Development of a poly-axial platen for testing true-triaxial behavior of rocks

Prasoon Garg, Bhardwaj Pandit, Brijes Mishra, and G.L. Sivakumar Babu

Abstract: Mining at greater depths can lead to stress-induced failure, especially in areas of high horizontal in situ stress. The induced stresses around the opening are known to be in a poly-axial stress state where, $\sigma_1 \neq \sigma_2 \neq \sigma_3$ with special case of $\sigma_3 = 0$ and $\sigma_1, \sigma_2 \neq 0$ at its boundary, where $\sigma_1, \sigma_2, \sigma_3$ are major, intermediate, minor principal stress, respectively. The conventional triaxial testing does not represent the actual in situ strength of the rock in regions of high horizontal stress, as it ignores the influence of intermediate principal stress (σ_2). The typical poly-axial testing (biaxial and true-triaxial tests) of intact rock mostly requires sophisticated and expensive loading systems. This study investigated the mechanical behavior of intact rock under a poly-axial stress state using a simple and cost-effective design. The apparatus consists of a biaxial frame and a confining device. The biaxial frame has two platens that apply equal stress in both directions ($\sigma_2 = \sigma_3$) on a 50.8 mm cubical specimen when placed inside the uniaxial loading device. The confining device performed separate biaxial tests under constant intermediate principal stress ($\sigma_2 = constant$) and true-triaxial tests when used along with the biaxial frame. This study then compared the failure modes and peak strength of Berea sandstone specimens with other biaxial-triaxial devices to validate the design of the poly-axial apparatus. We also performed uniaxial tests on both standard cylindrical samples and prismatic specimens of different slenderness ratios. These tests provided a complete understanding of the failure mode transition from standard uniaxial compressive tests to triaxial stress conditions on cubical specimens. Additionally, this study determined best-fitted strength envelopes for biaxial and triaxial stress state. Based on regression analysis, we found a quadratic polynomial to be a good fit to biaxial strength envelope. For the true-triaxial strength envelope, we found the three-dimensional (3D) failure criterion to be a good fit with R^2 of 0.964.

Key words: poly-axial testing, biaxial frame, stress paths, failure modes, true-triaxial tests, intermediate principal stress, Berea sandstone, biaxial platens.

Résumé : L’exploitation minière à de plus grandes profondeurs peut conduire à une défaillance induite par les contraintes, en particulier dans les zones de fortes contraintes horizontales in situ. Les contraintes induites autour de l’ouverture sont connues pour être dans un état de contrainte poly-axiale où, $\sigma_1 \neq \sigma_2 \neq \sigma_3$ avec le cas particulier de $\sigma_3 = 0$ et $\sigma_1, \sigma_2 \neq 0$ à sa limite, où $\sigma_1, \sigma_2, \sigma_3$ sont la contrainte principale majeure, intermédiaire, mineure, respectivement. L’essai triaxial conventionnel ne représente pas la résistance in situ réelle de la roche dans les régions à forte contrainte horizontale, car il ignore l’influence de la contrainte principale intermédiaire (σ_2). Les essais poly-axiaux typiques (essais biaxiaux et triaxiaux réels) sur des roches intactes nécessitent généralement des systèmes de chargement sophistiqués et coûteux. Cette étude a examiné le comportement mécanique de la roche intacte sous un état de contrainte poly-axiale en utilisant une conception simple et rentable. L’appareil se compose d’un cadre biaxial et d’un dispositif de confinement. Le cadre biaxial comporte deux plateaux qui appliquent une contrainte égale dans les deux directions ($\sigma_1 = \sigma_2$) sur un échantillon cubique de 50,8 mm lorsqu’il est placé dans le dispositif de chargement uniaxial. Le dispositif de confinement a effectué des essais biaxiaux séparés sous contrainte principale intermédiaire constante ($\sigma_2 = constante$) et des essais triaxiaux réels lorsqu’il a été utilisé avec le cadre biaxial. Cette étude a alors comparé les modes de défaillance et la résistance maximale des spécimens de grès de Berea avec d’autres dispositifs biaxiaux–triaxiaux afin de valider la conception de l’appareil poly-axial. Nous avons également effectué des essais uniaxiaux sur des échantillons cylindriques standard et des échantillons prismaïques de différents rapports d’éancement. Ces essais ont permis une compréhension complète de la transition du mode de défaillance entre les essais de compression uniaxiale standard et des conditions de contrainte triaxiale sur des échantillons cubiques. En outre, cette étude a déterminé les enveloppes de résistance les mieux ajustées pour les états de contrainte biaxiale et triaxiale. Sur la base de l’analyse de régression, nous avons constaté qu’un polynôme quadratique correspondait bien à l’enveloppe de résistance biaxiale. Pour l’enveloppe de résistance triaxiale réelle, nous avons trouvé que le critère de rupture triaxiale (3D) était un bon ajustement avec un R^2 de 0,964. [Traduit par la Rédaction] Mots-clés : essais poly-axiaux, cadre biaxial, chemin de contrainte, modes de défaillance, essais triaxiaux réels, contrainte principale intermédiaire, grès de Berea, plateaux biaxiaux.
1. Introduction

