
PHYSICAL REVIEW B 104, 184420 (2021)

Probing signatures of fractionalization in the candidate quantum spin liquid Cu2IrO3 via
anomalous Raman scattering

Srishti Pal ,1 Arnab Seth,2 Piyush Sakrikar,3 Anzar Ali,3 Subhro Bhattacharjee,2

D. V. S. Muthu ,1 Yogesh Singh,3 and A. K. Sood 1,*

1Department of Physics, Indian Institute of Science, Bengaluru 560012, India
2International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bengaluru 560089, India

3Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, Mohali 140306, India

(Received 1 June 2021; revised 3 July 2021; accepted 5 November 2021; published 17 November 2021)

Long-range entanglement in quantum spin liquids (QSLs) leads to novel low-energy excitations with frac-
tionalized quantum numbers and (in two dimensions) statistics. Experimental detection and manipulation of
these excitations present a challenge particularly in view of diverse candidate magnets. A promising probe
of fractionalization is their coupling to phonons. Here, we present Raman scattering results for the S = 1/2
honeycomb iridate Cu2IrO3, a candidate Kitaev QSL with fractionalized Majorana fermions and Ising flux
excitations. We observe anomalous low-temperature frequency shift and linewidth broadening of the Raman
intensities in addition to a broad magnetic continuum, both of which, as we derive, are naturally attributed to
the phonon decaying into itinerant Majoranas. The dynamic Raman susceptibility marks a crossover from the
QSL to a thermal paramagnet at ∼120 K. The phonon anomalies below this temperature demonstrate a strong
phonon-Majorana coupling. These results provide evidence of spin fractionalization in Cu2IrO3.
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I. INTRODUCTION

Recent advances in condensed matter physics and mate-
rials science have shown that several so-called elementary
particles, originally conceived in the context of high-energy
physics, can emerge as low-energy excitations (quasiparticles)
in condensed matter systems. In addition to providing an im-
petus to the paradigm of emergent quantum phenomena [1–3],
these materials then provide concrete contexts to understand
the properties of these novel excitations and the settings for
their emergence as an interplay of symmetries and many-body
entanglement. This ranges from the weakly correlated physics
of Dirac fermions in monolayer graphene [4,5] and Weyl
fermions in topological semimetals [6–8], on the one hand, to
the strongly correlated fractionalized excitations in fractional
quantum Hall systems [9,10], on the other.

In this context, the possibility of emergence of the elusive
(in high-energy particle physics) Majorana fermion [11,12] in
several candidate solid-state systems such as topological su-
perconductors [13–17], fractional quantum Hall systems [18],
and quantum spin liquids (QSLs) [19–22] has been invoked
to account for startling novel low-energy properties of these
systems. Among them, the Kitaev QSL [19] on the isotropic
honeycomb lattice provides a unique opportunity where prop-
agating Majorana excitations coupled to emergent Z2 fluxes
arise due to the long-range quantum entanglement present in
the system resulting in the fractionalization of the underlying
microscopic spin- 1

2 ’s [19].
Our present understanding suggests that a key ingredi-

ent in realizing Kitaev physics is specific compass spin-spin
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interactions [23,24] on a tricoordinated motif consisting of
edge-sharing octahedra [23,25]. Our growing understanding
of magnets with strong spin-orbit coupling has provided
a slew of such candidate Kitaev QSL materials contain-
ing 4d and 5d transition metal ions. The most notable
ones among these are Na2IrO3 [26] and α-RuCl3 [27] on
a two-dimensional layered honeycomb motif and γ - and
β-Li2IrO3 [28] on a three-dimensional hyperhoneycomb lat-
tice. A combination of thermodynamic measurements and
scattering experiments [21,29] on these “first-generation” Ki-
taev materials show extremely interesting finite-temperature
behavior including possible signatures of fractionalization
and thereby raise questions about their proximity to Kitaev
(or other) QSLs [20,21,30]. However, they ultimately order
magnetically at a much lower temperature possibly due to
additional non-Kitaev interactions in these systems. Thus,
while the above compounds are very interesting in their own
rights to understand the possible interplay of magnetic fluctu-
ations and fractionalization, the realization of the Kitaev QSL
with pristine signatures of the fractionalized Majoranas still
remains an open issue.

In this paper, we report our results on the Raman scatter-
ing and magnetoelastic coupling of the “second-generation”
Kitaev material Cu2IrO3 [31], where the magnetic order
is absent suggesting the possibility of smaller non-Kitaev
interactions. In particular, despite a Curie-Weiss tempera-
ture and effective magnetic moment similar to Na2IrO3,
muon spin relaxation (μSR) and specific heat studies on
Cu2IrO3 have shown an absence of magnetic order and an
excitation spectrum dominated by low-energy Ir spin dynam-
ics [32,33]. The correlated nature of this low-temperature
dynamic paramagnet is further supported by the nuclear
quadrupole resonance (NQR) measurements [34]. These
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FIG. 1. Black and red curves represent the unpolarized and
cross-polarized Raman spectra of Cu2IrO3 at three different tem-
peratures in the spectral ranges of 70–800 cm−1 and 10–800 cm−1,
respectively. The shaded region represents the low-energy magnetic
continuum.

findings suggest that Cu2IrO3 may offer an ideal playground
to investigate fractionalization in a Kitaev QSL with an eye
towards positive characterization of the Majorana fermions
therein. Such Majorana fermions can then couple to the opti-
cal phonons through the regular spin-phonon coupling leading
to their characteristic experimental signatures. Incidentally,
such coupling has only been studied for the acoustic phonons
for a Kitaev QSL [35–37].

Indeed, strong spin-orbit coupling results in intricate mix-
ing of the real and spin space. Thus, on generic grounds,
one expects these compounds to have enhanced spin-lattice
coupling. Can this spin-(optical-)phonon coupling, as probed
in Raman scattering, then lead to positive identification of the
possible fractionalized excitations (Majorana fermions in a
Kitaev QSL) in candidate QSL materials such as Cu2IrO3?
The central result of our work is the anomalous shift and
broadening of the Raman-active phonons in Cu2IrO3 (Fig. 2),
which indicate that extra decay channels become active at low
temperatures for the low-energy Raman-active phonons. In
the absence of magnetic order, natural candidates for coherent

FIG. 2. (a) Phonon fits of the M1-M2 doublet with Lorentzian
and Breit-Wigner-Fano (BWF) line shapes, respectively. (b) Temper-
ature evolution of the asymmetry parameter 1/|q| of the M2 mode.
Temperature dependence of (c) phonon frequency and (d) FWHM.
Blue curves are anharmonic fits to phonon frequencies and FWHMs.
Shaded regions demonstrate the boundary between the normal and
the Kitaev paramagnetic states.

modes that can result in phonon decay, within Kitaev phe-
nomenology, are itinerant Majorana fermions. Indeed, we find
that such fractionalization does provide a successful explana-
tion for our Raman measurements. Our estimate of the Kitaev
exchange from the band edge of the magnetic continuum is
consistent with earlier NQR measurements. The temperature
dependence of Raman susceptibility is nonmonotonic and
clearly evidences fermionic Majorana excitations prevailing
over a conventional bosonic background below about 120 K.

The second-generation Kitaev materials, such as Cu2IrO3,
are obtained by partially or fully replacing the alkali atoms
in α-A2IrO3 with other atoms. Incredibly, the new materi-
als produced in this manner, H3LiIr2O6 [38], Cu2IrO3 [31],
and Ag3LiIr2O6 [39], have been shown to be QSL candi-
dates with no signatures of magnetic order using various
thermodynamic and dynamic probes [32,34,38,39]. In these
second-generation Kitaev materials, the edge-sharing IrO6

octahedra forming a honeycomb lattice plane are retained.
However, the interplanar connectivity is changed. For ex-
ample, Cu2IrO3 crystallizes in the same C2/c monoclinic
structure as Na2IrO3. The honeycomb layers are formed by an
edge-sharing (Ir2/3Cu1/3)O6 octahedral arrangement identical
to Na2IrO3, but the interlayer connections via distorted NaO6
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octahedra are replaced by linear CuO2 dumbbells resulting in
a larger c axis. This enhanced two-dimensional (2D) char-
acter of the honeycomb layers, along with the proximity of
the Ir-Ir-Ir angles towards the ideal value of 120◦ compared
with its predecessor Na2IrO3, puts copper iridate closer to
the ideal Kitaev limit. Similar interlayer bonding is found for
H3LiIr2O6 [38] and Ag3LiIr2O6 [39].

