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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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Abstract 

Digital Twin of a CNC machining process can enhance process optimisation at process planning stage and machining stage. Quality of a machined 
product depends upon machining accuracy and surface at the end of the machining stage. In this paper, a Digital Twin framework for CNC 
machining processes is proposed that allows simulation, prediction, and optimisation of key performance indicators (surface finish in this 
instance) during process planning stage and machining stage with historical and real-time machining data, respectively. This paper describes the 
development of data-driven models for surface roughness prediction at process planning stage and machining stage of a milling process. These 
models constitute the digital twin. Three different data driven models are evaluated for building the surface roughness prediction models. 
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1. Introduction 

The concept of Digital Twin (DT) is being introduced in 
several sectors where it has a huge potential for improving 
decision-making capability [1]. Even though it is being 
modified according to the nature of applications, a DT needs to 
ensure that it holds the same characteristics as that in the 
physical space. It should also be realised by real-time 
simulation and prediction. Thereby, better decisions can be 
made to optimise the performance of the physical system [2,3]. 
In a DT, bi-directional dataflow between the virtual and the 
physical space ensures the status update of the virtual space and 
control of the physical space whereas predictive and 
optimisation models help in better decision-making. Research 
trends show that, now the concept of DT is starting to be 
applied to prototypes, instances, and environments other than 
products [4]. One of the sectors where application of DT has 
promising advantages is manufacturing [5]. 

 

 

1.1. Digital-Twins for manufacturing application 

Manufacturing assets and processes are becoming smart 
with the adoption of technologies such as cloud, IoT, 
cybersecurity, latest communication protocols and advanced 
sensors [6]. These improvements in the manufacturing systems 
make these assets as cyber-physical systems which are capable 
of handling bi-directional dataflow during its operation. 
Thereby its processes can be digitally twinned for better 
decision-making to improve aspects like quality, productivity, 
and sustainability [7,8]. Sensor updates data of these 
manufacturing systems can be used for building data-driven 
models for prediction and optimization of manufacturing 
process parameters and its outputs. In manufacturing, these 
data-driven methods can model complex machining processes 
[9,10]. In this paper a data-driven DT framework is proposed 
for CNC machining processes which can simulate, predict, and 
optimize quality of a machined product at process planning 
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ensure that it holds the same characteristics as that in the 
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stage and machining stage. Experiments were conducted for 
building data-driven models to predict surface roughness value, 
which is a quality measurement for surfaces, at process 
planning stage and machining stage in the proposed DT 
framework. 

1.2. Surface quality prediction 

Quality of a machined product depends upon the machining 
accuracy and the surface quality obtained after the machining 
stage [11]. These quality measurement values are the outcome 
of defined process planning parameters and the machining 
variables at the machining stage.  In the process planning stage, 
a process planner defines cutting parameters such as feed rate, 
depth and width of cut, spindle speed and these parameters 
have an impact on surface quality [12]. Factors such as tool 
wear and cutting force occurring at machining stage affect 
surface quality [13]. Machine kinematic errors, machine 
vibration and the factors such as acceleration and jerk also 
affect machining accuracy and surface quality [14]. Predictive 
models for machining accuracy and surface quality can be built 
with the data from process planning and machining stage [15]. 
Once the quality is predicted, it can be taken as an input for 
optimizing the machining parameters for required machining 
quality. The data-driven models which are explained as a part 
of DT framework, predicts & optimizes machining quality, and 
provides feedback to maintain the required quality in process 
planning and machining stage by adjusting the machining 
parameters. 

2. Digital Twin for CNC machining processes 

CNC machining processes, in practice, are planned with a 
CAM software in process planning stage and processes are 
carried out in execution stage with the generated NC code. In 
process planning stage, a process planner generates toolpaths, 
defines cutting parameters, simulates machining setup in a G-
code machine simulator module and converts toolpaths as NC 
codes [16]. Quality evaluation in the simulator considers CAD 
geometry of the product, generated toolpath, and machine 
kinematics information. But the effect of defined cutting 
parameters such as feed rate, spindle speed and the effect of 
parameters such as machine vibration, kinematics errors in 
actual machining conditions are not considered in this 
simulation for evaluating expected quality of machining. 