Excavation at deeper depths often creates adverse stress conditions around an underground mine opening. In addition to in situ stresses, the excavated opening produces induced stresses that may initiate failure of the rock mass. Three mutually perpendicular principal stresses \((\sigma_1 > \sigma_2 > \sigma_3)\) where \(\sigma_1\), \(\sigma_2\), and \(\sigma_3\) are major, intermediate, and minor principal stress, respectively) can represent the stress state in the Earth, which is usually in a polyaxial state. However, on the boundary of an unsupported excavation, a biaxial stress state exists where \(\sigma_1 = 0\) and \(\sigma_1, \sigma_2 \neq 0\). In addition, the minimum principal stress is smaller when compared to the other two stresses in the region (within the pressure arch) around the vicinity of the opening (Cai 2008). Such planar stresses often dictate the constitutive behavior of rock mass around an opening, especially in regions of high horizontal stress such as the Central Appalachian region containing the eastern USA coalfields. According to a study by Mark and Barczak (2000), the eastern USA has a major horizontal stress two to three times that of the vertical stress, while the minor horizontal stress is approximately equal to the vertical stress. These stress conditions often result in various ground control problems, such as buckling, cutter failure, spalling, and rockbursts (Smith 1963; Bétournay and Mitri 2003; Mitri et al. 2005). The two most commonly used criteria in the design of underground structures, Mohr–Coulomb and Hoek–Brown, do not account for the influence of intermediate principal stress \(\sigma_2\), as they only consider \(\sigma_1\) and \(\sigma_2\), making them unsuitable in cases of planar loading. For instance, these criteria cannot explain the cause of strainbursts in deep mine openings or zones of high compressive stresses that result in spalling of thin slabs of rock roughly parallel to the free face of opening (Bétournay and Mitri 2003). Therefore, a generalized failure criterion that accounts for the influence of intermediate principal stress is essential for rocks.

Various researchers have comprehensively investigated the influence of the intermediate principal stress on rock behavior (Handin et al. 1967; Colmenares and Zoback 2002; Al-Jamini and Zimmerman 2005). Several failure criteria have included the intermediate principal stress to describe rock strength under true-triaxial stress states, such as the modified Wiebols and Cook (1968) criterion and Mogi (1971) criterion. However, no singular, specific criterion was found to fit most types of rock. For instance, Colmenares and Zoback (2002) found that out of seven different failure criteria, only the modified Lade criterion fit the failure data of Dunham dolomite and Solehfonen limestone. Initially, Hobbs (1962) performed biaxial tests on hollow cylinders of coal (Hobbs 1962). Subsequently, biaxial laboratory tests used the cubical specimen (Brown 1974; Amadei et al. 1984; Mitri et al. 2005). However, these studies used true-triaxial or biaxial devices that are quite sophisticated and required time-consuming efforts. For example, Walsri et al. (2009) and Yun et al. (2010). Therefore, the current study designs a simple and cost-effective poly-axial apparatus that can be used easily with a uniaxial loading device. This apparatus is an improved version of the biaxial device by Arora and Mishra (2015).

This study investigates the mechanical behavior of intact rock under a poly-axial stress state. The study’s objective was to design a simple and cost-effective apparatus which, when placed under a uniaxial loading machine, would mimic the biaxial and true-triaxial load conditions. This apparatus consists of a biaxial frame and a confining device. The biaxial device is an improved version of the device by Arora and Mishra (2015), consisting of two platens that apply equal stresses on a 2 in \((1 \text{ in } = 25.4 \text{ mm})\) cubical specimen when placed inside a uniaxial compressive loading device. The confining device applied a constant confining pressure on the specimen and operated along with a biaxial frame to represent triaxial stress conditions. To validate the design of the poly-axial apparatus, we compared the change in failure modes and peak strength of Berea sandstone samples from uniaxial to triaxial stress conditions with standard triaxial-biaxial devices. Furthermore, this study also analyzes the influence of specimen size on the failure mode of Berea sandstone to gain a complete understanding of the failure mode transition from standard uniaxial compressive strength (UCS) test to triaxial test on cubical specimen.

2. Experimental design

The design of biaxial frame was based on the device by Arora and Mishra (2015) (Fig. 1a). The original frame consists of two mild hardened steel platens with arms (extended section of the platen) mounted on a 50.8 mm \((2 \text{ in.})\) cubical rock specimen. The arms have four surface areas \((e, f, g, \text{ and } h)\) that apply equal load onto four faces of the cubical specimen. Two arms of each platen, \(g\) and \(h\), are 50.8 mm \((2 \text{ in.})\) in length, while the remaining two arms \((e\) and \(f)\) are slightly shorter in length at 45.7 mm \((1.8 \text{ in.})\) to ensure that the two platens are not in contact during the loading (Fig. 1a). This study assumes that the adjacent arms of each platen will apply an equal load to the specimen, replicating the biaxial stress conditions with \(\sigma_1 = \sigma_2\) and \(\sigma_3 = 0\). However, numerical analysis in 3DEC indicated an unsymmetrical displacement profile in the specimen (Fig. 1b) that would produce rotation at one side of the specimen. Therefore, we redesigned the frame to include symmetrical arms (Fig. 2) to overcome these limitations. The improved design, when simulated in 3DEC, showed symmetric vertical displacement contour without any rotation (Fig. 1c).

The biaxial frame (Fig. 2) can apply only one set of biaxial stress \((\sigma_1 > \sigma_2 > \sigma_3)\). Therefore, this study performed biaxial tests with constant intermediate principal stress \(\sigma_2\) using a confining device (controlled with hydraulic jack) along with two steel cubical spacers (Fig. 3a). The confining device consists of two square plates with the dimensions of 49.53 mm \((\text{length}) \times 49.53 \text{ mm} \) \((\text{breath}) \times 6.35 \text{ mm} \) \((\text{height})\). The square plates attach to the two hollow beams that interconnect through tension rods. The device suspends the beams through the mounting plate attached to the upper platen of the load frame using ball joint rods. The setup connects to the plunger of a hydraulic jack, which attaches to the hydraulic ram on the left side. The hydraulic jack controlled the confinement stress on the specimen during the biaxial test. The device has two cubical steel spacers \((\text{dimensions of } 50.8 \text{ mm} \times 50.8 \text{ mm} \times 49.53 \text{ mm})\) on the top and bottom of the specimen; these spacers transfer the axial load from the platens of the uniaxial loading frame to the specimen, whereas the square plates of the confining device applied constant intermediate stress. Additionally, this study performed true-triaxial tests using a combination of the biaxial frame and special device (Fig. 3b). We placed the entire setup inside of the compression-testing machine \((\sigma_3 = 0)\) to replicate novel triaxial loading condition (Ma et al. 2017).