The nature of the synthesis makes these second-generation
Kitaev materials prone to disorder. Examples include proton
positional disorder in H3LiIr2O6, Ag positional disorder in
Ag3LiIr2O6, and Cu mixed valent disorder in Cu2IrO3. The
possible role of disorder in stabilizing the QSL in these mate-
rials has been discussed recently [32,38,40–42]. In the context
of Raman measurements, the proton disorder in H3LiIr2O6

has been suggested to lead to the observed anomalously broad
phonon modes as well as the weak fermionic contribution to
the magnetic continuum [43]. Unlike H3LiIr2O6, however, the
synthesis of Ag3LiIr2O6 and Cu2IrO3 can be controlled to re-
duce the disorder. For example, while disordered Ag3LiIr2O6

samples with Ag randomly occupying voids of the LiIr2O6

honeycomb layers show broad features in the heat capacity
at low temperatures, higher-quality samples which do not
have this Ag positional disorder actually undergo long-ranged
magnetic order [44]. For Cu2IrO3 as well, disorder can lead
to measurable consequences. Initial reports observed a glassy
state at low temperatures (T ∼3.5 K) using magnetic sus-
ceptibility [31]. A careful experimental and theoretical study
including x-ray absorption spectroscopy, μSR, and density
functional theory identified the source of disorder as an 8.5–
13% contamination of Cu2+ instead of Cu+ in Cu2IrO3 [33].
The Cu2+ spins were found to be located within the voids
of the honeycomb layers formed by the edge-sharing IrO6

octahedra. From μSR, the Cu2+ spins were found to be
responsible for the spin-glass freezing, while the Ir4+ honey-
comb sublattice was found to be in a dynamically fluctuating
QSL-like state. Additionally, the frozen regions and the QSL
regions were found to occupy different volume fractions of
the sample. Thus it is clear that a majority (∼90%) of the
disordered Cu2IrO3 sample is actually in a QSL state and the
frozen volume fraction is phase separated from the QSL part
of the material [33].

Subsequently, we have been able to synthesize high-quality
Cu2IrO3 samples—used for the present experiments—which
do not show any features of a glassy state in ac magnetic
susceptibility [see Fig. 7(d)]. This strongly suggests that our
Cu2IrO3 samples have a much smaller amount of disorder.
This is confirmed by microscopic probes of magnetism, such
as μSR, which show an absence of any static magnetism down
to 260 mK in the present samples [32]. These measurements
additionally show that the Ir spins stay in a dynamically
fluctuating QSL-like state down to temperatures more than
two orders of magnitude smaller than the Curie-Weiss tem-
perature [32]. Even in our higher-quality samples, however,
some small amount of disorder remains, as evidenced by
the low-temperature (T � 20 K) sub-Curie-law susceptibility
[see Figs. 7(c) and 7(e)] and scaling behaviors in various
thermodynamic quantities, which is consistent with a small
fraction of random singlets in the background of a QSL-like
phase [32,45]. The absence of freezing in our samples sug-
gests a smaller concentration of Cu2+ impurities. Analysis

of the low-temperature susceptibility demonstrates that ≈5%
of S = 1/2 impurities can explain the low-temperature sub-
Curie law (see Appendix A).

We have therefore chosen the second-generation Kitaev
material Cu2IrO3 to study the fractionalization predicted for
a Kitaev QSL: Most prominently, the itinerant Majorana
fermions [46]. Neutron scattering on iridates is difficult to
measure because of the strong absorption of neutrons by irid-
ium, although some efforts to measure iridates using special
experimental setups have been reported [47]. An important
and complementary experimental route to probe the novel
fractionalized excitations is provided by Raman spectroscopy.
Importantly, Raman signatures contain, as we show below,
two different but related signatures of the low-energy Majo-
rana fermions: (1) the direct coupling of Majorana fermions
to photons leading to a broad magnetic continuum [48–50]
and (2) the additional decay of Raman-active phonons through
their coupling to Majorana excitations via spin-phonon cou-
pling. Positive identification of Majorana signatures in both
of these aspects, we show, strongly suggests the relevance
of Kitaev QSL physics in Cu2IrO3 with low-energy Ma-
jorana fermions. Indeed, in Raman scattering for γ - and
β-Li2IrO3 [28], α-RuCl3 [50–52], and H3LiIr2O6 [43], a
broad magnetic continuum has been detected in the low-
energy Raman profile. Even though γ - and β-Li2IrO3 and
α-RuCl3 have magnetically ordered ground states, the tem-
perature evolution of the magnetic background is typified
by dominant Fermi statistics and has been attributed to the
fractionalized Majorana fermions [28,50–52].

II. EXPERIMENTAL METHODS

High-quality polycrystalline samples of Cu2IrO3 were pre-
pared by a low-temperature topotactic reaction of Na2IrO3

with CuCl as reported previously [32]. Powder x-ray diffrac-
tion confirmed the expected crystal structure (C2/c space
group), and ac and dc susceptibility measurements down
to 300 mK (Appendix A) confirmed the absence of spin
freezing, which has been reported to contaminate the low-
temperature magnetism for some Cu2IrO3 materials reported
previously [31,34].

The unpolarized Raman spectra at room temperature were
recorded in a backscattering geometry using a HORIBA
LabRAM HR Evolution spectrometer equipped with a ther-
moelectric cooled charge-coupled device (CCD; HORIBA
Jobin Yvon, Syncerity 1024 × 256). The low-temperature
Raman measurements were performed from 6 to 295 K
with a 532-nm DPSS laser illuminating the sample with
less than ∼1.5 mW power. Temperature variation was per-
formed with a closed-cycle He cryostat (Cryostation S50,
Montana Instruments) with a temperature stability of ap-
proximately ±1 K. The cross-polarized Raman spectra were
recorded using a HORIBA LabRAM HR Evolution spec-
trometer with an ultralow-frequency (ULF) setup to record
the spectrum down to 10 cm−1. The low-temperature Raman
measurements on that setup were performed from 4 to 300 K
using a continuous-flow liquid helium cryostat (MicrostatHe2,
Oxford Instruments) with a temperature stability of approxi-
mately ±1 K.
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III. EXPERIMENTAL RESULTS

Figure 1 shows unpolarized and cross-polarized (to avoid
any contribution from Rayleigh scattering at low frequencies)
Raman spectra of Cu2IrO3 at a few representative tempera-
tures with sharp phonon modes and a quasielastic scattering
(QES) component (linewidth ∼50 cm−1) superimposed on a
broad continuum extending up to ∼600 cm−1. As observed
experimentally in the Kitaev materials α-RuCl3 [50–52] and
γ - and β-Li2IrO3 [28], phonons are superimposed on a broad
background which is temperature dependent. This broad Ra-
man background in experiments has been attributed to the
gapless itinerant Majorana fermions of a Kitaev QSL. Finite-
temperature simulations for the pure Kitaev model by Nasu
et al. [49] reproduce the broad continuum with a band edge
extending up to �3|JK | (arising from the Majorana fermion
bandwidth), where JK is the Kitaev coupling strength. As
shown in Fig. 1, the upper cutoff of the magnetic continuum in
Cu2IrO3 gives an experimental estimate for |JK | ≈ 24 meV, in
good agreement with recent estimates (17–30 meV) from the
low-energy spin excitation gap seen in NQR studies [34]. This
intriguing broad magnetic continuum (Fig. 1) then begs for a
careful closer investigation—a topic on which we shall now
focus. This will be followed by a discussion of the low-energy
quasielastic signal, whose weight appears to generically di-
minish at low temperature (see below).

A. Anomalies in frequencies and linewidths
of Raman-active phonons

To further probe the signatures consistent with fractional-
ization of the spins into Majorana fermions, we now look for
the effect of Majorana excitations on phonons, if any, espe-
cially at low temperatures (T � JK ). Such an effect should be
particularly strong for the phonons embedded in or close to
the magnetic continuum.

