−1∗eκ(0)′(u∗A0) = u−1∗eκ(0)(u∗A0) = eη(0)(A0).

Yet we started the flow (5.6) at g(0) = es , so η(0) = s. This completes the proof of
the theorem. �

6 Convergence

In this section, we complete the proof of Theorem 1.1. As before, let Zπ denote image
of the singular fibers under π , and W1 and W2 the bubbling sets for our sequence of
connections. We fix a point x ∈ P

1\(Zπ ∪ W1 ∪ W2), and denote the fiber over x by
E := π−1(x). We use the notation Ai := �i |E and A0 := �0|E . As above equip E
with the fixed flat metric ω0 = dy1 ∧ dy2. Unless otherwise specified, in this section
all norms are taken with respect to the metrics g0 and H0.

Recall our bubbling sequence at x is defined by

mi (x) := ||FBi ||C0(E,gX ) + 1

t2i
||FAi ||C0(E,gX ) + ||κi ||2C0(E,gX )

.

Since x /∈ W1∪W2, we have t2i mi → 0 as i → ∞, so ||FAi ||C0(E) → 0. Asmentioned
at the end of Sect. 4 (and as we shall see below), this is enough to prove that Ai

converges, along a subsequence and modulo gauge transformations, to a limiting flat
connection. Our main result is identifying this limit.

123



Hermitian–Yang–Mills Connections... Page 27 of 30 69

Assume V |E = OE (q1 − 0) ⊕ · · · ⊕ OE (qn − 0) for q1, . . . , qn distinct. Writing
Ai = esi (A0) for a sequence of Hermitian endomorphism si , for i large enough we
can apply Theorem 5.1 to conclude there exists gauge transformations s′

i , which are

uniformly bounded in C0, and satisfy Ai = es
′
i (A0). Thus, as in the proof of Lemma

5.5,

||Ai − A0||L2(E) ≤ C ||e−s′i ∂A0e
2s′i ||L2(E) ≤ C ||FAi ||L2(E) → 0. (6.1)

Furthermore, since A0 is flat, we can integrate by parts and change the order of deriva-
tives to conclude:

||∇0(Ai − A0)||2L2(E)
=

∫

Ep

Tr(∇0(e−2si ∇0e2si )
(

∇0(e−2si ∇0e2si )
)∗

)

=
∫

Ep

Tr(∇̄0(e−2si ∇0e2si )
(

∇̄0(e−2si ∇0e2si )
)∗

)

= ||FAi ||2L2(E)
→ 0.

Thus we have demonstrated

||Ai − A0||L2
1(E) → 0,

which is the stated convergence in Theorem 1.1.
Next we prove smooth convergence, allowing for the action of unitary gauge trans-

formations. Specifically, since x is away from the bubbling set, there exists a small
disk Dρ(x) that does not intersect W1 ∪ W2. We use the same coordinate transforma-
tions λi in the proof Proposition 4.1 sending x to the origin and scaling. Consider the
rescaled metrics ω̃i = t−2

i λ∗
i ωti . The set π−1(Dρ(x)) rescales to a set topologically

equivalent to D̃ ρ
ti
(0) × E (although the complex structure will not be a product).

Our sequence of connections �i pulls back to �̃i , with fiber and base components

Ãi
j = Ai

j and B̃i
j = ti B

i
j .

As before, the connections �̃i are HYM with respect to ω̃i , and each ω̃i is uniformly
equivalent to the Euclidian metric for large i by Proposition 2.4. Also, since Dρ(x)
is away from W1, the function t2i mi (x) is uniformly bounded above on the disk. This
implies the curvature |F�̃i

| is uniformly bounded on π−1(D̃ ρ
ti
(0)).

Applying strong Uhlenbeck compactness [37, Corollary 1.4 and Theorem 1.5] on
the fixed compact set

π−1(D̃1(0)) ⊂ π−1(D̃ ρ
ti
(0)),

there exists a sequence of gauge transformations ui so that along a subsequence, u∗
i �̃i

converges smoothly to a limitingYang–Mills connection �̃∞. Restricting our attention
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to the fiber E over the origin yields a sequence of connections u∗
i Ãi which converges

smoothly to a limiting flat connection Ã∞. Note that our fiber coordinates are not
scaled, and the restriction of ω̃ti to E is equivalent the standardmetricω0 = dy1∧dy2.
Thus, on E , we see u∗

i Ai converges smoothly to a flat connection A∞. The connection
A∞ may not equal A0, but it will lie in the unitary gauge orbit.

We conclude by remarking that estimates of the form (6.1) are common in these
types of degeneration problems, for example see Proposition 3.1 in [18] or Theorem
1 in [43]. In our estimate, the curvature term is not raised to a power, and this holds
because the specific form of our complex structure V |E = ⊕n

j=1OE (q j − 0) implies
that the Yang–Mills energy functional is Morse-Bott at A0 (see Definition 7.5 in [43]).
Essentially, the argument in our proof of Proposition 5.2 gives that the kernel of the
Hessian operator of the Yang–Mills energy functional can be identified with one forms
valued in constant diagonal matrices, which also gives the tangent space toYang–Mills
connections at A0. We direct the reader to [43] for further details.
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