A fiberboard sheet of 1 mm thickness (Lundborg 1967) between the rock and platen minimized the shear stress along the interface for all tests; this sheet also ensured that the applied load to the rock was close to the true-biaxial and -triaxial state along with uniform stress distribution in an irregular ended specimen. In uniaxial tests, we placed the cubical steel spacers at the top and bottom of the specimen. This placement ensured uniform
Fig. 1. (a) Platen designed by Arora and Mishra (2015); vertical displacement contours: (b) biaxial device by Arora and Mishra (2015) and (c) modified biaxial design used in this study. (All dimensions in inches (1 in. = 25.4 mm).) Nb, bottom notch; Nu, upper notch. [Color online.]
loading on the specimen’s end surfaces by removing the effect of circular grooves in the platens of the uniaxial loading device.

3. Testing program

3.1. Specimen preparation

This study analyzed large blocks of Berea sandstone (600 mm × 400 mm × 154 mm) from Cleveland Quarries (Fig. 4a). The lithological description is based on X-ray diffraction analysis and information from Cleveland Quarries. The Berea sandstone used in this study is also known as “Liver Rocks”. It is homogenous rock with no visible lamination. Mineralogy based on X-ray diffraction analysis shows that this rock mainly includes 90% quartz, 3% dolomite, 7% zeolite, 1% ankerite, and small traces of feldspar and illite (Fig. 4b). Ambient porosity is around 18%–20%.

We prepared four groups of specimens from large Berea sandstone blocks, using a machine-operated rock saw to cut the specimens with a circular cutting blade. A mechanized grinding system ground and leveled all the surfaces of the specimen up to a tolerance of ±0.20 mm and smoothness with tolerance of Δ/d 0.0043 mm in accordance with standard D4543 (ASTM 1998). The angle between the adjacent face was kept at 90° with a tolerance of 0.250°. We oven-dried the specimens and weighed them repeatedly until no weight loss occurred. The average dry density of Berea sandstone was 2450 kg/m³. The four groups of specimens tested were:
Group A-Ux-O: cylindrical specimens, 50.8 mm in diameter and 101.6 mm in length, with a height/diameter ratio (H/D) of 2.
Group B-Ux-P: prismatic specimens, 50.8 mm × 50.8 mm × 101.6 mm, with a height/width (H/W) ratio of 2.
Group C-Ux-Q: cubical specimens, 50.8 mm × 50.8 mm × 50.8 mm, with a height/width (H/W) ratio of 1.0.
Group D-Ux-R: prismatic specimens, 50.8 mm × 25.4 mm × 50.8 mm, with a height/width (H/W) ratio of 0.5.

We used group A to determine the UCS of cylindrical specimens of Berea sandstone. All specimens excluding group A had a square cross section (50.8 mm × 50.8 mm). We studied the specimens from groups labeled "B-Ux-P", "C-Ux-Q", and "D-Ux-R" to study the size effect in uniaxial compressive tests. Additionally, group C also featured in biaxial and true-triaxial tests to validate the platen design and understand the transition in peak strength and failure mode from a uniaxial to a triaxial stress state. Figure 5 shows the geometric shapes of the four groups of specimens.

3.2. Test parameters

As discussed in the previous sections, this study conducted uniaxial tests on four different specimen groups with five specimens for each group (Table 1). We studied the specimens from groups labeled “B-Ux-P”, “C-Ux-Q”, and “D-Ux-R” for the influence of specimen size; we also compared the peak strength (UCS, also shown as \(\sigma_c \)) with the strength of standard cylindrical specimens from the group labeled “A-Ux-O”.

Biaxial tests were conducted on 50.8 mm (2 in.) cubical specimens groups labeled “C-Bx-1-B” and “C-Bx-2-A” for two different loading paths (Figs. 6a and 6b). In the current study, a rock specimen labeling system was created to represent the experimental stress conditions. For instance, in the specimen group labeled “C-Bx-1-B”, “C” represents the cubical specimen, “Bx” represents biaxial compression test, “1” represents the loading path used in the experiment (Fig. 6a). The loading path 1 ran using the biaxial frame (Fig. 2b), which represented high intermediate stress (\(\sigma_2 = \sigma_3 \)), and the uniaxial frame increased the maximum principal stress \(\sigma_1 \) until failure (Table 2). In loading path 2, the square plates of the confining device applied the constant intermediate stress (\(\sigma_2 = \) constant), and the uniaxial frame increased the maximum principal stress \(\sigma_1 \) until failure (Fig. 3a). Additionally, tests under loading path 2 used three intermediate stress levels (\(\sigma_2 = 6.9, 13.8, \) and 27.6 MPa stress).

True-triaxial tests were conducted on 50.8 mm cubical specimens from groups labeled “C-Tx-3-E” and “C-Tx-3-F” using the...
Fig. 4. (a) Berea sandstone from Cleveland Quarries; (b) X-ray diffraction peaks for Berea sandstone specimen. [Color online.]
biaxial frame in conjunction with the confining device (Fig. 3b). This test follows loading path 3 (Fig. 6c), i.e., \(\sigma_2 = \text{constant} \) (by confining device) and \(\sigma_1 = \sigma_3 \) (by biaxial frame) increased until specimen failure. The stress state replicated in this test also corresponds to axisymmetric extension (Ma et al. 2017). These tests ran under three levels of minor principal stress (\(\sigma_3 = 0, 6.2, \) and 20.7 MPa). This study cannot perform higher confinement tests due to the limited load capacity of the confining device. This study tested five specimens for each loading condition and specimen size. Table 2 provides the list of applicable test parameters for biaxial and true-triaxial tests.

