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1 Introduction

In the last few years, the particular problem of reproducing the Page curve [1, 2] for
the black hole-radiation system has been solved using the ideas of Quantum Extremal
Surfaces (QES) [3–6]. These surfaces are generalized versions of the Ryu-Takayanagi
(RT) [7–9] surfaces, which measure the entanglement entropy between complementary parts
of a holographic CFT. Hence, the ideas of holography or the AdS/CFT correspondence
have played a central part in solving the puzzle as mentioned above within the broader
version of the information paradox. Due to the application of QES, completely new bulk
regions, known as the entanglement islands, appear in the entanglement wedge of the
radiation subsystem starting from a certain time (known as the Page time) of the evolution.
Emergence of these islands results in reproducing the correct Page curve [1, 2] for both
evaporating as well as the eternal black holes in AdS. In recent times, the Page curve has
been explored in various contexts [10–61].

The starting assumption is that the Hawking radiation is being absorbed by a non-
gravitational bath coupled with the asymptotic boundary of the gravitational system
containing the black hole. After that, one computes the entanglement entropy for a
subregion for the radiation system by utilizing the “island” formula [3–6, 62],

SEE(R) = min
{

ext
islands

(
SQFT(R∪ islands) + A(∂ (islands))

4 GN

)}
. (1.1)

The equation (1.1) takes into account both the entanglement entropy of quantum fields
of radiation subregion R and the entanglement entropy of the gravitating subregions,
termed as islands. For an evaporating black hole, the first term of (1.1) dominates and the
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result matches with the Hawking’s evaluation of the entropy. But, at late times, island
contribution i.e., the second term of (1.1) dominates, and this reproduces the expected
Page curve. However, the complete understanding of why these islands appear or what do
they actually stand for is yet to be understood fully although some connections have been
made with error correction and purification [50, 59, 63].

Another crucially interesting direction is to track the time evolution of the black hole
and radiation states. In doing so, one important quantity to study is the complexity of the
states under scrutiny. Complexity measures the number of basic structural components
needed to construct a given state [64, 65]. Hence, applying the bulk proposals of complexity
is one way to ask questions about the states we want to track. In a recent set of papers,
the evolution of volume was studied. In [66], the authors found that the change of the
preferred QES at Page time results in a jump (dip) in the volume corresponding to the
radiation (black hole) degrees of freedom. Since these studies are completely based on the
bulk proposal “complexity = subregion volume”, it is hard to understand precisely why this
discontinuity appears in these pictures. However, in some of the models [50], the authors
found this to be related to the holographic multipartite complexity of purification. The
argument is that when the radiation subsystem suddenly gets access to a set of modes at
Page time, which are spatially situated in the black hole interior, the partner modes which
are already present in the radiation side get purified. From a gate counting perspective,
therefore, while computing the complexity of all the modes in the radiation side, these
purified modes should be treated differently as they do not need any auxiliary degrees of
freedom to get purified.

In this paper, we focus on a slightly different problem. We consider only a part of the
radiation system (say, half of the radiation system at each timestep) and see how does the
information accessed by this region changes over time. We assume that as time goes on, the
radiation is always stored in two different storage equally. Geometrically, this will become
clear in the next section. This is in a similar spirit to [23]. Here the authors found that
even for half of the radiation subsystem, the corresponding QES goes through a shift at
some point. This time is different from the Page time, and for the reasons that we explain
later in this paper, we call this timescale the secret-sharing time ts. As found in [23], the
size of the entanglement wedge increases even for half of the radiation subsystem and gets
access to the new set of modes from the black hole side at the secret-sharing time. We want
to study how the corresponding volume (and therefore the sub-region complexity) changes
at this point of shift. The overall goal is to have some idea about how parts of the radiation
subsystem access the information and how it differs from the total radiation subsystem. In
a way, this is also supposed to teach us (at least holographically) how the complexity of
different parts of a mixed state behaves in comparison to the total mixed state.

As we find out, the subregion complexity of the half of the radiation subsystem also
goes through a shift when the corresponding entanglement entropy shift happens. This shift,
from the radiation point of view, is again similar to what was found in previous studies
concerning the complete radiation subsystem making the phenomena of phase transition of
complexity a bit more universal and applicable to a broader set of situations. However, the
jump happens at the secret-sharing time, which is typically bigger than the Page time.
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Figure 1. The inception geometry. (a) A two-boundary wormhole with asymptotic boundaries
A and B. The blue dotted circle denotes the bifurcate horizon. (b) The side B is truncated and
replaced by an EoW brane (red circle). The gray region is the inception disk containing the inception
black hole (black) with its inception horizon (yellow circle).

The rest of the paper is organised as follows. In section 2, we briefly review the model
studied in [23], in which we do the computations. In section 3, we discuss the volume
computations along with the plots, which will play the central role in the paper. We discuss
the inaccessibility of certain regions in island in the context of “classical” Markov recovery
in section 4. Finally, in section 5, we conclude with the implications of our study and
try to understand why and how the results are plausible from the point of view of both
information theory and the holographic model of the black hole-radiation system.