In the execution stage, initially, machine operator sets the 
job ready for machining with proper fixturing method and 
update cutting tools status such as tool wear and tool runout in 
the CNC machine. If required, operator can update cutting 
parameters such as feed rate and spindle speed in NC code for 
better machining quality after the initial machining setup, 
according to heuristic knowledge. But quality visualization and 
feedback on expected machining quality is not available to the 
operator. During the machining process executing on the CNC 
machine, effects of factors such as tool wear and machine 
vibration on machining quality are also not available to 
operator even though, a few cutting parameters can be 
controlled from the machine controller by the operator. Fig. 1 

shows the activity flow of CNC machining processes from 
process planning to execution. 

Latest CNC machines are cyber-physical machine tools 
equipped with communication protocols such as OPC U/A and 
MTConnect, by which real-time information from CNC 
machines can be accessed during machining operation [17]. 
This real-time machining information collected through the 
standard communication protocols along with external sensors 
data can be used to model the behavior of CNC machines [18]. 
In this proposed DT framework, data-driven models are 
required for predicting machining quality by considering the 
factors affecting machining quality from internal and external 
sensors data of CNC machine. These predictive models are data 
driven models and built using machine learning (ML) 
techniques. There are many types of models that can be used, 
and the method used is selected based on the accuracy of 
prediction. Once the predictive values of machining quality are 
available to DT, it optimizes the parameters which can be 
controlled to maintain the required quality and sends feedback 
for controlling the machining process at process planning stage 
and machining stage. 

 

 
Fig. 1. CNC process planning & execution stages 

 
This quality optimisation and prediction are done at process 

planning and machining stage by interfacing CAM software 
and CNC machine with the DT which is a digital representation 
with predictive and optimisation modules. For use at the 
process planning stage, CAM software can be interfaced with 
proposed DT by using an API which can enable bi-directional 
data communication between CAM software and DT. At 
machining stage, CNC machine is interfaced with DT by one 
of the communication protocols such as OPC U/A or 
MTConnect to channelise data from CNC machine to DT. Fig. 
2 shows the schema of proposed DT framework for machining 
quality. 

2.1. Use of proposed DT in Process planning stage 

Choice of CNC machine, cutting tools and cutting 
parameters selected by a process planner during process 
planning stage have an impact on machining quality. Here, the 
predictive models which are updated with historical machining 
information predict the machining quality with the selection 
made by the process planner and the optimisation module 
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provide optimised choice of parameters to be controlled to get 
the required quality. Some of the parameters will have 
variations when it comes to actual machining such as tool wear 
and these variations need to be predicted first at process 
planning stage, before predicting machining quality, since it is 
one of the variables affecting machining quality. The decision-
parameters chosen at machining stage by the machine operator, 
which are affecting machining quality such as fixture clamping 
pressure, cannot be included for machining quality 
consideration in this stage. 

 

 
Fig. 2. Proposed Digital Twin framework 

2.2. Use of proposed DT in machining stage 

During the setting up of the work piece at the selected CNC 
machine, machine operator can update the cutting tool 
condition and fixture information which affects the machining 
quality with the DT. Here, DT considers process planning 
information available in the NC code and the job-setting 
updates for the quality consideration. Once the DT optimises 
the parameters for maintaining the required quality, the 
operator can update parameters such as feed rate and spindle 
speed in the NC code accordingly. 

During the machining operation, the DT works with the real-
time machining data from the CNC machine. The sensor data 
on variables which affect the machining quality become the 
inputs for quality prediction here. Further to this, real-time 
optimisation provides feedback to operator to control the 
cutting parameters such as feed rate and spindle speed in the 
machine controller to meet and maintain the required 
machining quality. 

2.3. Model building 

Predictive models in the proposed DT need to be built with 
the historical data from the process planning stage and 
machining stage and individual models are required for each 
stage and its activities. Model preparation and update of models 
can be made separately for all the three predictive models 
which are used in the DT framework. Since separate models 
are needed in the different stages, choice of prediction 
techniques such as ML can be made according to the accuracy 
of prediction. Similarly, methods used for optimising the 

parameters for maintaining quality can also be different in both 
the machining stages. The variables whose data are not 
available in the process planning stage and job setting activity 
of machining stage can be either predicted first and use for 
predicting quality, or it can be excluded in the prediction 
model. Fig. 3 lists the different parameters which are 
considered from process planning and machining stage for 
building predictive models for machining quality consideration 
in the DT framework. 