This study used displacement control mode to apply load on the rock specimen with a rate of 0.00254 mm/s. The mode loaded the specimen until it exceeded the limit of axial displacement of the platens to avoid any contact between them.

3.3. Post-test analysis

We conducted a post-test analysis to identify the failure modes through photographic images and peak strength. From each test, we recorded the ultimate load from the uniaxial load cell and hydraulic jack (in case of tests with the confining device). We also determined the peak strength based on test conditions. Then, we calculated the corresponding principal stresses \(\sigma_1, \sigma_2, \) and \(\sigma_3 \) for each test.

For tests with the biaxial device (Figs. 2b and 3a), we calculated peak stress \(\sigma_1 = \sigma_2 \) using approximate stress, acting on the faces of the specimen in contact with the biaxial platen. As shown in Fig. 2b, if \(P \) is the force applied by the platens of the uniaxial loading device, \(N \) is a component of the force that is acting normal to the face of the specimen, as given by:

\[
N = P \cos 45^\circ
\]

\(A_{\text{avg}} \) is the approximate area of the face of the cubical specimen in contact with the biaxial platen, calculated by:

\[
A_{\text{avg}} = \frac{W}{2} \cdot \sqrt{H^2 + \left(\frac{W}{2} \right)^2}
\]

![Fig. 5. Geometric shapes of four groups of Berea sandstone specimens (\(H, W \) represent height, width of prism specimen, respectively).](image5)

![Fig. 6. Biaxial test: (a) loading path 1; (b) loading path 2 (\(\eta_2 \sigma_c \) represents magnitude of constant intermediate stress in terms of average UCS of cubical sandstone); (c) loading path 3 (Ma and Haimson 2016) used in true-triaxial testing (\(\eta_2 \sigma_c \) represents magnitude of constant minor principal stress in terms of average UCS). [Color online.]](image6)
Fig. 7. (a) UCS of square-shaped cross section specimens with different slenderness ratios obtained from uniaxial compression test; (b) illustration of end effect in specimens with different slenderness ratios in rock uniaxial compression tests (redrawn based on Xu and Cai 2017). τ, frictional stress. [Color online.]

(2) \[A_{\text{avg}} = (A_1 + A_2)/2 \]

where A_1 and A_2 are specimen area in contact with adjacent arms of the biaxial platen. The peak stress is given by:

(3) \[\sigma_1 = N/A_{\text{avg}} \]

3.4. Test limitation

Although the design of the biaxial frame and confinement apparatus are simple and cost-effective, there are some limitations in using them, which are as follows:

1. The design limits the specimens that can be tested in the biaxial and true-triaxial apparatus to 50.8 mm cubes.
2. The design did not instrument specimens to obtain strain measurements.
3. The design ignores friction between the biaxial frame and platens of the compression test rig.
4. The design could not completely eliminate friction at rock-platen interface.

<table>
<thead>
<tr>
<th>Loading path</th>
<th>σ_1/σ_2 stress ratio</th>
<th>σ_3/σ_c stress ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$\sigma_1 = \sigma_2$</td>
<td>$\sigma_3 = 0$</td>
</tr>
<tr>
<td>2</td>
<td>$\sigma_2 = 0.12\sigma_c$ (constant)</td>
<td>$\sigma_3 = 0$</td>
</tr>
<tr>
<td></td>
<td>$\sigma_2 = 0.233\sigma_c$ (constant)</td>
<td>$\sigma_3 = 0$</td>
</tr>
<tr>
<td>3</td>
<td>$\sigma_2 = 0.46\sigma_c$ (constant)</td>
<td>$\sigma_3 = 0$</td>
</tr>
<tr>
<td></td>
<td>$\sigma_1 = \sigma_2$</td>
<td>$\sigma_3 = 0$</td>
</tr>
<tr>
<td></td>
<td>$\sigma_3 = 0.11\sigma_c$ (constant)</td>
<td>$\sigma_3 = 0.35\sigma_c$ (constant)</td>
</tr>
</tbody>
</table>

Table 2. List of test parameters used in biaxial and true-triaxial test (five tests performed in each case; all specimens had a cubical shape).
compared to prismatic specimens of the same height (around resulting in higher peak strength (Fig. 7 in this study), the area of the specimen under con Therefore, as specimen slenderness decreased (or specimen height decreased), the influence of intermediate principal stress, σ_2, on the peak strength increased. Additionally, uniaxial tests on cubical specimens showed a peak strength increase of 29.6% (53.6 MPa) when moving from circular to square-shaped cross section. The average peak strength further increased to 87.2 MPa (Table 4) when the specimen was subjected to a biaxial loading path. The percentage increase in peak strength was around 15.72% and 25.56% from its UCS value (58.7 MPa) for constant $\sigma_2 = 6.9$ and 13.8 MPa, respectively. The average peak strength of sandstone was 50.5 MPa (Table 3), which is close to the UCS value. The percentage increase in peak strength was 15.72% and 25.56% from its UCS value (58.7 MPa) for constant $\sigma_2 = 6.9$ and 13.8 MPa, respectively. The average peak strength further increased to 87.2 MPa (Table 4) when the specimen was subjected to a biaxial loading path. Although the peak strength for loading path 1 was lower compared to tests when σ_2 increased from 6.9 to 13.8 MPa (Table 4), it is still 1.31 times the UCS value. We concluded that the biaxial strength of sandstone is higher than its uniaxial equivalent at any level of intermediate principal stress with maximum strength around $\sigma_2 = 0.45\sigma_1$ under high intermediate principal stress, i.e., $\sigma_1 = \sigma_2$.