2 Geometric secret-sharing model: a brief review

As we have mentioned previously, our study will be in continuation of the geometric secret-
sharing model studied in [23]. In this section, we briefly review the essential features of the
model, which will help us to calculate the holographic subregion complexity. We also follow
a treatment involving Killing vectors in some stages while reviewing the covering space
depiction, which will be particularly relevant for the volume computations in section 3. The
review part is important because it helps the reader to understand which volumes are to be
computed and what precise parameter values are important in such computations.

The secret-sharing model was primarily introduced to study the Page curve in (2 + 1)-
dimensional AdS spacetime. The model essentially starts by considering a time slice of a
pure eternal two-sided BTZ black hole and then cutting off one asymptotic side by putting
an End-of-the-World (EoW) brane. This amounts to introducing a CFT on the brane itself,
and one considers its holographic dual geometry which is termed as the inception geometry.
Due to the entanglement with radiation, the brane CFT is thermal and dual to a black hole
referred as the inception black hole. The inception geometry, which possesses a black hole
with its intrinsic inception horizon, is purified by entanglement through another wormhole.
This purifying auxiliary system is naturally identified with the external radiation, providing
a realization of the ER = EPR [67, 68]. The basic structure is shown in figure 1. Note that
the AdS radius, the Newton’s constant, and hence the central charge (of the dual CFTs) on
two sides differ, which is the crux of the model. The following junction conditions glue the
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real side and inception side [23]

hab = h′ab,
1
GN

Kab = 1
G′N

K ′ab, (2.1)

where hab andKab are the induced metric and extrinsic curvature at the junction, respectively.
Here we use primed coordinates for the inception side, whereas the un-primed coordinates
denote the real side of the geometry. The junction conditions are similar in spirit to Israel’s
junction conditions [69], but there is a subtle difference — here, a convex surface is glued
with another convex surface, whereas in Israel’s condition, a concave surface is glued with a
convex surface. For more details, we urge the interested reader to go through section 2 of [23].

We consider the Euclidean black hole geometry,

ds2 = r2 − r2
h

`2
dτ2 + `2dr2

r2 − r2
h

+ r2dφ2 (2.2)

where rh is the radius of the horizon. Inception side is also given by the same metric (2.2)
with horizon radius r′h and AdS radius `′. Using (2.2), the junction conditions was already
found in [23]. We need two quantities from [23] which are rt and rb, to describe the
evaporation protocol,

rt =
√
`2G2

Nr
′2
h − `′2G′2Nr2

h

`2G2
N − `′2G′2N

, rb =

√
`2r′2h − `′2r2

h

`2 − `′2
. (2.3)

Here, rt is the location of the EoW on the upper half plane while at rb the brane trajectory
satisfies dr/dτ = ∞. The evaporation protocol is to gradually increase the radius r′h
corresponding to the radiation subsystem. The Page transition is marked by the equality
rh/GN = r′h/G

′
N , where GN and G′N are the Newton’s constants from the real and inception

side respectively. To see the transition before r′h = rh, we require G′N < GN . We also fix
` and GN from the real side and allow `′ and G′N to vary from the inception side so that
the ratio of central charges ĉ = c/c′ is fixed, where c = 3`/2GN . In order to achieve this,
during the evaporation process, we vary the location of the EoW brane rt as,

rt = rh + α(rh − r′h), (2.4)

with α > 0. Let us consider the situation before Page time when r′h/G
′
N < rh/GN , and

we focus on the radiation system R, which is situated in the inception side (see figure 2).
Before Page time, the RT surface of the region R is the throat horizon M ′, which has the
minimum area. After the Page time, the RT surface of R is given by the real black hole
horizon M . Hence a part of the real black hole interior enters within the entanglement
wedge of the radiation. This so-called “island” part is shown in figure 2b. The important
point is that after the Page time, if we can access the full radiation, then we have the full
information of the “island” coming from the black hole interior.

On the other hand, if we only focus on a subsystem of radiation, the situation differs
significantly. For example, let us consider the radiation subsystem R1 before the Page time.
Clearly the RT surface of R1 is given by the throat horizon M ′1 (see figure 3). However,
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Figure 2. Entanglement wedge of radiation subsystem R (a) before and (b) after Page time. (a)
The green shaded region is the EW of R as M ′ is the preferred RT surface. (b) At Page time, the
RT surface of R changes to M , which goes through the EoW brane (marked as red) and contains
part of the real black hole (the island region is shown by deep green). Here the blued dotted circle
denotes the RT surface of the real black hole. The left side of the EoW brane is the inception side,
whereas the right side of it is the real side.

Figure 3. Entanglement wedge of radiation subsystem R1 (a) before and (b) after Page time. (a)
The green shaded region is the EW of R1 as M ′

1 is the preferred RT surface. (b) At Page time, the
RT surface of R1 changes to M ′′

1 (marked as brown), which goes through the EoW brane (red) and
partially contains the interior of the real black hole. The EW of R1 after Page time is shown by the
brown shaded region, which includes a part of the island marked by the deeper brown colour. Here
the blued dotted circle denotes the RT surface of the real black hole. M ′

2 and M ′
3 denote the RT

surface of radiation subsystem R2 and R1 ∪R2 before Page time respectively.

after a particular time (secret-sharing time), the RT surface changes significantly, it goes
through the EoW brane (the fact that the RT surface can go through the EoW brane is a
crucial assumption in this model, which was argued consistently in [23]) and contains a part
of the island, and thus given by the horizon M ′′1 . The key fact is that if we have access to
the R1 part only, we can never access the full “island” region. We only have partial access.