Once the model is trained for a fixed machining conditions 
it can give good prediction results for the same fixed machining 
conditions. If the machining conditions are distinctly different, 
there will be errors in the prediction results. Implementing 
continual learning methods help reduce the number of 
experiments required to obtain data required to build the 
learning model. Using the continual learning methods, models 
can adapt a model learnt with one type of data to new 
information as data from operations with new machining 
conditions become available. The data driven model therefore 
becomes better over a period with increase in the availability 
of varied data from different machining conditions [19,20]. 

2.4. Feedback control 

The feedback to control and maintain the quality of 
machining at each process stage is given by the DT. The control 
of parameters is done by humans in loop of the DT framework. 
Here process planner and machine operator control the physical 
system at process planning stage and machining stage, 
respectively, to obtain and maintain the required quality of 
machining. In process planning stage, planner can change the 
defined cutting parameters as per the feedback given by DT. In 
execution stage, machine operator can change the parameters 
in the NC code as per the feedback received from DT during 
job setting and adjust the controller parameters such as feed rate 
and spindle during the actual machining process occurring at 
CNC machine. 
 

 
Fig. 3. Parameters for predictive model building 

3. Building of surface roughness predictive models 

Surface roughness value is one of the surface quality 
measurement for a machined surface. Three models are created 
by an experiment which would be the part of proposed DT 
framework. Fig. 4 shows the set of parameters used for building 
these prediction models. 
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with predictive and optimisation modules. For use at the 
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2.2. Use of proposed DT in machining stage 

During the setting up of the work piece at the selected CNC 
machine, machine operator can update the cutting tool 
condition and fixture information which affects the machining 
quality with the DT. Here, DT considers process planning 
information available in the NC code and the job-setting 
updates for the quality consideration. Once the DT optimises 
the parameters for maintaining the required quality, the 
operator can update parameters such as feed rate and spindle 
speed in the NC code accordingly. 

During the machining operation, the DT works with the real-
time machining data from the CNC machine. The sensor data 
on variables which affect the machining quality become the 
inputs for quality prediction here. Further to this, real-time 
optimisation provides feedback to operator to control the 
cutting parameters such as feed rate and spindle speed in the 
machine controller to meet and maintain the required 
machining quality. 
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Predictive models in the proposed DT need to be built with 
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machining stage and individual models are required for each 
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it can give good prediction results for the same fixed machining 
conditions. If the machining conditions are distinctly different, 
there will be errors in the prediction results. Implementing 
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can adapt a model learnt with one type of data to new 
information as data from operations with new machining 
conditions become available. The data driven model therefore 
becomes better over a period with increase in the availability 
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Fig. 3. Parameters for predictive model building 

3. Building of surface roughness predictive models 

Surface roughness value is one of the surface quality 
measurement for a machined surface. Three models are created 
by an experiment which would be the part of proposed DT 
framework. Fig. 4 shows the set of parameters used for building 
these prediction models. 
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Fig. 4. Parameters for predictive model building 

3.1. Toolpath generation 

A form surface is created in NX CAD software & a contour 
machining toolpath is generated by NX CAM software. Fig. 
5(a) shows the CAD geometry and Fig. 5(b) shows generated 
tool path. The same strategy is applied for a Taguchi L16 
design of experiments with different process planning 
parameters. Table 1 shows the levels parameters used for 
generating 16 experiments. Table 2 lists the parameters for each 
of the 16 experiments conducted. The machining is performed 
on the work piece that has been rough cut. This ensures uniform 
finishing stock equal to the depth of cut value for the finishing 
operation. 