4.2. Biaxial compressive test

Table 4 presents the average peak strength data and corresponding principal stresses of each test condition. Figure 8 shows the results of biaxial tests plotted as peak strength, σ_1 (major principal stress), against corresponding intermediate principal stress, σ_2. For loading path 2, the peak strength σ_1 increased with the increase in the intermediate principal stress, σ_2. The average peak strength, $\sigma_{1\text{avg}}$, increased from 67.9 to 73.7 MPa as σ_2 increased from 6.9 to 13.8 MPa (Table 4). The percentage increase in the peak strength was around 15.72% and 25.56% from its UCS value (58.7 MPa) for constant $\sigma_2 = 6.9$ and 13.8 MPa, respectively. The average peak strength increased to 87.2 MPa (Table 4) as σ_2 increased to 0.46σ_1 (27.6 MPa). However, for loading path 1, which represents high intermediate stress ($\sigma_1 = \sigma_2$), the peak strength increased to 77.3 MPa. Although the peak strength for loading path 1 was lower compared to tests when $\sigma_2 = 0.45\sigma_1$, under high intermediate principal stress, i.e., $\sigma_1 = \sigma_2$.

4.3. True-triaxial test

True-triaxial tests on 50.8 mm cubical specimens used the biaxial frame in conjunction with the confining device (Fig. 3b), representing loading path 3, $\sigma_1 = \sigma_2$ and $\sigma_3 = \text{constant}$ (Fig. 6c) and corresponds to triaxial extension (Ma et al. 2017) instead of compression test due to high intermediate stress, σ_2. Table 4 presents peak strength data along with the corresponding principal stresses of each test. Figure 9a plots the failure data points from true-triaxial tests as peak strength σ_1 against corresponding minor principal stress, σ_3. As confinement σ_3 increases, peak strength σ_1 also increases. However, this plot does not clearly reflect the effect of intermediate principal stress, as it does not take into account the influence of load path (Ma and Haimson 2016). Therefore, two principal stress invariants represent the failure results (Fig. 9b): the octahedral shear stress at failure, $\tau_{\text{oct},f}$, and the octahedral normal stress at failure, $\sigma_{\text{oct},f}$.

5. Poly-axial strength criteria

5.1. Biaxial strength criteria

The two most prevalent failure criteria, Mohr–Coulomb and Hoek–Brown, exclude the influence of intermediate principal stress, σ_3, as they only consider σ_1 and σ_2. In theory, the intermediate principal stress does not contribute to the strength of the rock specimen; consequently, the uniaxial and biaxial compressive...
Fig. 9. (a) Variation of σ_1 (peak strength) with σ_3 in Berea sandstone for axisymmetric loading conditions ($\sigma_1 = \sigma_2$ and $\sigma_3 = \text{constant}$); (b) variation of octahedral shear at failure ($\tau_{\text{oct,f}}$) with octahedral normal stress ($\sigma_{\text{oct,0}}$) in Berea sandstones for axisymmetric loading conditions ($\sigma_1 = \sigma_2$ and $\sigma_3 = \text{constant}$). [Color online.]

strengths should be the same. However, this was not the case for the Berea sandstone as seen in Figs. 8 and 10. Therefore, these criteria are not suitable for biaxial or plane stress conditions.

The Drucker–Prager failure criterion (Drucker and Prager 1952) is well-known for its application to brittle materials such as concrete and rock. This criterion accounts for the influence of all principal stresses and is expressed by using the invariants of the stress tensor:

$$ F = \alpha I_1 + J_2^2 - k = 0 $$

where α and k are material constants and can be expressed in terms of friction angle, ϕ, and cohesion, c, of the material, I_1 and J_2 stress invariants.

$$ I_1 = \sigma_1 + \sigma_2 + \sigma_3 $$

$$ J_2 = \frac{1}{6} \left[(\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_3 - \sigma_1)^2 \right] $$

$$ \alpha = \frac{2 \sin \phi}{\sqrt{3(3 - \sin \phi)}} $$

$$ k = \frac{6c \cos \phi}{\sqrt{3(3 - \sin \phi)}} $$

In the case of biaxial stress state, $\sigma_3 = 0$ eq. 4 can be rewritten as:

$$ a(\sigma_1 + \sigma_2) + \sqrt{\left(\frac{\sigma_1^2 - \sigma_1 \sigma_2 + \sigma_2^2}{3}\right)} = k $$

Based on the average value of σ_3 for investigated cubical rock specimens, the cohesion c of the rock for corresponding internal frictional angles, ϕ, can be calculated.

$$ c = \frac{\sigma_3}{2} \left(\frac{1 - \sin \phi}{\cos \phi} \right) $$

In turn, we plotted a series of Drucker–Prager failure envelopes in σ_1–σ_2 coordinates and then compared them with experimental failure points to find fitted degree between the Drucker–Prager criterion and experimental results.

Based on the rock failure data, this study used the previous approach to compare Mohr–Coulomb, Hoek–Brown, and Drucker–Prager failure envelopes within σ_1–σ_3 coordinates, as shown in Fig. 10a. For Drucker–Prager criterion, this approach generated a series of envelopes for different friction angles, ϕ ($\phi = 0^\circ$–25°), for a given σ_3 (from test results). The specific friction angle chosen had “goodness of fit” to the experimental results. Though data points at constant confinement ($\sigma_3 = 0, 6.9, 13.8, \text{and} 27.6 \text{MPa}$) are scattered, $\phi = 0^\circ$–25° provides the best “fit” with failure points at confining stress less than 28 MPa ($\sigma_3 < \sigma_2/2$). However, for the $\sigma_1 = \sigma_2$ condition, the friction angle of 15° was the best “fit” with corresponding failure points (Fig. 10a). The analysis demonstrated that while Drucker–Prager criterion accounts for the influence of intermediate stress, it provides poor correlation with biaxial test results of Berea sandstone. This conclusion was in good agreement with the study by Al-Ajmi and Zimmerman (2005), which showed that Drucker–Prager criterion is not suitable for most rocks. Furthermore, both Mohr–Coulomb and Hoek–Brown criteria substantially underestimated the biaxial strength of cubical sandstone specimen (Fig. 10a) under the condition of $\sigma_3 = 0$.