Of the 39 active Raman modes expected for monoclinic
(C2/c) Cu2IrO3 (�Raman = 18Ag + 21Bg), 13 modes could be
detected at ∼6 K in the frequency range 70–800 cm−1 (8.7–
99.2 meV). All the phonon modes except M2 are fitted with a
symmetric Lorentzian profile function for the entire range of
temperature. The M2 mode is fitted well with the asymmetric
Breit-Wigner-Fano (BWF) line shape [Fig. 2(a)] arising from
the interaction of the phonon with the magnetic continuum.
The BWF line shape is given by [53]

IBWF(ω) = I0
[1 + (ω − ω0)/qw]2

1 + [(ω − ω0)/w]2
, (1)

where ω, ω0, 1/|q|, w, and I0 are the Raman shift, the spectral
peak center, the asymmetry parameter, the spectral width,
and the maximum intensity of the BWF line, respectively.
The temperature dependence of the asymmetry parameter
1/|q| for the M2 mode is depicted in Fig. 2(b). The simi-
lar local symmetry of the edge-sharing octahedra in related
Kitaev compounds α-RuCl3 [54] and α-Li2IrO3 [55] allows
us to qualitatively categorize the observed Raman modes in
Cu2IrO3. While the low-frequency modes (M1, M2) corre-
spond mainly to the relative motion of the in-plane Ir atoms,
the high-frequency bands (M3, M4) are related to the IrO6

octahedral vibrations including the breathing of the Ir-O-Ir-O

ring, Ir-O-Ir-O plane shearing, and breathing of upper and
lower oxygen layers. The overall phonon spectrum remains
almost unchanged with increasing temperature except for the
thermal broadening of weaker modes making them unde-
tectable at higher temperatures. No change in the number of
Raman modes confirms the stability of the ambient crystal
symmetry down to 6 K. This is an advantage that Cu2IrO3 has
over α-RuCl3, which undergoes a structural transition around
140 K, further obscuring attempts to establish connections
between the onset of Majorana fermions and phonons [52].

Normally, a monotonic temperature dependence of phonon
parameters is expected because the phonon self-energies are
typically determined by lattice anharmonicity which reduces
monotonically with temperature [56]. This is, however, not
the case in Cu2IrO3 with anomalous temperature evolution of
frequencies and FWHMs of the phonon modes below T �
120 K. The temperature dependence of the frequency and
FWHMs of the strong phonon modes (marked M1, M2, M3,
and M4 in Figs. 1 and 10 ) is shown in Figs. 2(c) and 2(d).
The solid blue curves are the fits from 295 to 120 K to the
simple cubic anharmonic model [57] representing phonon
(frequency ω) decay in two phonons of equal frequency (ω/2)
(see Appendix E for fitting details). The dashed curves are
extrapolations of the fits to lower temperatures. The frequen-
cies (FWHM) are lower (higher) than expected from the cubic
anharmonic temperature dependence of phonons. The latter,
in particular, is suggestive of extra channels provided by the
magnetic continuum for the Raman-active phonons to decay.
While this effect is most dramatic for M1 and M2 below
T � 120 K ≈ 0.43 JK , the M3 and M4 modes are not affected
to much extent. The above anomaly is very much different
from the phonon softening in magnetically ordered materials,
such as Fe3GeTe2 [58], where similar anomalies are associ-
ated with the magnetic order. For Cu2IrO3, however, no such
magnetic order is present down to the lowest temperature
measured. Also, the strength of the Fano asymmetry, i.e., the
value of 1/|q|, depends on (1) the magnitude of the Loudon-
Fleury vertex between the photon and the Majorana and (2)
the magnetoelastic coupling strength. Hence the magnitude of
the Fano asymmetry is expected to depend on the aforemen-
tioned coupling constants, and the enhancement of the 1/|q|
parameter of the M2 mode below the Majorana crossover tem-
perature Th hints towards the coupling between the phonons
and the fractionalized Majorana excitations as found in other
candidate materials [28,52]. At this point we note that an
estimated small fraction (≈5%) of random singlets emerging
below ∼20 K (see Appendix A) is incongruous to induce any
anomaly in the phonon modes at the much higher temperature
scale of 120 K.

Remarkably, the numerical studies [49,59] of the pure
Kitaev model found that such a temperature scale, Th ∼
0.4–0.5 JK , is associated with the completion of transfer of
spectral weight of a coherent itinerant Majorana fermion to an
incoherent one. Indeed, the above temperature is associated
with the van Hove singularity of the free Majorana disper-
sion in the zero-flux sector whose depletion is completed at
T ∼ Th. The above agreement of Th of the pure Kitaev model
numerics is seen for all the Raman-active modes. At this point,
we note that for the Kitaev QSL there is another energy scale,
Tl ∼ 0.012–0.015 JK , associated with the Z2 fluxes [19,49,59].
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Although such low temperature is not accessible to the current
experiment, the frequency (FWHM) of the phonon decreases
(increases) monotonically till the lowest accessible tempera-
ture, T ∼ 6 K.

B. Intensity of the M3 mode

In the absence of spin-lattice coupling, the tempera-
ture dependence of integrated intensities of Raman phonons
should follow the conventional Bose-Einstein distribution.
The high-frequency M3 mode (h̄ωM3 ≈ 63 meV) shows a
strong departure from the above expectation and shows a
strong enhancement of intensity with decreasing temperatures
as seen in Fig. 1. In fact, we find (see Appendix F) that the
intensity of M3 closely follows the temperature dependence
of the dc susceptibility and thus is dependent on the spin-spin
correlation. The susceptibility, in turn, shows clear deviation
from the high-temperature Curie-Weiss (CW) behavior below
∼120 K. Such anomalous behavior can arise from transfer of
magnetic dipole spectral weight to the phonons via spin-lattice
coupling [60]. Indeed, the phonon intensities are expected to
depend on the spin-spin correlations [61]. This reiterates the
presence of sizable spin-lattice coupling in Cu2IrO3.

C. Low-energy magnetic continuum

Within the Kitaev QSL phenomenology, which presently
forms the natural framework to understand the anomalous
Raman scattering, we attribute the low-energy magnetic con-
tinuum to that of the Majorana fermions scattering from the
Z2 fluxes. In this regard, as shown in Ref. [49], the primary
contribution to the magnetic continuum arises from the itin-
erant Majorana fermions interacting with the Raman photon,
while the effect of the low-energy Z2 fluxes on the Majorana
fermions inside the QSL is to renormalize the fermion band-
width and density of states [49,59]. As discussed in Ref. [49],
there are two distinct contributions dominating over distinct
energy scales. While at high energies the two-fermion creation
processes dominate, at low energies simultaneous creation and
annihilation of two fermions contribute substantial weight to
the (integrated) Raman intensity.

We particularly focus on the former intermediate- to high-
energy contribution, the details of which (see below) are
relatively more robust than the low-energy signatures as
discussed below. To this end, following Ref. [49], in or-
der to extract the Majorana fermion energy scale from the
low-energy continuum, following Ref. [49], the Raman in-
tensity I (ω) is integrated over the intermediate frequency
range of ωmin < ω < ωmax to obtain Imid = ∫ ωmax

ωmin
I (ω)dω. The

temperature dependence of Imid in the frequency interval 120–
260 cm−1 is plotted in Fig. 3(b). As is clear from Fig. 3(b), Imid

has a nonmonotonic temperature dependence with the high-
temperature regime dominated by the standard one-particle
scattering due to the thermal Bose factor [1 + n(ωb)] =
1/(1 − e−h̄ωb/kBT ), with ωb = 11 meV, extracted from the
bosonic fit as a fitting parameter. This bosonic background
is attributed to phonons since the system does not entertain
other bosonic excitations such as magnons due to the lack
of long-range spin ordering down to the lowest measurable
temperature. A confirmation of this is obtained from the fact

FIG. 3. (a) Symbols denote the magnetic contribution to inte-
grated Imid in the frequency range 120–260 cm−1 after subtracting
the bosonic background [shown in (b)]. The blue solid curve repre-
sents fitting by the two-fermion scattering form A + B(1 − f )2, with
f = 1/(1 + eh̄ω/kBT ) being the Fermi distribution function. (c) Sym-
bols denote the magnetic continuum integrated in the low-frequency
region of 10–45 cm−1.

that the value of ωb matches well with the strongest phonon
mode at ∼92 cm−1 in the low-frequency regime.