Another important point is that the time at which the RT surface of R1 changes is
different and in fact, bigger than the Page time. In terms of the access to the partial islands,
although the full radiation has access to the full “island” region starting from Page time,
only a part of that information can be accessed by the R1 region after the secret-sharing
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time. Even if one considers the union of partial island regions accessed by R1 and R2, a
certain region within the full island remains inaccessible. Therefore, it is extremely crucial
for R1 and R2 to communicate between themselves in an entangled manner (quantum
channel) so that they can access to the “island−2×partial island” region.

From the entanglement wedge (EW) point of view, if two observers are collecting
the Hawking radiation separately at R1 and R2 exits, and they can communicate only
through classical channels, a part of the black hole still remains secret to both of them,
because the union of EW of R1 and R2 is different than the full EW of R1 ∪ R2, i.e.,
EWR1 ∪ EWR2 6= EWR1∪R2 . A part of the interior of the black hole remains secret to
the outside observer. The interior region is fully accessible to the outsider only if a single
observer has full access to both the R1 and R2 exists simultaneously, which means the
full Hawking radiation is required to construct the full interior of the black hole. This is
precisely the reason behind the name “secret-sharing” of this particular model and the
nomenclature of the new timescale.

In the next subsection, we discuss the procedure of the construction of the multiboundary
wormhole with relevant computations.

2.1 Covering space depiction of multiboundary wormholes

In this section we describe the relation between the inception side and the covering space
depiction of the multiboundary wormholes. The treatment of this section is different from
that of [23]. We follow the Killing vector approach developed in [70] in writing down different
moduli that play the role of the extremal surfaces in this model. Static multiboundary
wormholes can be constructed by taking a quotient of t = 0 slice of AdS3 which is a
hyperbolic plane H with a discrete subgroup Γ of PSL (2,R) known as Fuchsian group and
then lifting the action of Γ to the full AdS3 [71]. The action of Γ identifies pairs of geodesics
on t = 0 of AdS3 to obtain t = 0 slice of multiboundary wormholes. Then the covering space
of t = 0 slice of a multiboundary wormhole is just the quotient space of the hyperbolic plane
or is H/Γ. We take upper half-plane (UHP) metric as the t = 0 slice of AdS3. One of the
geodesics in the UHP are boundary anchored semicircles, and we identify these semicircles
to create our desired multiboundary wormhole geometries [70, 72]. To elaborate this point,
we identify a pair of boundary anchored concentric semicircles on the UHP to create a
t = 0 slice of two-boundary wormhole. In a similar way we can construct a three-boundary
wormhole by identifying a pair of concentric semicircles anchored at the boundary along
with the identification of a pair semicircles in a reverse orientation way [70] depicted in
figure 4b. We briefly demonstrate this reverse orientation identification in detail. Let us
suppose that two circles are located at Xb and Xa with radius Db and Da respectively (see
figure 4a). The general orientation reversing isometry that maps a point (x, y) on gb circle
to a point (x′, y′) on ga circle is,

x′ = Xa + Da

Db
(Xb − x), y′ = Da

Db
y . (2.5)

The transformations in (2.5) are finite transformations, and their corresponding infinitesimal
transformations were found in [70]. For the sake of completeness, we write down the Killing
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(a) (b)

Figure 4. (a) The general orientation reversing isometry that maps the point (x, y) on gb circle to
a point (x′, y′) on ga circle. (b) The covering space of the multiboundary wormhole. The notations
are explained in the main text.

vector that corresponds to a infinitesimal transformation. The Killing vector is [70],

ξ = aJT + bJD + cJS . (2.6)

where JT , JD, and JS are the generators of translation, dilatation and special conformal
transformation respectively [70]. Let us define new parameters as ā = −c, b̄ = −b/2c and
c̄ =
√
b2 − 4ac/2c. In terms of these parameters we find the finite transformation to be

z′ = eξz ⇒ z′ = b̄+ c̄
(z − b̄) cosh(āc̄) + c̄ sinh(āc̄)
(z − b̄) sinh(āc̄) + c̄ cosh(āc̄)

. (2.7)

where z = x + iy, is a point on the hyperbolic plane H. We express the center and the
radius of the identified semicircles in terms of these parameters

Xb = b̄− c̄ coth(āc̄), Xa = b̄+ c̄ coth(āc̄), DbDa = c̄2 csch2(āc̄) (2.8)

Finally, using (2.8), we find

DbDa =
(
Xa −Xb

2

)2
− c̄2 . (2.9)

Wormhole horizons at t = 0 slice become minimal periodic geodesics in the UHP. Thus, we
look for minimal geodesics between any two identified semicircles. To have a well defined
fundamental domain shown in figure 4b we require

D1 < Xb −Db < Xb +Db < Xa −Da < Xa +Da < λD1. (2.10)