As no standard criteria fit the failure data points of Berea sandstone, we performed a regression analysis to determine the best-fit polynomial curve (Fig. 10b). The analysis found a quadratic polynomial with R^2 of 0.7507 to be the best fit for the biaxial tests data points of cubical sandstone specimens:

$$ \sigma_1 = -0.0133 \sigma_2^2 + 1.2797 \sigma_2 + 58.969 $$

Equation 11 shows the mean value of coefficients of regression polynomial. The 95% confidence interval of the coefficients of σ_2^2, σ_3, and constant was obtained as (-0.0175 to -0.0085), (0.878 to 1.632), (55.17 to 63.95), respectively. Figure 10b showed failure stress data plotted against both Mohr–Coulomb and Hoek–Brown criteria, as well as the best-fitted polynomial curve for the experimental results of sandstone specimen. From these data, we inferred that the specimen exhibits a maximum strength of approximately 89.8 ± 23.2 MPa at intermediate principal stress (σ_3) of 48 MPa, which is nearly 1.5 times the average uniaxial strength of 50.8 mm cubical specimens. A similar trend in change in the failure stress (σ_1) with an increase in intermediate principal stress (σ_3) was found by other studies (Yun et al. 2008, 2010; Du et al. 2020) on various rock types such as granite, marble, and sandstone, coalmine sandstone, etc. The specimen under constant intermediate principal stress (σ_3) of 48 MPa cannot be tested due to the limited capacity of the biaxial device used in the current study. It can only apply constant intermediate principal stress (σ_2) up to 28 MPa.

5.2. True-triaxial strength envelope in terms of principal stress invariants $\tau_{\text{oct,f}}$ and $\sigma_{\text{oct,0}}$

As mentioned in previous sections, there is a significant influence of intermediate principal stress on the failure strength of sandstone under biaxial and triaxial stress state. Various researchers have comprehensively investigated the influence of intermediate...
principal stress on rock strengths (Handin et al. 1967; Colmenares and Zoback 2002; Al-Ajmi and Zimmerman 2005). Several failure criteria have included the intermediate principal stress to describe rock strength under true-triaxial stress states, e.g., modified Wiebols and Cook (1968) criterion and Mogi (1971) criterion.

For porous sandstone rocks, most of preceding failure criteria do not fit well with experimental results due to the formation of a compaction band under high in situ stresses (Ma 2014). There are some failure criteria such as Nadai (1950) criterion, Lade and Duncan (1975) criterion, Matsuoka and Nakai (1974) criterion, and modified Matsuoka–Nakai–Lade–Duncan criterion (Rudnicki 2013) that are applicable to sandstones. However, most of these criteria require extensive experimental data to get “best-fit” criterion for a particular sandstone. The current study only ran true-triaxial tests for three confinement levels (i.e., $\sigma_3 = 0, 6.2,$ and 20.7 MPa) due to the limitation of the confining device. Hence, this study tested Nadai (1950) criterion to see whether it can provide the “best-fit” for the experimental data.

Nadai (1950) proposed a three-dimensional (3D) failure criterion for brittle materials. He suggested that the failure envelope could be represented by a single relationship in terms of the two principal stress invariants. The failure will occur when distortional strain energy reaches the critical value and is the function of octahedral normal stress given by:

$$f_{\text{oct}} = \frac{1}{2} (\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_3 - \sigma_1)^2,$$

where f_{oct} is the octahedral shear stress at failure and the octahedral normal stress at failure, respectively, and are defined in terms of principal stresses as follows:

$$\sigma_{\text{oct}} = (\sigma_1 + \sigma_2 + \sigma_3)/3,$$

The function “f” is determined from the best fitting curves for a particular rock and generally can either be a second order polynomial or a power law. For porous sandstone rocks, the best-fit function is preferred to be a quadratic equation (Olsson 1999; Ma et al. 2017) showed similar observations for Bentheim and Coconino sandstones. Additionally, for Bentheim sandstone, Ma et al. (2017) found a “cap” value of σ_{oct} at which τ_{oct} would be the maximum value and then gradually decline. Studies generally observe the cap value at a very high level of confinement (Olsson 1999; Ma et al. 2017). For instance, for Bentheim sandstone, “cap” occurs at $\sigma_3 = 285.4$ MPa, which is 9.5 times its UCS (Ma et al. 2017). However, the current study did not find this cap for Berea sandstone, as the level of confinement under true-triaxial testing was limited to 20.7 MPa.

Equation 15 shows the mean value of coefficients of the quadratic polynomial obtained using regression. The 95% confidence interval of the coefficients of σ_{oct}, τ_{oct}, and constant were obtained as $(-0.0045$ to $0.0023), (0.041$ to $1.06), (-7.28$ to $28.85), respectively. Although data points are scattered, we observed that the average τ_{oct} increased with increase in σ_{oct}. Ma and Haimson (2016) showed similar observations for Bentheim and Coconino sandstones. Additionally, for Bentheim sandstone, Ma et al. (2017) found a “cap” value of σ_{oct} at which τ_{oct} would be the maximum value and then gradually decline. Studies generally observe the cap value at a very high level of confinement (Olsson 1999; Ma et al. 2017). For instance, for Bentheim sandstone, “cap” occurs at $\sigma_3 = 285.4$ MPa, which is 9.5 times its UCS (Ma et al. 2017). However, the current study did not find this cap for Berea sandstone, as the level of confinement under true-triaxial testing was limited to 20.7 MPa.
6. Failure mechanism

6.1. Influence of specimen size on failure of Berea sandstone

Figure 12 shows the transition of failure mode as the slenderness ratio (H/W) of sandstone specimen decreased from 2 to 0.5 after uniaxial compression testing. In all specimens under uniaxial load, spalling occurred at free faces, followed by violent failure of the central portion (Fig. 12). A dominant single shear plane (Fig. 12a) was observed in the central region of most specimens with H/W ratio of 2 with the exception of one sample (B-Ux-P5). For specimens with H/W ratio equal to 1, cross-shear failure occurred in the inner core, resulting in the conical–pyramidal shape in all five specimens (Fig. 12b). Additionally, the extent of spalling has increased with a decrease in the specimen’s slenderness ratio (H/W) to 0.5 in which large spalling occurred in a V-shaped region extending from the outer surface to the central portion (Fig. 12c). As a result, the hourglass-type failure occurred in all four specimens with H/W ratio of 0.5 recovered at the end of the test.