Figure 3(a) demonstrates the temperature evolution of
integrated Imid after subtracting the nonmagnetic bosonic
background. The magnetic contribution to Imid is enhanced
significantly below 120 K as clearly indicated by the de-
viation from thermal behavior and can be well fitted to
the form [49] A + B[1 − f (ω f )]2 with ω f = 19 meV, where
f (ω f ) = 1/(1 + eh̄ω f /kBT ) is the Fermi distribution function.
This typical scaling of Imid, as mentioned above, is associated
with the scattering contribution from the process of creation
or annihilation of Majorana fermion pairs [49]. The Majorana
energy scale for Cu2IrO3 is deduced from the fermionic fit
with ω f = 19 meV (≈0.8|JK |) and is in accordance with a
Kitaev QSL phase considering similar energy scales gleaned
for other Kitaev candidates [28,49].

A similar integrated intensity, Ilow, may be obtained on
integration over a window 0 < ω < ωmin, which leads to a
scaling of f (1 − f ) [49] at low temperatures and is sensitive
to the low-energy fermion density of states. In Fig. 3(c) we
plot Ilow in the low-frequency interval of 10–45 cm−1 as
obtained from the raw data in a cross-polarized setup, and
it reveals a general decrease with decreasing temperature.
While this is very encouragingly in qualitative agreement
with the proposed scaling for the pure Kitaev model [49],
our present experimental resolution does not allow us to
make a quantitative comparison mainly due to the low photon
count in the cross-polarized setup used for this experiment.
The quantitative analysis of Ilow is further complicated by
the finite low-frequency quasielastic signal which owes its
origin to the dilute disorder present in Cu2IrO3 in addition
to small non-Kitaev interactions. Indeed, recent numerical
calculations [45,62–64] show that nonmagnetic dilution of
the honeycomb lattice for the pure Kitaev model can pro-
duce a large number of low-energy fermionic modes without
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FIG. 4. Magnetic Raman susceptibility (Mag. Raman Susc.) as a
function of temperature deduced from the Kramers-Kronig relation.
The shaded regions mark the boundary between the conventional and
Kitaev paramagnetic states.

destroying the essence of the Kitaev QSL. The interaction and
the fate of these modes that are clearly relevant for Cu2IrO3

and their contribution to the low-energy density of states
presently mask the pristine behavior of the low-energy Ma-
jorana fermions. However, the lack of magnetic order and the
anomalous spin-phonon coupling (see below) along with the
intermediate-energy fermionic magnetic continuum clearly
show that the pure Kitaev model and Majorana fermions are
the right starting point to understand the interplay of fraction-
alization and disorder at lower energies along with possible
non-Kitaev interactions.

To further extract the Majorana essence from the magnetic
background, the dynamic spin susceptibility χR is mea-
sured. The magnetic Raman susceptibility χR is extracted
by integrating Raman conductivity χ ′′(ω)

ω
in the frequency

range 70–600 cm−1 using the Kramers-Kronig relation, χR =
limω→0 χ (k = 0, ω) ≡ 2

π

∫
χ ′′(ω)

ω
dω. The dynamical Raman

tensor susceptibility χ ′′(ω) is proportional to the Raman in-
tensity as I (ω) = 2π

∫ 〈R(t )R(0)〉eiωt dt ∝ [1 + n(ω)]χ ′′(ω),
where R(t ) is the Raman operator. Figure 4 displays the
temperature dependence of χR, which shows that χR re-
mains almost constant down to 120 K, below which it
increases rapidly with decreasing temperature. In the Kitaev
QSL state, the Raman operator couples to the dispersing
Majorana fermions and extensively projects to the two-
Majorana-fermion density of states (DOS) [48]. Thus an
enhancement of χR below 120 K corresponds to significant
enhancement of the Majorana DOS in the system driving the
system from a simple paramagnet to a Kitaev paramagnet, also
clearly reflected in the temperature dependence of Imid.

Both Imid in Fig. 3 and χR in Fig. 4 show a subtle decrease
below ∼25 K. At first glance, one may correlate this with
the partial spin freezing reported for Cu2IrO3 below ∼10 K
in recent μSR and NQR studies [33,34]. However, this may
not be the case as our samples do not show evidence of spin
freezing down to 2 K in ac χ (Appendix A) as well as down to
260 mK in μSR measurements [32]. It is tempting to associate
the decrease in Imid below 25 K (∼0.09 JK ) with the calcu-

lated Imid determined by quantum Monte Carlo calculations
(peaking at ∼0.07 JK ) [49].

IV. MAJORANA-PHONON COUPLING

In the absence of any thermal phase transition to a magnetic
ordered state, the anomalous renormalization of the phonon
frequency and increment in the linewidth at low tempera-
tures suggest that new decay channels are opening up for the
phonons to interact and possibly decay into. Given the cur-
rent understanding of the phenomenology of Cu2IrO3 [32–34]
and the encouraging match of the the energy scale Th, it
is natural to seek an explanation of the above experimental
results in terms of the excitations of the Kitaev QSL, i.e., the
Majorana fermions and Z2 fluxes that result from the spin-
(optical-)phonon coupling. Already, the existing calcula-
tions [49,59] correctly account for the broad magnetic
background in Fig. 1 to this end.

We now show that the spin-phonon coupling leads to the
possibility of a Yukawa-like coupling between a Majorana
bilinear and the phonon somewhat akin to the electron-phonon
coupling in superconductivity. This coupling, in turn, ac-
counts for the experimental findings and hence provides a
very interesting understanding of the experimental data in
terms of the Majorana-phonon coupling. Below, we outline
our calculations capturing the essence of the above physics.
The Kitaev spin model is given by [19]

HKitaev =
∑
i,α

Ji,αSα
i Sα

i+α̂, (2)

where α denotes x, y, or z types of bonds and α̂ denotes
the three nearest-neighbor vectors of the honeycomb lattice
(see Fig. 12). The exchange couplings are functions of the
ionic positions as they come from the overlap of the electronic
wave functions. Thus, in the presence of lattice vibrations, we
have [65]

Ji,α = JK + ∂Ji,α

∂Ra
i,α

δa
i,α + 1

2

∂2Ji,α

∂Ra
i,α∂Rb

i,α

δa
i,αδb

i,α, (3)

where the expansion is done about the equilibrium ionic posi-
tions of the crystal, R̄a

i,α = ra
i − ra

i+α̂ , with δa
i,α = Ra

i,α − R̄a
i,α

(a = x, y) denoting the deformation of the bond, and the
derivatives are evaluated at the equilibrium position R̄i j .

This leads to the spin-phonon Hamiltonian that dictates the
coupled dynamics of the optical phonons and the spins

H = Hspin + Hspin-phonon + Hphonon, (4)

where Hspin is the bare spin Kitaev Hamiltonian of Eq. (2) with
Ji,α → JK , Hphonon is the bare harmonic phonon Hamiltonian,
and

Hspin-phonon = H1 + H2 (5)

represents the spin-phonon coupling. The two terms denote
the first- and second-order contributions of Eq. (3) and are
given by

H1 =
∑
i,α

∂Ji,α

∂Ra
i,α

δa
i,α Sα

i Sα
i+α̂ (6)

and

H2 = 1

2

∑
i,α

∂2Ji,α

∂Ra
i,α∂Rb

i,α

δa
i,αδb

i,α Sα
i Sα

i+α̂ , (7)
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FIG. 5. (a) and (b) [(c) and (d)] denote the interaction between
the phonon and matter fermion [66] coming from the first-order
(second-order) contributions to the spin-phonon coupling.

respectively. Expressing the phonons in terms of their nor-
mal modes and neglecting the various form factors, which
we expect to be unimportant for the generic temperature
dependence that we are focusing on, we now obtain the
renormalization of the phonon frequency and linewidth by
calculating the self-energy correction to the phonon propa-
gators due to the above spin-phonon interactions within a
single-mode approximation for the phonons.

Within the Kitaev QSL phenomenology, we perform the
standard Majorana decoupling of the spins to obtain (in the
zero-flux sector) the scattering vertices between the matter
fermions and the phonons as shown in Fig. 5. Here, we have
performed the well-known [66] transformation of the Majo-
ranas to the bond matter fermions for the Kitaev QSL. Also,
Figs. 5(a) and 5(b) denote the interaction vertices arising due
to H1 [Eq. (6)], and Figs. 5(c) and 5(d) denote those arising
due to H2 [Eq. (7)].

These interactions clearly show that the phonon can de-
cay into the fractionalized excitations of the QSL and this
would renormalize both the frequency and the linewidth of
the phonon peak. In regard to the linewidth, we expect an
anomalous broadening as the temperature is decreased since
on lowering the temperature the fermions become more co-
herent and hence the phonon can more efficiently decay into
them while obeying all the conservation laws.