Three boundary wormholes have three independent moduli m1, m2 and m3. The horizon
length m3 is computed by evaluating the length of the vertical geodesic between two
concentric semicircles

m3 = `′
∫ λD1

D1

dy

y
= `′ log λ . (2.11)
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The procedure to find the moduli m1 is the following: i) First, we take an arbitrary point on
any of the two circles (say left) and its image point, which is determined by the relation (2.5)
on the other circle (say right). ii) We find the length between these two points and minimize
it with respect to their endpoints. This procedure yields the two endpoints of the moduli
m1 as

P ≡ (Px, Py) =
(
Xb + Db(Db +Da)

Xa −Xb
,

Db

Xa −Xb

√
(Xa −Xb)2 − (Db +Da)2

)
, (2.12)

Q ≡ (Qx, Qy) =
(
Xa −

Da(Db +Da)
Xa −Xb

,
Da

Xa −Xb

√
(Xa −Xb)2 − (Db +Da)2

)
. (2.13)

Hence, the length m1 is
m1 = `′(sinh−1(α) + sinh−1(β)), (2.14)

where

α = (Xa −Xb)2 − 2Da(Db +Da)
2Da

√
(Xa −Xb)2 − (Db +Da)2 , β = (Xa −Xb)2 − 2Db(Db +Da)

2Db

√
(Xa −Xb)2 − (Db +Da)2 . (2.15)

Computing the horizon length m2 is non-trivial as it is divided into two parts mL
2 and mR

2 .
Nevertheless, we follow the same procedure described above and find the length m2 as

m2 = `′(sinh−1(γ) + sinh−1(δ)), (2.16)

with

γ = (Xb − λ−1Xa)2 − 2Db(Db + λ−1Da)
2Db

√
(Xb − λ−1Xa)2 − (Db + λ−1Da)2 , δ = (λXb −Xa)2 − 2Da(λDb +Da)

2Da

√
(λXb −Xa)2 − (λDb +Da)2 .

(2.17)

2.2 Islands and entanglement entropy

From the lengths discussed above, it is straightforward to calculate the entanglement entropy
between R1 and the actual black hole, which is given by the minimum “length” among all
possible candidate RT surfaces as [23]

SR1 = min
[
min
s1,s2

[
LI(s1, s2)

4G′N
+ Lbh(s1, s2)

4GN

]
,
m1

4G′N

]
. (2.18)

where s1e
iΘ and s2e

iΘ are the coordinates of the “infalling geodesics” (see figure 5). The
subscript I on LI indicates the length has to be computed from the inception side. The
length of the geodesic from real black hole side is given by Lbh(s1, s2) (as shown in figure 2b,
the candidate RT surface closes in the actual BH side). Note that, from either side the
geodesic arcs have to meet at [s1, s2] on the EoW brane and we have to minimise with
respect to these points. This contribution dominates after the secret-sharing time whereas
before that time, the length is simply given by m1/4GN (corresponds to the dotted red
geodesic between Xa and Xb centered semicircles in figure 4b). Note the crucial difference
in G′N and GN . The prime indicates the inception side while the un-primed coordinates
are from the real side of the black hole. Hence, initially until the secret-sharing time, the
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Figure 5. The covering space of the multiboundary wormhole from the inception geometry side.
Considering that a candidate RT surface for radiation subregions R1 and R2 can pass through the
EoW brane from the inception geometry to the real geometry, the blue lines are drawn, which
correspond to the minimal ones anchoring on the EoW brane. It will close in the actual black hole
side not shown in this picture.

RT surface corresponding to R1 stays completely in the inception side whereas after the
secret-sharing time it partially includes the “island” region.1 For simplicity, we choose all
moduli to be of same length (as was done in [23]). They are related with the inception
horizon as

m1 = m2 = m3 = 2πr′h . (2.19)

We choose the following parametrization with λ = µ2, so that

Xa = µXb, Xb =
√
DaDb(1 + µ2)
µ(µ− 1) ,

D1 = 1
µ
, D2 = µ,

Da = 2
(
µ− 1

2µ

)
, Db = 1

2

(
µ− 1

2µ

)
, (2.20)

where µ is constant and controls the evaporation protocol. The parametrization implies

m1,2,3 = 2`′ lnµ, ⇒ µ = exp
(
πr′h
`′

)
. (2.21)

We can immediately see that r′h = 0 implies µ = 1. Hence the evaporation protocol starts
at µ = 1, and it plays the role of “time”. Since the moduli (m1, m2 and m3) are of the
same length by construction, we can address two transitions in a single plot. If we consider
the union of R1 and R2, the entire radiation region, there are two candidates of RT surfaces
capturing the entanglement between the radiation and the black hole. We can write the

1Just as a reminder and to avoid any confusion, let us reiterate that the nomenclature reflects the fact
that a part of the radiation gets access to a partial island region at this point of time and cannot get access
to the full islands unless there is a quantum channel or secret-sharing between the subsystems.
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Figure 6. The Page curve according to eq. (2.18). We take rh = 10, GN = 1, ` = 1 and ĉ = 0.2.
The green curve indicates the entropy of the radiation subsystem R1 which continues to grow.
Dashed blue curve is the entropy corresponding to the real black hole horizon which stays constant.
The brown curve corresponds to the infalling geodesics which goes through the EoW brane from
inception side to the real side and contains the island region partially. The intersection of green
curve and dashed blue curve marks the Page time whereas the intersection of brown and green curve
is termed as secret-sharing time. The colors are according to the figure 3.

island formula for this case as the following

S(R1 ∪R2) = min
[

h

4GN
,
m3

4G′N

]
, (2.22)

where m3 = 2πr′h = m1 and h = 2πrh similarly (h being the moduli in the real-side
geometry which does not change with time modelling the eternal black hole geometry in a
way). Now, initially m3/4G′N is the RT surface for the complete radiation region. However
as time passes and therefore r′h increases, at the Page time, the other choice in eq. (2.22)
becomes the minimal RT surface. This transition is shown in figure 6 by the crossover
between the green growing curve and the dotted blue constant curve. The parameter r′h
plays the role of “time” and the crossing point value (between the green and blue curves) in
the x axis represents the Page time.