The change in failure mode with specimen size is attributed to end effect, as shown in Fig. 7b. Feng et al. (2017) investigated the failure mechanism for different specimen sizes using extended finite element method (XFEM) based numerical code. Their study analyzed the crack evolution at different stages of loading, which represents the transition from intact to fractured rock, to understand the friction effect caused by end constraint. Feng et al. (2017) found that in specimens with H/W ratio equal to 2, end constraint created only a small region of confinement near the specimen ends (similar to Fig. 7b), thereby allowing the meso-cracks to initiate around the center of the specimen. These cracks propagate towards the outer surface in a diagonal direction, which is a region of low confinement. Similarly, a localized shear band (due to gradual coalescence of cracks) formed, resulting in the development of a shear failure plane across specimen height, similar to Fig. 12a. In the case of $H/W = 1$, the confined region is much larger, but has no overlapping; this provides an unconfined zone around the center of the specimen (Fig. 7b) and allows some meso-cracks to initiate around the specimen center. However, the majority of cracks will form in the low confined region near the outer surface, resulting in significant spalling in that region. These cracks at the outer region may propagate towards the center of the specimen, resulting in the formation of a shear plane similar to Fig. 12b. In the case of $H/W = 0.5$, the confined regions from the specimen end up overlapping (Fig. 7b), causing meso-cracks to form at the outer surface. These cracks propagate and coalesce towards the center, forming opposite vertex cone areas and resulting in hourglass failure (Feng et al. 2017), shown in Fig. 12c.

6.2. Influence of loading path on failure of Berea sandstone under biaxial stress state

We performed an analysis on the transition of failure mode from uniaxial to biaxial stress conditions to understand the failure mechanism of sandstone specimens in the biaxial stress state. In the uniaxial stress state, all five specimens exhibited spalling on all free faces of the specimen, followed by violent failure at the mid-section (Fig. 12b). The mid-section of the all the five specimens mostly failed in shear with multiple planes intersecting one another (Fig. 12b). These failure planes oriented in the
When testing specimens biaxially, the failure exhibited varying degrees of spalling at the free faces. Figure 14 shows the typical failure mechanism in specimens subjected to the biaxial test under load path 2 (i.e., $\sigma_2 = $ constant). At $\sigma_2 = 6.9$ MPa, five specimens exhibited some degree of spalling at the free faces. It was followed by failure of the central region, which underwent dominant shear failure in three specimens (C-Bx-2-A1, C-Bx-2-A2, and C-Bx-2-A3), while in the remaining two specimens the dominant failure mode is not clearly identifiable (Fig. 14a). The dominant failure plane in most of the specimens was oriented in the $\sigma_2-\sigma_3$ plane along with the strike in the σ_1 direction. When the confinement (σ_2) increased to 13.8 MPa (Fig. 14b), shear failure was found to be the dominant failure mode in the central region of most of the five specimens except one sample (C-Bx-2-B3). Additionally, the dominant shear failure plane for three specimens (C-Bx-2-B1, C-Bx-2-B2, and C-Bx-2-B3) has a dip, which is a combination of both $\sigma_2-\sigma_3$ and $\sigma_1-\sigma_3$ plane. While in specimen C-Bx-2-B4, it is not clear that shearing also occurred in the $\sigma_1-\sigma_3$ plane as only one view was captured for this sample (Fig. 14b). When intermediate stress further increased to 27.6 MPa ($\sigma_2 = 0.45\sigma_c$), no shearing occurred in the $\sigma_2-\sigma_3$ plane of all four recovered specimens at the end of the test. Additionally, one specimen (C-Bx-2-C1) clearly showed predominant shear failure, which was oriented in the $\sigma_1-\sigma_3$ plane along with strike in the σ_3 direction (Fig. 14c). The failure mode in the remaining three specimens (C-Bx-2-C2, C-Bx-2-C3, and C-Bx-2-C4) is unclear as only one view was captured for them (Fig. 14c). Yun et al. (2008, 2010) had the similar observation that under high intermediate stress, shearing occurred in the central section of a cubical specimen with its strike in the σ_2 direction. We concluded that from the biaxial tests on sandstone samples under loading path 2, shear failure plane rotated with the increase in intermediate principal stress, σ_2.
specimens were recovered at the end of the test. (Fig. 15a). The failure is characterized by splitting that occupied a large portion of specimen volume in all four specimens (Fig. 15a). Furthermore, these splitting planes in all four specimens are nearly perpendicular to the unconfining direction ($\sigma_3 = 0$) with dip and strike direction in the σ_1-σ_2 plane. The remaining central portion in three specimens (C-Bx-1-D1, C-Bx-1-D2, and C-Bx-1-D3) failed under shear with the strike that is a combination of both σ_1 and σ_2 axis (Fig. 15a), while the mode of dominant failure is unclear in the fourth sample (C-Bx-1-D4). Therefore, the dominant shear plane has rotated as compared to the test with load path 2 ($\sigma_2 = 27.6$ MPa), where its strike was along the σ_2 axis.