A. Frequency renormalization

The leading-order contribution to the renormalization of
the frequency comes from Figs. 5(c) and 5(d) when we inte-
grate over the fermions. From Eq. (7), the resultant frequency
renormalization is given by

δω ∝ 1

Nb

∑
i,α

〈J̄K Sα
i Sα

i+α̂〉S, (8)

where 〈· · · 〉S denotes averaging of the equal-time spin correla-
tors over the thermodynamic ensemble and the proportionality
constant is given in terms of the first-order spin-phonon cou-
pling and the transformation to the phonon soft modes. For
the present discussion we neglect their detailed structure and
assume it to be a constant, λ.

Within a free-Majorana phenomenology, the spin energy
can be calculated in the zero-flux sector to obtain an esti-
mate of δω. This calculation is detailed in Appendix I, and

it readily matches the expectation that the spin energy goes to
zero at T → ∞ and gradually turns nonzero around T ∼ JK

ultimately saturating to a negative constant number at zero
temperature corresponding to the ground-state energy density
of the spins (see Fig. 13). Furthermore, numerical calculations
exist for finite temperatures including all the flux sectors
for the pure Kitaev model [59] which show a rather sharp
crossover from zero to nonzero values. With the energy being
generally negative, this nominally suggests softening of the
phonon frequency. We, however, note that the mode depen-
dence of the above contribution is entirely due to the matrix
elements which we have neglected in this calculation. Further
temperature dependence can come from the real part of the
self-energy of the bubble (see Appendix I for details).

B. Phonon linewidth

The leading contribution to the linewidth, however, comes
from the bubble contributions arising due to the two vertices in
Figs. 5(c) and 5(d). At finite temperature and in the presence
of spin interactions beyond the pure Kitaev model, clearly the
fermion lines would be further renormalized by the fermions’
scattering with the Z2 fluxes, which, in turn, provide a finite
lifetime to the fermions as well as renormalize their band-
width [19]. For very low temperature and within the exactly
solvable model, we neglect the scattering with the gapped Z2

fluxes, and then we have free Majorana fermions, which seems
to be justified on the basis of numerical calculations [49,59]
which show that the qualitative features of the matter fermion
density of states remain intact at finite temperatures almost
all the way up to Th. Within this free-Majorana phenomenol-
ogy, we now calculate the leading-order contribution to the
Raman linewidth computing the self-energy bubble diagram
for a particular normal mode (see Appendix I for details).
The imaginary part of the phonon self-energy correction at
the leading order is then given by

Im[�(q, ω + i0+)]

∝ J2
K

Nb

∑
k

[1 − nF (εk ) − nF (εk+q)]

× [δ(ω + εk + εk+q) − δ(ω − εk − εk+q)], (9)

where, again, the proportionality constant depends on the
magnetoelastic coupling and the normal-mode matrix ele-
ments, which have been assumed to be a constant (χ ) for this
calculation. Here, nF (εk ) denotes the fermion occupancy of
the complex fermionic modes with dispersion εk in the zero-
flux sector. This contribution, as the delta function indicates,
arises due to the decay of the phonon into two fermions.
As T → ∞, the Majorana fermions become incoherent, and
hence the above contribution to linewidth goes to zero, while
at low temperatures it reaches a finite value for the completely
coherent Majorana fermions.

This effect is completely opposite to the usual temperature-
related broadening due to anharmonic terms and arises due
to the development of a coherent scattering channel for the
phonons. Clearly, in the absence of any magnetic phase tran-
sition, such coherent particles—in the case of a Kitaev QSL
Majorana fermions—indicate novel low-temperature physics
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FIG. 6. Imaginary part of the phonon Green’s function D with the
frequency scaled with respect to the Kitaev coupling JK . Different
curves represent different temperatures. The spin-phonon coupling
constants are taken as λ = 0.13 and χ = 0.2.

in the spin sector. This is in direct conformity with the
experimental observation. Once the flux excitation is taken
into account, it only renormalizes the free-Majorana contri-
bution without changing its qualitative features. We note that
the real part of the self-energy coming from the bubble further
renormalizes the phonon frequency and hence contributes to
δω in Eq. (8). Here, we neglect such higher-order contribu-
tions.

The phonon intensity obtained from the above calculation
is given by the Lorentzian form

4ω2
0Im[�](

ω2 − ω2
0 − 2ω0δω

)2 + 4ω2
0Im[�]2

, (10)

where ω0 is the bare phonon frequency of a particular normal
mode. We evaluate the above expression considering the q →
0 limit, which is relevant to the experiment [see Eq. (I8) of
Appendix I].

We plot the Stokes line in Fig. 6. This is in qualitative
agreement with the experimental data. A further comparison
with the experimental data is obtained by fitting the results to
the experimental data as shown in Appendix I.

To account for the temperature dependence of the intensity
for the M3 mode, we note that the intensity is generically
of the form [61] |A + Bα〈Sα

i Sα
i+α̂〉|2, i.e., proportional to the

nearest-neighbor spin correlations. This, within free Majorana
fermions, can be calculated to yield a dependence proportional
to |δω| as is clear from Eq. (2). While such effects should
appear for all the four modes, the particular sensitivity of M3
appears to us as a matrix-element effect that requires more
detailed calculations.

V. SUMMARY AND OUTLOOK

To summarize, we have investigated the Raman response
of the “second-generation” Kitaev QSL candidate Cu2IrO3.
In addition to the the magnetic continuum (consistent with
the Kitaev coupling, JK ≈ 24 meV) observed in the “first-

generation” Kitaev materials, we observe clear anomalous
renormalization of the Raman-active phonons below ∼120 K.
Encouraged by the conformity of the energy scales of the
magnetic continuum and the phonon anomaly within a Kitaev
phenomenology, we investigate the qualitative features of the
Majorana-(optical-)phonon coupling to make an estimate for
the phonon anomaly which accounts for the experimental
observations.

Our results thus provide a strong indication for the rel-
evance of Kitaev QSL physics and the immensely exciting
possibility of positive identification of fractionalization in
the nearly perfect honeycomb iridate Cu2IrO3. The phonon
anomalies below a characteristic temperature provide yet an-
other Raman signature of fractionalized Majorana fermions in
addition to the magnetic continuum in prospective candidates
of QSL. Although our samples have a smaller amount of
Cu2+ impurities, as evidenced by the absence of a spin-glass
transition or phase separation into QSL and magnetically
frozen volume fractions [32], we do find that the residual
∼5% Cu2+ impurities lead to a random-singlet phase below
T ∼ 10–20 K. This small amount of disorder most likely also
leads to the quasielastic Raman signal at low frequencies. This
opens several interesting questions from both experimental
and theoretical sides. On the experimental front, several fu-
ture directions of study can be envisaged. Single crystals of
Cu2IrO3 are not currently available. With high-quality sin-
gle crystals, the intrinsic low-frequency Raman signal can
be revealed and compared with expectations for the pure
Kitaev model. Additionally, with single crystals, polarization-
dependent Raman studies will become possible, which will
allow a further quantitative comparison between theoreti-
cal calculations and experiments to further substantiate the
physics of Majorana-phonon coupling. Furthermore, inelastic
neutron scattering to measure the energy- and momentum-
dependent excitation spectrum is desirable to be able to make
quantitative comparisons with specific Hamiltonians includ-
ing the Kitaev model and its extensions. Finally, crystals
will allow looking for quantization in thermal Hall measure-
ments, similar to what has been reported for α-RuCl3 [20],
although recent experimental works have shown that the field-
induced paramagnetic state in RuCl3 may not be a QSL after
all [67,68]. On the theoretical side, the present calculations
only take care of the free Majorana fermions while neglecting
the fluxes as well as other non-Kitaev spin interactions. Their
roles in the present calculations need to be quantitatively
settled both for Cu2IrO3 and for other QSLs in general to
investigate the physics of fractionalization through phonons.