Now let us consider the entanglement between one half of the radiation (R1) and
the black hole. It is now straightforward to compute the entanglement entropy given in
eq. (2.18). The plot is shown in figure 6. The crucial point here to note is that the green
curve now represents m1/4G′N from eq. (2.18) due to all the three moduli in the inception
side being equal by construction.2 The other candidate in eq. (2.18) is plotted through the
red curve. The secret-sharing time is when the radiation curve (green) crosses the infalling
geodesics (red). The secret-sharing time is larger than the Page time. This captures the
fact that although the information of the whole island region becomes accessible to R1 ∪R2
at Page time, the information is not uniformly distributed to all small parts of the radiation.

2This choice gives us a way to compare the two timescales in a single plot.
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It becomes clear from this study that one half of the radiation gets to know about the
island region much after the Page time and yet only partially.

3 Holographic subregion complexity

In this section, we compute the subregion complexity for the evolving mixed state dual
to the entanglement wedge for half of the radiation system. Note that the entanglement
wedge is a co-dimension one region similar to the volume below the RT surface. Since the
entanglement wedge is dual to the density matrix of a mixed state, the volume of the region
has also been considered as the complexity of a mixed state extending the “complexity =
volume” [73, 74] for pure states. The volume dual to a subregion is usually dubbed as the
“subregion complexity” [75–77], which has been investigated for diverse scenarios [78–85]. In
holography, the subregion complexity of a boundary region A with a bulk minimal surface
γA is denoted as

CV = V (γA)
8π`GN

. (3.1)

where V(γA) is the enclosed volume by the boundary subregion A and the minimal surface
γA, and ` is the AdS radius. In the model that we are studying, we will compute the volumes
between R1 and its corresponding RT surface at different times. Since the multiboundary
wormhole models are well understood as timeslices and for AdS3 co-dimension one regions
are two dimensional, the volumes are actually be the areas in the pictures. This study is in
a similar spirit to that of other recent studies of the subregion complexity for the doubly
holographic models of islands both for evaporating and eternal black holes [63, 66, 84, 86].

3.1 Complexity before secret-sharing time

Here we compute the volume under the relevant geodesic before secret sharing time, which
is the volume shown in the shaded region in figure 7b. Typically in AdS3, if the bulk curves
are anchored to the boundary then the volumes are given by the boundary subregion’s size
x divided by some UV cutoff ε

V = x

ε
+ α (3.2)

where α are angles that depend upon the topology (Euler characteristics) of the region
whose volumes we try to compute [63, 79]. However, in the model under study, the situation
needs to be tackled a bit more carefully since m1 does not reach the boundary and ends on
the body of the wormhole. In what follows, we discuss the detailed computations of how
such volumes are computed with relevant figures.

The UHP metric is given by (we will momentarily set `′ = 1)

ds2 = dx2 + dy2

y2 . (3.3)

We compute the volume under a semicircle of radius R which is anchored at the boundary
and is given by

V =
∫ ∫

dxdy

y2 = 2R
ε
− π , (3.4)
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Figure 7. (a) Volume enclosed by a vertical line at P or P ′ and a half circle. (b) Volume under m1.

where ε is the location of the cutoff surface, which ensures that we get a finite answer for
the volume.

It will be useful for us to compute the volume between a half circle and a vertical line
that cut the center at x > 0 with respect to the centre of the circle. This volume is depicted
in the figure 7a and given by

V(x) = Da − x
ε

− π

2 + sin−1
(
x

Da

)
. (3.5)

Using (3.5) we find the volume under m1

Vt<ts = π − Db +Da − (Xa −Xb)
ε

− sin−1
(
Px −Xb

Db

)
− sin−1

(C − Px
D

)
− sin−1

(
Xa −Qx
Da

)
− sin−1

(
Qx − C
D

)
.