6.3. Influence of confinement on failure mode under true-triaxial tests of cubical sandstone

We analyzed the transition of failure mode from biaxial to triaxial stress conditions to understand the failure mechanism of sandstone specimens under poly-axial stress state. Figure 15 shows typical failure mechanism for novel loading path, i.e., $\sigma_1 = \sigma_2$ and $\sigma_3 = 0$–20.7 MPa. For specimens tested biaxially, splitting occupied a large portion of specimen volume as suggested by planes being nearly perpendicular to the unconfining direction ($\sigma_3 = 0$) (Fig. 15a). The remaining central portion of three specimens (C-Bx-1-D1, C-Bx-1-D2, and C-Bx-1-D3) failed under shear with its strike being a combination of both σ_1 and σ_2 axes.

However, when applying confinement at free surfaces in true-triaxial tests, the extent of the specimen’s volume under splitting decreased with an increase in the minor principal stress (σ_3). At $\sigma_3 = 6.2$ MPa, splitting still occurred in a significant portion of the volume of all five specimens (Fig. 15b). However, these splitting planes are relatively more inclined than the results from the biaxial test (Figs. 15a and 15b). Additionally, the central portion failed under multiple shear planes in most of the specimens except one sample (C-Tx-3-E3) (Fig. 15b). For true-triaxial tests with higher confinement ($\sigma_3 = 20.7$ MPa), most of the five specimens predominately failed with one or two shear planes (Fig. 15c). Additionally, no or very small splitting was observed in all specimens as compared to the case of σ_3 at 6.2 MPa (Figs. 15b and 15c). The decrease in the extent of splitting is likely due to the increase in the ductile behavior of sandstone with the increase in confinement. Additionally, the increase in confinement (σ_3) also resulted in the decrease in the area of the specimen under failure from almost the entire specimen under axial splitting in the case of $\sigma_3 = 0$ MPa to a single shear plane in its central portion under $\sigma_3 = 20.7$ MPa.

7. Conclusion

In this study, we built a new biaxial frame based on the modified design of the biaxial device by Arora and Mishra (2015). The tests ran on 50.8 mm cubical specimens using the biaxial device to replicate the failure of rock under high horizontal loading. In addition to these platens, we used a confining device to conduct tests under limited true-triaxial loading conditions. To validate the biaxial frame and confining device design, we further studied the influence of poly-axial stress state on failure response of Berea sandstone. Additionally, the confining device also helped to determine the influence of loading path on its peak strength and failure mode under biaxial stress state. Based on the laboratory investigation, we have made the following conclusions:

- The average uniaxial compressive strength (UCS, also shown as σ_c) showed an increase of 29.6% as the specimen height decreased from 101.6 mm ($H/W = 2$) to 25.4 mm ($H/W = 0.5$) for square-shaped cross section Berea sandstone.
- The biaxial failure strength of 50.8 mm cubical specimen is 15.7% to 48.4% higher than its UCS. Therefore, both Mohr–Coulomb and Hoek–Brown failure criteria underestimate the biaxial strength of sandstone samples, as they ignore the effect of the intermediate principal stress.
• Generally, the biaxial strength of cubical specimen increased with the increase in intermediate principal stress (σ_2) under loading path 2. However, the peak strength dropped by 12.78% when σ_2 was kept equal to σ_1 under loading path 1, which represents high intermediate stress ($\sigma_1 = \sigma_2$).

• We analyzed peak strength under true-triaxial loading condition from two principal stress invariants: the octahedral shear stress at failure ($\tau_{oct, f}$) and the octahedral normal stress at failure ($\sigma_{oct, f}$) to consider novel loading path, i.e., $\sigma_1 = \sigma_2$ and σ_3 = constant used in the current study.

• We analyzed the transition of failure mode from uniaxial to triaxial stress conditions to understand the failure mechanism of sandstone specimens under poly-axial stress state.

• In uniaxial stress state, specimens exhibited spalling on all free faces of the cube, followed by violent failure of the mid-section. The mid-section of the specimen mostly failed in shear with multiple planes intersecting one another.

• When testing specimens biaxially, the failure mechanism exhibited varying degrees of spalling at free faces along with the shear failure of the mid-section. The intensity of spalling depended on the magnitude of confinement by the intermediate stress.

• The shear failure plane rotated with the increase in intermediate principal stress, σ_2, from plane with strike in the σ_1 direction for $\sigma_2 = 6.9$ MPa to plane with strike in the σ_2 direction for $\sigma_2 = 27.6$ MPa ($\sigma_2 = 0.45\sigma_1$), Finally, under $\sigma_1 = \sigma_2$, shear plane orientation was a combination of both σ_1 and σ_3 axis.

• In true-triaxial tests, failure was similar to biaxial tests under loading path 1 ($\sigma_1 = \sigma_2$) with splitting towards the outer surface (faces perpendicular to minimum principal stress, σ_3), and shear failure occurred in the central portion of specimen.

• The volume of specimen under splitting decreased with the increase in confinement or minimum principal stress (σ_3) from occupying a large portion of specimen at $\sigma_3 = 0$ to no splitting at $\sigma_3 = 20.7$ MPa.

• Drucker-Prager failure was initially assumed to account for the influence of intermediate principal stress (σ_2) in observed biaxial tests. However, no specific friction angle was usable for failure stress at different confining stresses.

• A regression analysis of data points at failure derived an empirical failure criterion. The criterion is a quadratic polynomial with R^2 of 0.7507.

• For true-triaxial strength envelope, 3D failure criterion by Nadai (1950) had good fit with R^2 of 0.964.

Conflict of interest statement

The authors confirm that there are no conflicts of interest associated with this publication.

Acknowledgement

Financial support for this work was provided by the Centers for Disease Control and Prevention-National Institute of Occupational Health and Safety (No. 200-2016-92214).

References