Note added. Recently, other theoretical studies on spin-
phonon coupling in a Kitaev QSL have been described in
Refs. [69,70] which can further account for quantitative fea-
tures of the vibrational Raman spectra in a Kitaev QSL beyond
universal temperature dependence as attempted here. Such a
quantitative treatment would require a more detailed knowl-
edge of Hamiltonian and phonon parameters for Cu2IrO3 that
is presently missing and forms an important future direction.
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APPENDIX A: MATERIALS AND MAGNETIC
CHARACTERIZATION

High-quality polycrystalline samples of Cu2IrO3 were syn-
thesized by an ion exchange reaction by mixing Na2IrO3 and
CuCl in the mole ratio 1 : 2.05 [31]. The mixture with total
mass 350 mg was pelletized, placed in an alumina crucible,
and sealed under vacuum in a quartz tube. The tube was heated
at 1 ◦C/min to 350 ◦C, kept at that temperature for 16 h, and
then cooled to room temperature at the same rate. Then the
product was ground into a fine powder and washed five times
with ammonium hydroxide (NH4OH) and twice with distilled
water. After being washed, the resulting material was dried at
room temperature under vacuum for 2 h.

FIG. 7. (a) Powder x-ray diffraction pattern for Cu2IrO3 and its Rietveld refinement. (b) Temperature dependence of the dc magnetic
susceptibility between 0.3 and 300 K. The red solid curve is the Curie-Weiss (CW) fit over the range 120–300 K. (c) Inverse susceptibility
fitted to CW form (solid red line) over the range 120–300 K. The shaded regions demarcate the boundary between a conventional and Kitaev
paramagnet where χdc starts deviating from the CW behavior. (d) Temperature variation of ac susceptibility down to 2 K in addition to the dc
susceptibility down to 0.3 K. (e) Low-temperature χdc data fit to a sub-Curie law.
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FIG. 8. Temperature dependence of integrated background inten-
sity (normalized) for different energy ranges.

The powder x-ray diffraction pattern and a Rietveld re-
finement of the same are shown in Fig. 7(a) confirming
that a single-phase product with the correct crystallographic
structure (monoclinic C2/c) is obtained. The dc magnetic sus-
ceptibility between 0.3 and 300 K is shown in Fig. 7(b). The
high-temperature χ in the region 120 < T < 300 K is fit well
with the Curie-Weiss (CW) form χ = χ0 + C/(T − �CW)
giving an effective moment close to S = 1/2 and �CW ≈
−100 K. Figure 7(c) shows the CW behavior of the inverse dc
susceptibility fitted in the range 120–300 K. The fit is extrapo-
lated to extract the Curie-Weiss temperature �CW ≈ −110 K.
The deviation of susceptibility from the CW law below the
Majorana crossover temperature Th is similar to that observed
in α-RuCl3 [27] and in the quantum Monte Carlo calculations
by Nasu et al. [59]. Below 10 K, the 1/χ data show a sharp
downturn, which is the contribution from disorder, the magni-
tude of which we estimate below. The χdc data below 10 K
are shown in Fig. 7(d). We did not observe any signatures
of spin-glass freezing reported previously [31]. The absence
of freezing is confirmed by an ac susceptibility measurement
down to 2 K, which is also shown in Fig. 7(d). Figure 7(e)
shows that the low-temperature χ data follow a sub-Curie-law
behavior χ = Cimp/T α with Cimp ≈ 0.019(3) cm3 K mol−1

and α = 0.23(2). This T dependence is consistent with a
random-singlet state. However, the magnitude of Cimp gives

an ≈5% estimate for the fraction of impurity spins which
participate in this low-temperature random-singlet state. This
impurity concentration is roughly half of the previously re-
ported samples for which a spin-glass state was observed in
magnetic measurement [33].

APPENDIX B: CHOICE OF ωmin AND ωmax

IN MIDFREQUENCY BACKGROUND

Theoretical predictions on the choice of ωmin and ωmax sug-
gest the energy range of 0.5 < ω/J < 1.25 [49] which gives a
frequency window of 97 < ω < 242 cm−1 for Cu2IrO3 taking
JK = 24 meV. However, still there is no strong foundation
for selection of this intermediate energy range, and various
scales have been chosen for different Kitaev materials. For in-
stance, for Li2IrO3, Imid was chosen to be 1.5 < ω/J < 3 [28],
whereas for α-RuCl3, an energy range of 0.6 < ω/J < 1.9
was adopted by the authors [52]. To inspect the robustness
of the Imid range selection for Cu2IrO3, we calculated the
integrated areas of the background taking different ω ranges,
and the results are plotted in Fig. 8. We find that the scaling
behavior of Imid is the same for these moderate variations of
the window size. A range of 120 < ω < 260 cm−1 is chosen
for Cu2IrO3 since it is least affected by the interference of
strong phonon intensities.

APPENDIX C: DIFFERENT BOSONIC AND FERMIONIC
FITS TO INTEGRATED Imid

Figures 9(a) and 9(b) show the variation of the fermionic fit
to the integrated intensity in the frequency range 120 < ω <

260 cm−1 taking small variations in the bosonic fits. The fit-
ting parameter ω f deviates in the first decimal place compared
with the fit shown in Fig. 3, and hence the fermionic fit is
robust under the modulations done in the bosonic background.
The fitting in Fig. 3 is considered due to lower errors in the
fitting parameters.

APPENDIX D: PHONON FITS

Figure 10 represents fitted Raman spectra at selected tem-
peratures with the blue curves showing individual phonon
modes.

FIG. 9. (a) and (b) Fermionic fits to integrated Imid with two different bosonic backgrounds (shown in the insets).
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FIG. 10. Phonon fits (after subtracting the low-frequency back-
ground) to the Raman spectra of Cu2IrO3 at selected temperatures.
Experimental data are indicated by black circles. Blue and red curves
are individual phonon modes and the cumulative fits, respectively.
The magnified M1-M2 doublets are shown in the insets.

APPENDIX E: LATTICE ANHARMONICITY

The impact of changing temperature on phonon popu-
lation is well described under intrinsic anharmonic effects.
Restricting to cubic corrections to phonon self-energy where a
phonon decays into a pair of two phonons conserving energy
and momenta, the phonon frequency and FWHM (real and

TABLE I. List of fitting parameters for the cubic anharmonic fits
to the phonon modes of Cu2IrO3.

Mode ω0 A �0 B

M1 84.1 −0.2 5.9 0
M2 95.5 −0.6 9.6 0
M3 518.1 −6.6 41.4 13.5
M4 659.9 −2.4 −58.3 86.54

FIG. 11. Temperature variation of the integrated intensity of the
M3 mode, similar to that of dc magnetic susceptibility, both plotted
in log-log scale.

imaginary parts of phonon self-energy, respectively) can be
given as [57]

ω(T ) = ω0 + A
[
1 + 2n

(ω0

2

)]
, (E1)

�(T ) = �0 + B
[
1 + 2n

(ω0

2

)]
, (E2)

where ω0 and �0 are frequencies and linewidths at absolute
zero, A (negative) and B (positive) are constants, and n( ω0

2 )
is the Bose-Einstein thermal factor. In the fits shown in the
main text, ω0 is extracted from the frequency fits in the high-
temperature region (120–295 K) and those values of ω0 are
used to fit the FWHMs. The values for the fitting parameters
ω0, �0, A, and B for different modes are shown in Table I.

APPENDIX F: INTEGRATED INTENSITY
OF HIGH-FREQUENCY M3 MODE

Figure 11 shows the temperature variation of integrated
intensity of the 510 cm−1 Raman mode (M3) of Cu2IrO3

along with dc magnetic susceptibility. Both deviate from their
high-temperature behavior below ∼120 K following modula-
tion in the spin correlations in the Kitaev paramagnetic phase.

FIG. 12. The two-point unit cell has been considered along the
z bonds. d1 and d2 denote the two lattice vectors of the honeycomb
lattice.
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FIG. 13. Frequency shift is calculated from the average energy
of the spin system. At zero temperature, the average energy saturates
to approximately −0.43 JK .

APPENDIX G: DETAILS OF THE SPIN-PHONON
COUPLING

1. Details of the phonon Hamiltonian
and the single-mode approximation

The bare harmonic phonon Hamiltonian is given by

Hphonon =
∑
i,α

P2
i,α

2m
+ 1

2

∑
i,α

Dab
αβδa

i,αδb
i,β . (G1)

We can go to the normal mode basis (�i,p̄) of phonons by
a unitary rotation of δi,α which diagonalizes the matrix Dab

αβ .

δa
i,α = �ab

α p̄�
b
i,p̄. (G2)

In Appendixes G 2, H, and I, we will do a single-mode
approximation and consider only a particular mode (say, p̄)
to calculate its frequency shift and linewidth broadening. With
this assumption, we neglect the possible coupling between the
normal modes through the spin-phonon interaction.