(3.6)

C is the center and D is the radius of the moduli m1

C = Xa +Xb

2 , D = 1
2

√
(Xa −Xb)2 − 4DaDb . (3.7)

where Px, Py, Qx, and Qy are given by the relation (2.12) and (2.13). After further
simplification we find that the other angular parts exactly cancel π and get the volume of
the shaded region in figure 7b as,

Vt<ts = Xa −Xb − (Db +Da)
ε

, (3.8)

As before, we take the symmetric setup with m1 = m2 = m3. Choosing the parametriza-
tion (2.20) we compute the volume

Vt<ts = (µ− 1)(µ− 2)(2µ− 1)
4µ2ε

, (3.9)

where µ = exp(πr′h/`′) and r′h being the radius of the throat horizons of R1 (or R2 or R3)
and acts as a proxy of time. Hence, the subregion complexity is given by

Ct<ts = `′Vt<ts
8πG′N

= `′(µ− 1)(µ− 2)(2µ− 1)
32µ2επG′N

. (3.10)

Here `′ and G′N are the AdS radius and Newton’s constant for the inception geometry
respectively. The plot of complexity with respect to ‘time’ (kept track of in terms of r′h)
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Figure 8. (a) Area enclosed by the brane and a part of infalling geodesic. (b) Angle between two
intersecting geodesics.

is shown in figure 10a. Note that the volume is ever-growing, supporting the notion that
although entanglement does not grow forever, complexity does. This is usually noted as
a consequence of the Hawking’s original calculation being applicable to complexity of the
radiation state.

3.2 Complexity after secret-sharing time

We now compute complexity after secret sharing time ts. Contribution to the Complexity
comes from real side as well as the inception side. For computational simplicity we divide
the inception volume into three parts: i) Volume under m1, ii) Volume enclosed by m1 and
the geodesic passing through s1e

iΘ and s2e
iΘ shown in figure 9, iii) Volume enclosed by

the EoW brane and the geodesic passing through s1e
iΘ and s2e

iΘ shown in figure 8a. We
have already discussed the volume under m1

Vt<ts = (µ− 1)(µ− 2)(2µ− 1)
4µ2ε

. (3.11)

The volume of the shaded region in figure 8a,

VI = − sin−1
(
s1 cos Θ−X

D

)
+ sin−1

(
s2 cos Θ−X

D

)
− cot Θ log

(
s2
s1

)
, (3.12)

where

X = −1
2(s1 + s2) sec Λ , (3.13)

D = 1
2

√
s2

1 + s2
2 − 2s1s2 cos(2Λ) sec Λ , (3.14)

Θ = π − Λ . (3.15)

Now, we use Gauss-Bonnet formula to compute the volume of the shaded region in figure 9,

Ṽ = 4π −
6∑
i=1

αi , (3.16)

where α’s are the interior angles of the hyperbolic polygon depicted in figure 9. In order to
calculate α’s we need to compute the angle between two intersecting semicircles. This angle
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Figure 9. The blue shaded region corresponds to the volume between a set of geodesics in the
inception sides that is helpful for calculations. To compute the full volume in the inception side, one
needs to add the volume between s1 and s2 on the EoW brane and the green curve.

is depicted in figure 8b. We take two circles with centers at Xb and Xa and with radius Db

and Da respectively. The angle between these two circles is,

γ = π −
(

sin−1
(

(Xa −Xb)2 +D2
b −D2

a

2Db(Xa −Xb)

)
+ sin−1

(
(Xa −Xb)2 −D2

b +D2
a

2Da(Xa −Xb)

))
. (3.17)

Using (3.17) we find α’s,

α1 = sin−1
(

(XJ −X)2 +D2 −D2
J

2D(XJ −X)

)
+ sin−1

(
(XJ −X)2 −D2 +D2

J

2DJ(XJ −X)

)
,

α2 = π −
(

sin−1
(

(XI −X)2 +D2 −D2
I

2D(XI −X)

)
+ sin−1

(
(XI −X)2 −D2 +D2

I

2DI(XI −X)

))
,

α3 = π −
(

sin−1
(

(Xb −XI)2 +D2
I −D2

b

2DI(Xb −XI)

)
+ sin−1

(
(Xb −XI)2 −D2

I +D2
b

2Db(Xb −XI)

))
,

α6 = sin−1
(

(Xa −XJ)2 +D2
J −D2

a

2DJ(Xa −XJ)

)
+ sin−1

(
(Xa −XJ)2 −D2

J +D2
a

2Da(Xa −XJ)

)
(3.18)

where XI , XJ , DI and DJ are given by

XI = 2s2 cosΘ
(
s2

1Xa−Xb (DaDb+XaXb)
)
+2DaXaDbXb+D2

aD
2
b−
(
X2
a+s2

2
)
(s1−Xb)(Xb+s1)

2
(
−cosΘ

(
s2DaDb+2s2XaXb+s1

(
X2
a+s2

2
))

+DaXaDb+Xb

(
X2
a+s2

2
)
+s1s2Xa cos2Θ+s1s2Xa

) ,
XJ = 2s1 cosΘ

(
s2

2Xb−Xa (DaDb+XaXb)
)
+2DaXaDbXb+D2

aD
2
b−(s2−Xa)(Xa+s2)

(
X2
b +s2

1
)

2
(
−cosΘ

(
s1DaDb+2s1XaXb+s2

(
X2
b +s2

1
))

+DaDbXb+Xa
(
X2
b +s2

1
)
+s1s2Xb cos2Θ+s1s2Xb

) ,
DI =

√
(XI−s1 cosΘ)2+s2

1 sin2 Θ, DJ =
√

(XJ−s2 cosΘ)2+s2
2 sin2 Θ . (3.19)

Also, we find α4 +α5 = π. Finally, we compute the volume VR, which is the volume enclosed
by the brane and a part of infalling geodesic which has the endpoints on the brane in the
real side. This volume is same as the volume VI enclosed by EoW brane and the geodesic
passing through s1e

iΘ and s2e
iΘ. After collecting all the terms, we find complexity after
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Figure 10. Variation of subregion complexity with respect to the throat horizon of radiation
subsystem R1. Complexity shows a discontinuous jump at secret-sharing time. (b) Starting from
the secret-sharing time the complexity of the partial island ∆C decreases gradually.

secret sharing time is,

Ct>ts = Ct<ts + `′(Ṽ + VI)
8πG′N

+ `VR
8πGN

. (3.20)

Ct<ts is a divergent quantity as ε→ 0 so we define a finite quantity ∆C as follows,

∆C =

0 t ≤ ts
`′(Ṽ+VI)

8πG′
N

+ `VR
8πGN

t > ts
(3.21)

The complexity of the partial island is shown in figure 10b.