 

 

Fig. 5. (a) CAD geometry; (b) Generated toolpath 

Table 1. Taguchi experimental levels 

Feed 

(mm/min)  

Spindle 
speed 

(rpm) 

Depth of 
cut 

(mm) 

Width of 
cut 

(mm) 

Cutting 
direction 

Coolant 

200 1000 0.5 0.2 Up On 

800 2000 1.5 0.6 Down Off 

1400 3000 2.5 1.0 - - 

2000 4000 3.5 1.4 - - 

3.2. Execution 

Experiments with each of the 16 set of process parameters 
in the table2 were executed with 4 different tool wear values. 
During execution of these experiments, spindle power 
consumption of spindle was recorded with a sampling 
frequency of 4 milliseconds from the machine controller. 
Surface roughness values obtained after the machining of 64 
samples were inspected by a profilometer and its values were 
recorded. Table 3 shows the machining and inspection set-up 
used for conducting the experiments. 

 

Table 2. Parameter sets for experiments 

Exp 
No 

Feed rate 
(mm/min) 

Spindle 
speed 
(rpm) 

Depth 
of cut 

(mm) 

Width 
of cut 

(mm) 

Cutting 
direction 

Coolant 

1 1400 3000 0.5 0.6 Down Off 

2 2000 4000 0.5 1.0 Down On 

3 800 2000 0.5 1.4 Up Off 

4 200 1000 0.5 0.2 Up On 

5 200 2000 1.5 1.0 Down Off 

6 800 1000 1.5 0.6 Down On 

7 2000 3000 1.5 0.2 Up Off 

8 1400 4000 1.5 1.4 Up On 

9 800 4000 2.5 0.2 Down Off 

10 200 3000 2.5 1.4 Down On 

11 1400 1000 2.5 1.0 Up Off 

12 2000 2000 2.5 0.6 Up On 

13 2000 1000 3.5 1.4 Down Off 

14 1400 2000 3.5 0.2 Down On 

15 200 4000 3.5 0.6 Up Off 

16 800 3000 3.5 1.0 Up On 

3.3. Data preparation & predictive models building 

After completing the experiments, datasets were prepared 
for building three predictive models. From the prepared 
dataset, correlation matrix is generated for surface roughness 
value against all the parameters considered in the experiment. 
This can help for choosing the useful features for building 
models. Fig. 6 shows the derived correlation matrix. Cutting 
speed and material removal rates which can be derived from 
the parameters specified in each set are added as features in the 
dataset. 

Table 3. Machining & inspection conditions/methods 

Condition/software/hardware Specification/type 

Machine make & model Jyoti K2X8 Five 

Controller make Siemens 840 D sl 

Work piece material Aluminum 

Tool diameter 16 mm 

Tool type Indexable ball end mill 

Tool make Seco 

Tool wear(flank) values(mm) 0,0.04,0.08,0.12 

Profilometer Taylor Hobson- Form Talysurf 50 

 
As outlined in the DT framework in figure 2 and 4, three 

predictive models are constructed. Model-1 would be used in 
process planning stage with process planning data. Model-2 is 
used during job setting prior to machining stage for predicting 
surface roughness. This model is built using both process 
planning data and tool wear data. Model-3 is built from actual 
machining data which consists of process planning parameters 
and spindle power consumption. Three data modelling 
techniques, Support Vector Machine (SVM), Gaussian Process 
(GPR) and Fully connected deep neural network (FCDNN) 
were considered for building the models. Based on the 
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validation accuracy and size of data available, SVM was 
selected for building Model-1 and Model-2, whereas FCDNN 
was selected for Model-3. Table 4 shows the performance of 
the predictive models by the respective method chose and 
reports its accuracies obtained after testing the models with test 
datasets. 
 

 

Fig. 6. Correlation matrix 

Table 4. Predictive models information 

Model No of 
dataset 

Method used Platform RMSE MAE 

Model-1 16 SVM MATLAB 0.9814 0.7606 

Model-2 

Model-3 

64 

12559 

SVM 

Fully 
connected 
DNN 

MATLAB 

Python 

1.081 

0.9693 

0.9231 

0.8989 

 
In Model-3, dataset is subdivided per NC block so that it can 

be used during executing NC code in machine. Thus, the 
number of datasets is more compared to other model datasets, 
deep learning is chosen for building the predictive model. But 
roughness value is taken as common for all the NC block in 
each experiment since, NC block wise surface roughness value 
was not able consider here. Model parameters used for SVM is 
given in Table 5. Table 6 shows the hyper parameter details of 
deep learning method used for building Model-3. 

