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Abstract

We explore the effect of forcing on the linear shear flow or plane Couette flow, which is also the background flow
in the very small region of the Keplerian accretion disk. We show that depending on the strength of forcing and
boundary conditions suitable for the systems under consideration, the background plane shear flow, and hence the
accretion disk velocity profile, is modified into parabolic flow, which is a plane Poiseuille flow or Couette—
Poiseuille flow, depending on the frame of reference. In the presence of rotation, the plane Poiseuille flow becomes
unstable at a smaller Reynolds number under pure vertical as well as three-dimensional perturbations. Hence, while
rotation stabilizes the plane Couette flow, the same destabilizes the plane Poiseuille flow faster and hence the
forced local accretion disk. Depending on the various factors, when the local linear shear flow becomes a Poiseuille
flow in the shearing box due to the presence of extra force, the flow becomes unstable even for Keplerian rotation,
and hence turbulence will ensue. This helps to resolve the long-standing problem of subcritical transition to
turbulence in hydrodynamic accretion disks and the laboratory plane Couette flow.

Unified Astronomy Thesaurus concepts: Accretion (14); Hydrodynamics (1963); Compact objects (288);

Astrophysical fluid dynamics (101)

1. Introduction

Accretion disks are very exotic astrophysical objects. They
are formed around a denser and heavier object, mainly in the
form of a disk due to the accretion of matter from the
surroundings. We are particularly interested in the region where
the gravitational force almost balances the centrifugal force.
This region is called the Keplerian region, and the flow therein
is called the Keplerian flow. This flow is stable under linear
perturbation, and this stability is called Rayleigh stability.

Nevertheless, to explain the observed physical quantities such as
temperature, luminosity, etc. based on Keplerian disks (see, e.g.,
Frank et al. 2002), the flow therein must be assumed to be
turbulent. Otherwise, there will be a mismatch of physical
quantities, e.g., temperature, on some order of magnitude between
theory and observations. Shakura & Sunyaev (1973) and Lynden-
Bell & Pringle (1974) then proposed the idea of turbulent viscosity,
which is responsible for the transport of matter inward in accretion
disks and hence the physical observables. However, the reason
behind the turbulence was not known until Balbus & Hawley
(1991) proposed an idea of instability involving the coupling
between the rotation of fluid and the weak magnetic field therein,
following Velikhov (1959) and Chandrasekhar (1960). This
instability is known as magnetorotational instability (MRI), which
could bring nonlinearity into the system and hence turbulence.
Later, Ogilvie & Pringle (1996) investigated MRI based on a more
complicated analysis. Although MRI succeeds greatly in explaining
the origin of turbulence in most of the hot flows, it fails to explain
the same in several sites, e.g., protoplanetary disk (Bai 2017, 2013),
cataclysmic variables in their low states (Gammie & Menou 1998;
Menou 2000), the outer part of active galactic nucleus (AGN) disks,
and the underlying dead zone (Menou & Quataert 2001). MRI is
suppressed in these cases due to the very low ionization of the
matter therein. In addition, the systems with huge Reynolds number
(2109), as argued by Nath & Mukhopadhyay (2015), have a higher
growth rate due to magnetic transient growth than the growth rate

due to MRI. Bhatia & Mukhopadhyay (2016), however, showed
that even transient energy growth ceases to occur beyond a certain
magnetic field in magnetohydrodynamical shear flows. Pessah &
Psaltis (2005) and Das et al. (2018), using local and global analysis
respectively, showed the stabilization of the axisymmetric MRI
above a certain magnitude of the toroidal component of the
magnetic field for compressible and differentially rotating flows. All
these publications showed that MRI is not a generic way to make
the Keplerian flow unstable and hence turbulent. As hydrodynamics
is generically there, it is worth looking for plausible hydrodynamic
instability instead.