4 Classical Markov channel and geometric secret-sharing

Let us consider a pure tripartite state whose density matrix is written as ρABC . In general,
if we trace out the degrees of freedom corresponding to region C, we would be left with the
reduced density matrix of the mixed state ρAB . Now, let us assume a map RB→BC which,
as the notation suggests, maps the system B into BC (note that this does not guarantee
that the full region BC is exhausted through this map). We can think of this map as some
quantum channel between B and C. If an observer on B has access to ρAB and acts with
this channel (RB→BC) on the reduced mixed density matrix ρAB, a tripartite state ρ̃ABC
could be produced which will have support over the whole system. This channel is typically
known as the Markov recovery channel [87]

ρ̃ABC = RB→BC (ρAB). (4.1)

The quantum distance defined through the fidelity between the density matrices of the total
system ρABC and the newly produced state ρ̃ABC measures how well the recovery channel
can recover the original state. The fidelity between two density matrices ρ and σ is defined as

F(ρ, σ) = Tr
(√√

ρσ
√
ρ

)2
, satisfying 0 ≤ F(ρ, σ) ≤ 1. (4.2)

This measures the overlap between two density matrices in consideration. Therefore, the
more the fidelity value (closer to unity), the closer two density matrices are to each other.
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For a good quantum recovery channel, the expectation is that there exists a Markov
chain (A → B → C), which exactly reproduces the original density matrix. For more
details on these, we refer [87] which has addressed recovery in the context of the reflected
entropy and the mutual information in holography. The fidelity between the exact state
and the recovery state lower bounds the mutual information which in turn lower bounds the
reflected entropy. The difference between reflected entropy and the mutual information is
always positive and termed as Markov gap. In the following, we try to argue how a similar
concept like Markov gap can be associated with our study in the geometric secret-sharing
model. In our case, we do not talk about Markov gaps from the perspective of the reflected
entropy. However, it is worth mentioning that such a study can be possible since reflected
entropy in this particular model has been studied previously in [20]. In our study, we
restrict ourselves to the standard definition of the Markov gap mentioned above. We see
that our radiation subsystems R1,2 are very similar to the A and B subsystems mentioned
above, whereas the original black hole exit plays the role of subsystem C.

The statement of a quantum Markov recovery channel is to act on ρAB with a recovery
channel RB→BC . However, from an observer situated at the exit R1, it is also nontrivial to
operate on the full ρR1∪R2 (equivalently the EW of R1 ∪R2) unless there already exists a
quantum channel between R1 and R2 through which it can access the information of the
region EW(R1 ∪R2)−EW(R1)−EW(R2). We, on the other hand, do not assume existence
of such a channel. Hence, in our case we assume the recovery map RR1→R1 BH to be acting
on ρR1 ⊗ ρR2 and similarly from the R2 side, another recovery map RR2→R2 BH to be acting
on ρR1 ⊗ ρR2 . Here the subscript “BH” stands for black hole. We call this as classical
Markov recovery channel

ρ′R1 R2 BH = RR1→R1 BH(ρR1 ⊗ ρR2)⊗RR2→R2 BH(ρR1 ⊗ ρR2). (4.3)

The role of the channels RR1→R1 BH and RR2→R2 BH are played by the QES at various times.
For example, if we fix the observer to R1 and try to look beyond its trivial EW by asking
something extra. The added non-trivial extension of its possible RT surfaces to cross the
EoW brane, which was the main point of [23], is also what plays the crucial role in our
definition of the classical recovery channels. Unless this extension was there EW(R1) would
never go beyond the usual RT surface. A symmetrically placed channel can also be formed
from the perspective of the R2 side.

Finally we can define the classical Markov gap (CMG) as F(ρR1 R2 BH, ρ
′
R1 R2 BH), the

fidelity between the original density matrix and the density matrix produced by a classical
Markov recovery channel (see figure 11). Since the entanglement wedges (codimension 1
regions, similar to the volumes) are usually thought to carry information equivalent to the
corresponding density matrices, the volume of the

full island − 2 × partial islands

region measures the size of the fully quantum secret sharing channel. The classical Markov
recovery channels can not access any of this region because these channels are completely
classical. A perfect quantum Markov chain (ρ̃R1 R2 BH = ρR1 R2 BH) can be made possible
only if one can have access to a fully quantum secret-sharing channel.
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Figure 11. Classical Markov recovery. The pink region denotes the volume enclosed by the infalling
geodesics from radiation subsystem R1 and R2. The shaded green region is the classical Markov
gap explained in the main text. Here we assume that two observers sitting at R1 and R2 exits can
communicate classically, but neither they have the full control over both the exists simultaneously.