Table 5. SVM Model parameters 

Model Box constraint Kernel scale Kernel function 

Model-1 200 60 Gaussian 

Model-2 200 65 Gaussian 

3.4. Prediction of surface quality on a test data sets 

A new 16 set of experiments with different process planning 
parameters and tool wear were used to test the three predictive 
models. Table 7 shows the testing dataset and Table 8 shows 
results comparison with measured surface roughness value. 
 
 
 

Table 6. Hyperparameters of Fully connected deep neural network 

Parameter Value/Method 

No: of Hidden layers 4 

No: of units per hidden layer {32,512,128,32} 

Activation function ReLU 

Loss function Mean Square error 

Optimizer Adam 

Dropout 0.5 

Batch size 20 

Epoch 100 

Table 7. Testing datasets 

Te
st  

Feed 
rate 
(mm/
min) 

Spindle 
speed 
(rpm) 

Doc 
(mm) 

Woc 
(mm) 

Cut 
Dir. 

Coolant Tool 
wear 
(mm)  

Avg. 
Power 
(W) 

1 1300 3300 0.6 0.7 Down Off 0.09 177.8 

2 1800 3800 0.6 1.1 Down On 0.09 222.9 

3 900 2400 0.6 1.3 Up Off 0.09 117.2 

4 300 1200 0.6 0.3 Up On 0.09 41.3 

5 300 2400 1.2 1.1 Down Off 0.09 120.1 

6 900 1200 1.2 0.7 Down On 0.09 52.1 

7 1800 3300 1.2 0.3 Up Off 0.05 197.1 

8 1300 3800 1.2 1.3 Up On 0.05 256.3 

9 900 3800 2.3 0.3 Down Off 0.05 248.9 

10 300 3300 2.3 1.3 Down On 0.05 207.1 

11 1300 1200 2.3 1.1 Up Off 0.05 62 

12 1800 2400 2.3 0.7 Up On 0.05 140.2 

13 1800 1200 3.2 1.3 Down Off 0.08 84.1 

14 1300 2400 3.2 0.3 Down On 0.08 130.8 

15 300 3800 3.2 0.7 Up Off 0.08 234.5 

16 900 3300 3.2 1.1 Up On 0.08 215.3 

Table 8. Testing results 

Test data  Measured Ra Model-1 

(SVM) 

Model-2 

(SVM) 

Model-3 

(FCDNN) 

1 3.64 1.88 2.15 2.67 

2 2.11 2.105 2.6 2.18 

3 3.65 2.29 2.8 2.54 

4 1.19 1.07 1.49 1.06 

5 3.03 2.44 2.48 2.4 

6 1.65 2.02 2.48 2.53 

7 0.57 1.35 1.74 1.51 

8 1.59 2.09 2.43 1.77 

9 0.99 1.72 1.46 1.51 

10 1.46 2.57 2.37 1.71 

11 1.96 2.67 3.2 3.19 

12 1.26 1.94 2.52 2.59 

13 3.02 3.46 4.07 4.02 

14 1.55 1.95 2.18 1.23 

15 4.42 1.98 1.84 1.99 

16 2.51 2.34 2.61 2.24 
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Fig. 4. Parameters for predictive model building 

3.1. Toolpath generation 

A form surface is created in NX CAD software & a contour 
machining toolpath is generated by NX CAM software. Fig. 
5(a) shows the CAD geometry and Fig. 5(b) shows generated 
tool path. The same strategy is applied for a Taguchi L16 
design of experiments with different process planning 
parameters. Table 1 shows the levels parameters used for 
generating 16 experiments. Table 2 lists the parameters for each 
of the 16 experiments conducted. The machining is performed 
on the work piece that has been rough cut. This ensures uniform 
finishing stock equal to the depth of cut value for the finishing 
operation. 