2. The spin-(optical-)phonon Hamiltonian

We rewrite the Hspin-phonon [Eq. (5)] in terms of the normal
modes.

H1 =
∑
i,α

∂Ji,α

∂Ra
i,α

�ab
α p̄�

b
i,p̄ Sα

i Sα
i+α̂ , (G3)

H2 = 1

2

∑
i,α

∂2Ji,α

∂Ra
i,α∂Rb

i,α

�ac
α p̄�

bd
α p̄�

c
i,p̄�

d
i,p̄ Sα

i Sα
i+α̂ . (G4)

Here, the index p̄ is not summed over. Usually, due to
overlap of the orbitals, in insulators

Ji,α = JK e−ηδi,α , (G5)

FIG. 14. The thick and thin curves denote the dressed and bare
phonon Green’s function, respectively. In the last diagram, we trun-
cate the series up to the one-loop correction.

FIG. 15. The solid curves represent the propagator for “a”
fermions.

where we have assumed a simplified isotropic form where
η is the inverse length scale of decay of overlap. Using the
above form, we further define the following notations for the
compactness of the calculation:

�ab
α p̄

∂

∂Ra
i,α

e−ηδi,α ≡ χb
p̄,α,

1

2
�ac

α p̄�
bd
α p̄

∂2

∂Ra
i,α∂Rb

i,α

e−ηδi,α ≡ λcd
p̄,α. (G6)

APPENDIX H: DETAILS OF THE
MAJORANA-FERMION–(OPTICAL-)

PHONON COUPLING

In this Appendix, we rewrite the Hspin-phonon in terms of
fractionalized Majorana degrees of freedom. We follow the
standard Kitaev formulation [19] to write the spin as

Sα
i = i

2
bα

i ci, (H1)

where bα
i and ci are the four Majorana fermions. Therefore we

have

Sα
i Sα

i+α̂ = − 1
4 uα

i,i+α̂ (icici+α̂ ). (H2)

Here, uα
i,i+α̂ = ibα

i bα
i+α̂ . The following calculations will be re-

stricted to the zero-flux sector of the Z2 connection, where we
have uα

i,i+α̂ = +1.

1. The linear term H1

Using the above transformation, we write down Eq. (6) in
terms of Majorana fermions.

H1 = −JK

4

∑
i,α

χa
p̄,α�a

i,p̄(icici+α̂ ). (H3)

As mentioned in the main text, we now ignore all the
matrix-element effects and assume χa

p̄,α ≡ χa. This assump-
tion only changes the vertex functions of the Feynman
diagram. It does not really change the nature of the virtual
processes involved which contribute to the self-energy of the
phonon. For convenience of calculations, we convert the Ma-
jorana operators to complex fermion operators (bond matter
fermion) within each unit cell (we take two sites joined by a z
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bond as the unit cell; see Fig. 12) as [66]

ci =
{

fi + f †
i ∀ i ∈ A

i( fi − f †
i ) ∀ i ∈ B.

(H4)

Using this, we get

H1 = JK

4

∑
i

χa�a
i,p̄

[
(2 f †

i fi − 1)

+ (
fi fi+d1 + f †

i fi+d1 − fi f †
i+d1

− f †
i f †

i+d1

)
+ (

fi fi+d2 + f †
i fi+d2 − fi f †

i+d2
− f †

i f †
i+d2

)]
. (H5)

Using the following Fourier transformation,

fi = 1√
Nb

∑
k

eik·ri fk, �a
i,p̄ = 1√

Nb

∑
k

eik·ri �a
k,p̄, (H6)

the above Hamiltonian can be written as

H1 = JK

4
√

Nb

∑
k,k′

χa�a
k,p̄[Ak,k′ f †

k′ fk′−k + Bk,k′ fk′ f−k−k′

+ Ck,k′ fk′ f †
k+k′ + Dk,k′ f †

k′ f †
k−k′ ], (H7)

where

Ak,k′ = [2 + ei(k′−k)·d1 + ei(k′−k)·d2 ],

Bk,k′ = [e−i(k+k′ )·d1 + e−i(k+k′ )·d2 ],

Ck,k′ = [−e−i(k+k′ )·d1 − e−i(k+k′ )·d2 ],

Dk,k′ = [−ei(k′−k)·d1 − ei(k′−k)·d2 ]. (H8)

The Feynman diagrams for the above interaction are shown
in Figs. 5(a) and 5(b). Now we use the following transforma-
tion, which is a standard Bogoliubov rotation, to diagonalize
the free-Majorana Hamiltonian [66]:[

fk

f †
−k

]
=

[
cos θk i sin θk
i sin θk cos θk

][
ak

a†
−k

]
. (H9)

Here, tan 2θk = − ImS(k)
ReS(k) and S(k) = JK

4 (1 + eik·d1 + eik·d2 ).
Using this transformation, we can rewrite Eq. (H7) in terms

of these new fermions (a and a†), which are the normal modes
of the zero-flux sector.

H1 = JK

4
√

Nb

∑
k,k′

χa�a
k,p̄[Āk,k′ a−k′ak′−k

+ B̄k,k′ a−k′a†
k−k′ + C̄k,k′ a†

k′ak′−k + D̄k,k′ a†
k′a

†
k−k′ ].

(H10)

Here, the vertex functions Āk,k, B̄k,k′ , C̄k,k′ , and D̄k,k′ are given by

Āk,k′ = i sin θ−k′ cos θk′−kAk,k′ + cos θ−k′ cos θk′−kBk,−k′ + i cos θ−k′ sin θk′−kCk,−k′ − sin θ−k′ sin θk′−kDk,k′ ,

B̄k,k′ = − sin θ−k′ sin θk′−kAk,k′ + i cos θ−k′ sin θk′−kBk,−k′ + cos θ−k′ cos θk′−kCk,−k′ + i sin θ−k′ cos θk′−kDk,k′ ,

C̄k,k′ = cos θ−k′ cos θk′−kAk,k′ + i sin θ−k′ cos θk′−kBk,−k′ − sin θ−k′ sin θk′−kCk,−k′ + i cos θ−k′ sin θk′−kDk,k′ ,

D̄k,k′ = i cos θ−k′ sin θk′−kAk,k′ − sin θ−k′ sin θk′−kBk,−k′ + i sin θ−k′ cos θk′−kCk,−k′ + cos θ−k′ cos θk′−kDk,k′ . (H11)

2. The quadratic term H2

In the zero-flux sector, H2 can be written in terms of Majorana fermions in the following way:

H2 = −JK

4

∑
i,α

λcd
p̄,α �c

i,p̄�
d
i,p̄ (icici+α̂ ). (H12)

Now we take an approximation similar to the case of linear coupling considering λcd
p̄,α = λcd . Furthermore, transforming the

Majorana fermions into complex fermions and going to the Fourier basis, we obtain (up to a bare phonon term)

H2 = JK

4Nb

∑
k,k′,k′′

λcd �c
k,p̄�

d
k′,p̄[Pk,k′,k′′ f †

k′′ fk′′−k−k′ + Qk,k′,k′′ fk′′ f−k−k′−k′′ + Rk,k′,k′′ fk′′ f †
k+k′+k′′ + Sk,k′,k′′ f †

k′′ f †
k+k′−k′′ ], (H13)

where

Pk,k′,k′′ = 2 + ei(k′′−k−k′ )·d1 + ei(k′′−k−k′ )·d2 , Qk,k′,k′′ = e−i(k+k′+k′′ )·d1 + e−i(k+k′+k′′ )·d2 ,

Rk,k′,k′′ = −e−i(k+k′+k′′ )·d1 − e−i(k+k′+k′′ )·d2 , Sk,k′,k′′ = −ei(k′′−k−k′ )·d1 − ei(k′′−k−k′ )·d2 . (H14)

The Feynman diagrams for the above interaction are shown in Figs. 5(c) and 5(d). Now using Eq. (H9), we get

H2 = JK

4Nb

∑
k,k′,k′′

λcd �c
k,p̄�

d
k′,p̄[P̄k,k′,k′′a−k′′ak′′−k−k′ + Q̄k,k′,k′′a−k′′a†

k+k′−k′′ + R̄k,k′,k′′a†
k′′ak′′−k−k′ + S̄k,k′,k′′a†

k′′a
†
k+k′−k′′ ],

(H15)
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where

P̄k,k′,k′′ = i sin θ−k′′ cos θk′′−k−k′Pk,k′,k′′ + cos θ−k′′ cos θk′′−k−k′Qk,k′,−k′′