5 Discussions

In this paper, we study the geometric secret sharing model where part of the radiation can
at most access only a part of the island region and only after the secret-sharing time, which
is greater than the Page time. Therefore, the full quantum secret of the island region is
only shared with the full radiation system. The region which can never be accessed by
individual observers communicating through classical channels should be understood as a
quantum phenomenon in this model, which makes this region extremely special.

We elucidate the above scenario by applying machinery from multiboundary wormholes
in AdS3. The areas provide the expected behaviour, as shown in [23]. The RT surfaces
for half of the radiation goes through a transition at the so-called secret-sharing time.
We, therefore, extend the area study to the corresponding volumes, in order to study the
corresponding subregion complexities, where the topologies of the regions under study
appear in the computations. Another important change due to the passing of RT surfaces
through the EoW brane is that one has to be careful in assigning different values to the
Newton’s constant and AdS length scale to the inception- and the real-side geometries. Our
conclusions are listed below.

1. The volume accessible to the complete radiation subsystem keeps increasing with time.
This volume is the UV cut-off-dependent divergent volume. However, after the Page
time, a new volume gets added to the radiation subsystem, which is finite. We call this
volume the island volume. As argued in our previous work [66], this volume grows in
time and represents the complexity of auto-purification3 of certain modes that are puri-
fied after the island is encoded in the entanglement wedge of the radiation subsystem.

3Here, auto-purification means that one would not need to add any ancilla system to purify for these
parts of the mixed state under study. Due to both partner modes (Hawking quanta inside and outside black
hole), these modes form a pure-state (one could think of it forming an eigenstate present in the classical
probabilistic mixture forming the mixed state) within the mixed state. In the secret-sharing model, it is easy
to point out. The island is part of the real geometry on the right-hand side of the EoW brane. However,
since the model deals with a purification done by the inception geometry, the new volume also contains a
region in the inception geometry, representing the modes that purify the island modes.
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2. When dealing with one half of the radiation subsystem, we again find a similar
behaviour of the volumes. There is one highly divergent piece due to the UV cut-off
dependence in the multiboundary of AdS3 boundaries. However, after the secret-
sharing time, a new volume gets added to the entanglement wedge of the R1 subregion.
This newly added volume again consists of parts both from the real- and the inception-
side geometries. Hence, this volume again represents some purification taking place
and resulting in the jump. However, when we study the time dependence of this partial
island volume after secret-sharing time, we find that it typically decreases with time.

3. One should be careful and understand that this volume change is much less than the
overall divergent volume, which keeps growing in time as the size of the throat horizon
of R1 keeps increasing. However, due to this decreasing nature of partial island volume,
the slope of the overall volume is expected to decrease after the secret-sharing time
(whereas it increases if one considers the total radiation subsystem R = R1 ∪R2).

4. R1 and R2 are considered to be of equal size in the model, and therefore, both would
get access to symmetrically placed partial island regions after secret-sharing time.
However, the union of the partial islands does not form the complete island region.
This region is particularly interesting since these are the modes that are not accessible
through a classical channel. Observers OR1 and OR2 , living on R1 and R2, respectively,
need to share some kind of quantum secret between themselves to access over this
region. We refer to this volume as the “secret-sharing volume”.

5. The volumes and the change of subregion complexity have been previously argued to
be dual to the fidelity of two perturbed quantum states [81, 88–91]. In the model we
study, the volume of the region islands−2×partial islands can similarly be understood
as the difference between two states where one of them can only be constructed through
a quantum (secret-sharing) channel, and the other is the contribution of the fully
classical channel. The difference between these kind of states is typically expressed
through the Markov gaps in quantum information theory. It measures the fidelity
between the density matrices of two states constructed through quantum and classical
channels, respectively. A version of these Markov gaps has recently been addressed
in holographic systems in [87]. However, we use a little different definition (which we
call the “classical” Markov gap) than theirs, as explained in more details section 4.

Evolving volumes and, therefore, the subregion complexities in this picture can indeed
capture the secret-sharing transition of entanglement entropies. In addition, by looking
at the nature of the complexity plot, we figure out a way to distinguish whether we are
computing the complexity of the total radiation or a part of it. In the case of total radiation,
the jump of complexity at Page time grows in time, whereas for half of the radiation,
the complexity jump takes place at a secret-sharing time and decreases over time. This
difference can also be understood as a distinguishing factor between the Page transition
and the secret-sharing transition.

It would be worthwhile to understand the secret-sharing in more diverse situations
e.g., the braneworld models [18, 86] and the moving mirror models [26]. Another possible
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direction is to use the duality between density matrix and entanglement wedge (co-dimension
one volume) to recast the Markov recovery maps and quantify the Markov gaps in various
possible models (e.g., [20, 21, 38]) more concretely. In these models, both classical and
quantum Markov gaps can be accessed using the ideas introduced in [87]. As the jump of
complexity happens to be a universal phenomenon due to the change of preferred RT at
a certain time (both for Page curve and secret sharing curve), it would be interesting to
understand this jump from the perspective of holographic bit thread [92–94].
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