 

 

Fig. 5. (a) CAD geometry; (b) Generated toolpath 

Table 1. Taguchi experimental levels 

Feed 

(mm/min)  

Spindle 
speed 

(rpm) 

Depth of 
cut 

(mm) 

Width of 
cut 

(mm) 

Cutting 
direction 

Coolant 

200 1000 0.5 0.2 Up On 

800 2000 1.5 0.6 Down Off 

1400 3000 2.5 1.0 - - 

2000 4000 3.5 1.4 - - 

3.2. Execution 

Experiments with each of the 16 set of process parameters 
in the table2 were executed with 4 different tool wear values. 
During execution of these experiments, spindle power 
consumption of spindle was recorded with a sampling 
frequency of 4 milliseconds from the machine controller. 
Surface roughness values obtained after the machining of 64 
samples were inspected by a profilometer and its values were 
recorded. Table 3 shows the machining and inspection set-up 
used for conducting the experiments. 
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Feed rate 
(mm/min) 

Spindle 
speed 
(rpm) 

Depth 
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(mm) 

Width 
of cut 

(mm) 

Cutting 
direction 

Coolant 

1 1400 3000 0.5 0.6 Down Off 
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9 800 4000 2.5 0.2 Down Off 

10 200 3000 2.5 1.4 Down On 
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12 2000 2000 2.5 0.6 Up On 

13 2000 1000 3.5 1.4 Down Off 

14 1400 2000 3.5 0.2 Down On 

15 200 4000 3.5 0.6 Up Off 

16 800 3000 3.5 1.0 Up On 

3.3. Data preparation & predictive models building 

After completing the experiments, datasets were prepared 
for building three predictive models. From the prepared 
dataset, correlation matrix is generated for surface roughness 
value against all the parameters considered in the experiment. 
This can help for choosing the useful features for building 
models. Fig. 6 shows the derived correlation matrix. Cutting 
speed and material removal rates which can be derived from 
the parameters specified in each set are added as features in the 
dataset. 

Table 3. Machining & inspection conditions/methods 

Condition/software/hardware Specification/type 

Machine make & model Jyoti K2X8 Five 

Controller make Siemens 840 D sl 

Work piece material Aluminum 

Tool diameter 16 mm 

Tool type Indexable ball end mill 

Tool make Seco 

Tool wear(flank) values(mm) 0,0.04,0.08,0.12 

Profilometer Taylor Hobson- Form Talysurf 50 

 
As outlined in the DT framework in figure 2 and 4, three 

predictive models are constructed. Model-1 would be used in 
process planning stage with process planning data. Model-2 is 
used during job setting prior to machining stage for predicting 
surface roughness. This model is built using both process 
planning data and tool wear data. Model-3 is built from actual 
machining data which consists of process planning parameters 
and spindle power consumption. Three data modelling 
techniques, Support Vector Machine (SVM), Gaussian Process 
(GPR) and Fully connected deep neural network (FCDNN) 
were considered for building the models. Based on the 
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validation accuracy and size of data available, SVM was 
selected for building Model-1 and Model-2, whereas FCDNN 
was selected for Model-3. Table 4 shows the performance of 
the predictive models by the respective method chose and 
reports its accuracies obtained after testing the models with test 
datasets. 
 

 

Fig. 6. Correlation matrix 

Table 4. Predictive models information 

Model No of 
dataset 

Method used Platform RMSE MAE 

Model-1 16 SVM MATLAB 0.9814 0.7606 

Model-2 

Model-3 
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12559 

SVM 

Fully 
connected 
DNN 

MATLAB 

Python 

1.081 

0.9693 

0.9231 
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In Model-3, dataset is subdivided per NC block so that it can 

be used during executing NC code in machine. Thus, the 
number of datasets is more compared to other model datasets, 
deep learning is chosen for building the predictive model. But 
roughness value is taken as common for all the NC block in 
each experiment since, NC block wise surface roughness value 
was not able consider here. Model parameters used for SVM is 
given in Table 5. Table 6 shows the hyper parameter details of 
deep learning method used for building Model-3. 

Table 5. SVM Model parameters 

Model Box constraint Kernel scale Kernel function 

Model-1 200 60 Gaussian 

Model-2 200 65 Gaussian 

3.4. Prediction of surface quality on a test data sets 

A new 16 set of experiments with different process planning 
parameters and tool wear were used to test the three predictive 
models. Table 7 shows the testing dataset and Table 8 shows 
results comparison with measured surface roughness value. 
 