+ i cos θ−k′′ sin θk′′−k−k′Rk,k′,−k′′ − sin θ−k′′ sin θk′′−k−k′Sk,k′,k′′ ,

Q̄k,k′,k′′ = − sin θ−k′′ sin θk′′−k−k′Pk,k′,k′′ + i cos θ−k′′ sin θk′′−k−k′Qk,k′,−k′′

+ cos θ−k′′ cos θk′′−k−k′Rk,k′,−k′′ + i sin θ−k′′ cos θk′′−k−k′Sk,k′,k′′ ,
(H16)

R̄k,k′,k′′ = cos θ−k′′ cos θk′′−k−k′Pk,k′,k′′ + i sin θ−k′′ cos θk′′−k−k′Qk,k′,−k′′

− sin θ−k′′ sin θk′′−k−k′Rk,k′,−k′′ + i cos θ−k′′ sin θk′′−k−k′Sk,k′,k′′ ,

S̄k,k′,k′′ = i cos θ−k′′ sin θk′′−k−k′Pk,k′,k′′ − sin θ−k′′ sin θk′′−k−k′Qk,k′,−k′′

+ i sin θ−k′′ cos θk′′−k−k′Rk,k′,−k′′ + cos θ−k′′ cos θk′′−k−k′Sk,k′,k′′ .

APPENDIX I: THE RENORMALIZATION OF THE RAMAN-ACTIVE PHONONS

1. Frequency shift

In the low-temperature QSL regime of the experiment, the spin dynamics is expected to be slower than the optical phonons
and hence to the first approximation, the spins can be approximated with their static equal-time configuration such that to the
leading order, we obtain

Hspin-phonon → 〈Hspin-phonon〉S, (I1)

where 〈Ô〉S = Tr(Ôe−βHspin )
Tr(e−βHspin )

[Hspin is the bare spin Hamiltonian as mentioned in Eq. (4)] denotes averaging of the equal-time spin

correlators over the thermodynamic ensemble. The spin correlators being time independent, they now act as a linear and quadratic
deformation to Hphonon. Thus, within the harmonic phonon approximation valid for low temperatures, the linear term 〈H1〉S does
not affect the phonon frequency, which is entirely affected by 〈H2〉S and is given by Eq. (8) of the main text. In the zero-flux
approximation, it can be further calculated using free-Majorana phenomenology.

δω ∼ λJK

∑
k

〈
εk

(
a†

kak − 1

2

)〉
S

. (I2)

Clearly, the above expression is directly proportional to the energy of the spin system and therefore always negative. This
explains the softening of the phonon with decreasing temperature (see Fig. 13). Although the zero-flux approximation is not
valid for the experimentally relevant temperature regime, the flux excitation only renormalizes the above contribution to the
frequency.

2. Linewidth of phonon

The linewidth of the phonon peak is obtained by computing the phonon self-energy � defined by the Dyson equation

D = D0 + D0�D, (I3)

where D0 and D are the bare and dressed propagator of the phonon, respectively, as given in the main text. The above equation
is diagrammatically represented in Fig. 14.

This series can be computed perturbatively under the assumption that spin-phonon coupling is the weakest energy scale of
the problem. Here, we go up to the one-loop contribution. At this order, the self-energy can be computed from the Feynman
diagrams shown in Fig. 15.

�(q, iω) ∼ −χ2J2
K

Nbβ

∑
ωm,k

[Mk+q,kG(k + q,−iω − iωm)G(−k, iωm) + M−k−q,−kG(k + q, iω − iωm)G(−k, iωm)

+ Nk+q,kG(k + q, iω + iωm)G(k, iωm) + N−k−q,−kG(k + q,−iω + iωm)G(k, iωm)]

= χ2J2
K

Nbβ

∑
k

∑
ωm

[
Mk+q,k

1

iω + iωm + εk+q

1

iωm − εk
− M−k−q,−k

1

iω − iωm − εk+q

1

iωm − εk

− Nk+q,k
1

iω + iωm − εk+q

1

iωm − εk
+ N−k−q,−k

1

iω − iωm + εk+q

1

iωm − εk

]
, (I4)
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FIG. 16. Variation of phonon linewidth with (a) temperature and (b) frequency scaled with respect to the Kitaev coupling JK .

where

G(k, iω) = −
∫ β

0
dτ 〈T ak(τ )a†

k(0)〉0eiωτ = 1

iω − εk
,

Mk+q,k = Ā−q,kD̄q,−k + Ā−q,−k−qD̄q,−k + D̄q,−kĀ−q,k + D̄q,k+qĀ−q,k,

Nk+q,k = B̄−q,−q−kB̄q,−k + C̄−q,kB̄q,−k + B̄−q,kC̄q,−k + C̄q,k+qC̄−q,k.

To perform the Matsubara frequency summation, we define

I1 = lim
R→∞

1

2π i

∮
1

eβz + 1

1

z + iω + εk+q

1

z − εk
, (I5)

I2 = lim
R→∞

1

2π i

∮
1

eβz + 1

1

z + iω − εk+q

1

z − εk
. (I6)

Here, the contour is chosen to be a circle with radius R, and the radius is sent to ∞. The poles and residues of I1 and I2 are
listed in Table II. Since, both the integrand vanishes as R → ∞, therefore

− 1

β

∑
ωm

1

iω + iωm + εk+q

1

iωm − εk
= 1 − nF (εk+q) − nF (εk )

iω + εk + εk+q
,

1

β

∑
ωm

1

iω + iωm − εk+q

1

iωm + εk
= nF (εk ) − nF (εk+q)

iω + εk − εk+q
.

Hence

�(q, iω) ∼ −χ2J2
K

Nb

∑
k

[
[1 − nF (εk ) − nF (εk+q)]

(
Mk+q,k

iω + εk + εk+q
− M−k−q,−k

iω − εk − εk+q

)

+ [nF (εk ) − nF (εk+q)]

(
Nk+q,k

iω + εk − εk+q
− N−k−q,−k

iω + εk+q − εk

)]
. (I7)

TABLE II. Poles and residues of I1 and I2.

I1 I2

Poles Residue Poles Residue

iωm − 1
β

∑
ωm

1
iωm−εk

iωm − 1
β

∑
ωm

1
iωm+εk

× 1
iω+iωm+εk+q

× 1
iω+iωm−εk+q

εk
nF (εk )

iω+εk+εk+q
εk

nF (εk )
iω+εk−εk+q

−iω − εk+q − 1−nF (εk+q )

iω+εk+q+εk
−iω + εk+q − nF (εk+q )

iω+εk−εk+q
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FIG. 17. Temperature dependence of (a) frequency shift and (b) FWHM for the M1 mode. Red squares are the experimental data after
subtracting the anharmonic contribution. The smooth curves represent the theoretical curves at different values of the coupling constant. In (b),
we plot only till JK = 40 K considering the finite bandwidth (∼3 JK ) effect as shown in Fig. 16(b).

In this paper, we consider the q → 0 limit, which is relevant to the Raman scattering. At this limit, the second part of the
above expression with the factor [nF (εk ) − nF (εk+q)] vanishes. Finally, we Taylor-expand Mk+q,k in powers of momentum and
truncate the series up to the first nonzero term which is momentum independent. This gives the leading temperature dependence
of the self-energy. We take the imaginary part of the above expression after doing the analytic continuation. Using the identity
Im[ 1

x−x0+i0+ ] = −πδ(x − x0), we obtain

Im[�(q, ω + i0+)] ∼πχ2J2
K

Nb

∑
k

[1 − nF (εk ) − nF (εk+q)][δ(ω + εk + εk+q) − δ(ω − εk − εk+q)]. (I8)

We further perform the momentum integral in Eq. (I8) numerically for q = 0 considering the free fermionic dispersion to be
εk = 2|S(k)| [66].

The peak in Fig. 16(b) actually corresponds to the peak in the density of states of free Majoranas. In the experimental
temperature regime, the flux excitations further renormalize the density of states. However, this does not change the qualitative
features of Figs. 16(a) and 16(b). Note that the real part of Eq. (I7) also contributes to the renormalization of the frequency shift.
However, we neglect this second-order contribution compared with Eq. (I2).

3. Fitting with free-Majorana calculation for the M1 mode

For completion we compare our free-Majorana results with the experiments for the M1 mode as shown in Fig. 17.
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