 
 

Table 6. Hyperparameters of Fully connected deep neural network 

Parameter Value/Method 

No: of Hidden layers 4 

No: of units per hidden layer {32,512,128,32} 

Activation function ReLU 

Loss function Mean Square error 

Optimizer Adam 

Dropout 0.5 

Batch size 20 

Epoch 100 

Table 7. Testing datasets 

Te
st  

Feed 
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min) 

Spindle 
speed 
(rpm) 

Doc 
(mm) 

Woc 
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Cut 
Dir. 

Coolant Tool 
wear 
(mm)  

Avg. 
Power 
(W) 

1 1300 3300 0.6 0.7 Down Off 0.09 177.8 

2 1800 3800 0.6 1.1 Down On 0.09 222.9 

3 900 2400 0.6 1.3 Up Off 0.09 117.2 

4 300 1200 0.6 0.3 Up On 0.09 41.3 

5 300 2400 1.2 1.1 Down Off 0.09 120.1 

6 900 1200 1.2 0.7 Down On 0.09 52.1 

7 1800 3300 1.2 0.3 Up Off 0.05 197.1 

8 1300 3800 1.2 1.3 Up On 0.05 256.3 

9 900 3800 2.3 0.3 Down Off 0.05 248.9 

10 300 3300 2.3 1.3 Down On 0.05 207.1 

11 1300 1200 2.3 1.1 Up Off 0.05 62 

12 1800 2400 2.3 0.7 Up On 0.05 140.2 

13 1800 1200 3.2 1.3 Down Off 0.08 84.1 

14 1300 2400 3.2 0.3 Down On 0.08 130.8 

15 300 3800 3.2 0.7 Up Off 0.08 234.5 

16 900 3300 3.2 1.1 Up On 0.08 215.3 

Table 8. Testing results 

Test data  Measured Ra Model-1 

(SVM) 

Model-2 

(SVM) 

Model-3 

(FCDNN) 

1 3.64 1.88 2.15 2.67 

2 2.11 2.105 2.6 2.18 

3 3.65 2.29 2.8 2.54 

4 1.19 1.07 1.49 1.06 

5 3.03 2.44 2.48 2.4 

6 1.65 2.02 2.48 2.53 

7 0.57 1.35 1.74 1.51 

8 1.59 2.09 2.43 1.77 

9 0.99 1.72 1.46 1.51 

10 1.46 2.57 2.37 1.71 

11 1.96 2.67 3.2 3.19 

12 1.26 1.94 2.52 2.59 

13 3.02 3.46 4.07 4.02 

14 1.55 1.95 2.18 1.23 

15 4.42 1.98 1.84 1.99 

16 2.51 2.34 2.61 2.24 
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For increasing the accuracy of prediction, more data sets that 

have enhanced coverage of the range of each parameter 
affecting the surface roughness is required. These three 
different models can be tuned with more datasets along with 
different combinations of parameters forming the features set 
to improve the model accuracy. The three predictive models are 
not compared with each other here since all the three models 
are created with different model parameters. 

4. Conclusion 

In this work we are proposing a DT framework for CNC 
machining process which allows simulation, prediction, and 
optimization of the machining quality both at process planning 
stage and machining stage. This DT enhances the decision-
making making capability of process planner and machine 
operator for controlling the machining parameters for quality 
consideration at process planning stage and machining stage. 
Predictive models are built for predicting surface roughness 
values at both the stages and its results are reported in this 
work. This framework needs a digital representation of 
machining process along with complete machining setup in a 
CNC machine and which needs to be interfaced with CAM 
software and CNC machine. To make this DT as a high-fidelity 
representation, it requires accurate predictive models and 
optimization modules for machining quality and its 
challenging. Other drawback with this DT is operator can 
control only few parameters such as feed rate and spindle speed 
for controlling machining quality at machining stage. The 
predictive models developed for predicting surface roughness 
value at both stages, requires more data to improve model 
accuracies and suitable method needs to be selected for better 
predictive results. Developing suitable optimization techniques 
for this DT framework is one of the future scopes of this work. 
Other than machining quality consideration, performance 
parameters of machining such as productivity and 
sustainability, would be considered in the future work along 
with realizing this proposed DT framework. 
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