However, the Keplerian flow is Rayleigh stable, and there is a
long debate in the literature (Dauchot & Daviaud 1995; Richard
& Zahn 1999; Kim & Ostriker 2000; Riidiger & Zhang 2001;
Klahr & Bodenheimer 2003; Yecko 2004; Dubrulle et al.
2005a, 2005b; Mahajan & Krishan 2008; Mukhopadhyay et al.
2011; Mukhopadhyay & Chattopadhyay 2013) regarding the
stability of Rayleigh-stable flows, especially in the context of
accretion disks. The authors put forward their efforts to resolve
this issue either analytically, with a simulation, or experimen-
tally. For instance, Balbus et al. (1996) and Hawley et al. (1999)
concluded that the sustained turbulence was not possible in the
Keplerian flow from hydrodynamics. Nevertheless, other
authors, such as Lesur & Longaretti (2005), strongly disagreed
with this and discussed the unavailability of computer resources
to resolve the Keplerian regime. However, with their extra-
polated numerical data, they could not produce astrophysically
sufficient subcritical turbulent transport in a Keplerian flow.
Other authors have also argued for a plausible emergence of
hydrodynamical instability and hence further turbulence by
transient growth in the case of otherwise linearly stable flows
(e.g., Chagelishvili et al. 2003; Tevzadze et al. 2003; Afshordi
et al. 2005; Mukhopadhyay et al. 2011, 2005; Cantwell et al.
2010) in laboratory experiments (e.g., Paoletti et al. 2012) and in
simulations in case of accretion disks (e.g., Avila 2012).
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We therefore look for hydrodynamics that could plausibly give
rise to unstable modes when the dynamics of the fluid parcel is
studied in a small cubical shearing box (see, e.g., Mukhopadhyay
et al. 2005; Ghosh & Mukhopadhyay 2020, for details) situated at
a particular radius in the Keplerian disk. We are particularly
motivated and inspired by our recent results (Ghosh &
Mukhopadhyay 2020), which explored in detail the effect of
forcing in the linearly and nonlinearly perturbed plane shear flows,
with and without rotation, which shed light on the issue of the
origin of hydrodynamical turbulence. In fact, other works (Ioannou
& Kakouris 2001; Mukhopadhyay & Chattopadhyay 2013; Nath
& Mukhopadhyay 2016; Razdoburdin 2020) have considered an
extra forcing to be present in the system. However, in the shearing
box, the background flow has a linear shear profile up to first-order
approximation (see Appendix and Balbus et al. 1996, for details).
This linear shear flow is called the plane Couette flow. As in the
accretion disk, the shearing box is situated at a particular radius, it
will have an angular frequency. We therefore have to consider the
effect of rotation while we describe the motion of the accretion
disk fluid parcel inside the shearing box. Now, if an extra force is
present there in the shearing box, the background flow no longer
remains linear shear, but instead becomes quadratic shear flow
what we generally call plane Couette—Poiseuille flow. However,
with a proper transformation, this flow can be transformed into
plane Poiseuille flow. This flow will further be embedded with
rotation in the context of Keplerian flow. Plane Poiseuille flow
without rotation is unstable under linear two-dimensional
perturbation, having a critical Reynolds number 5772.22 with a
critical wavevector 1.02 (Orszag 1971). Once it is established that
the very local flow (inside the box) in the Keplerian region with
forcing is plane Poiseuille flow with rotation, then we can argue
that the flow inside the shearing box is unstable. We therefore plan
to explore plane Poiseuille flow in the presence of a rotational
effect. Although the effect of rotation on the stability of a Poiseuille
flow was studied by Lezius & Johnston (1976) and Alfredsson &
Persson (1989), our work is different form theirs in two aspects.
First, we extensively study the eigenspectra of a plane Poiseuille
flow, as well as a Couette—Poiseuille flow, with rotation for purely
vertical perturbations and three-dimensional perturbations. To the
best of our knowledge, this study has not been done in an
extensive manner yet, particularly for the effect of rotation on the
stability analysis of a Couette—Poiseuille flow. Although the
Poiseuille flow in the presence of rotation has been studied earlier,
to our knowledge, its application to the stability of accretion flow
has never been explored. In addition, no analysis of eigenspectra
for a Poiseuille flow in the presence of rotation has been performed
extensively so far. However, see, e.g., Hains (1967), Cowley &
Smith (1985), Balakumar (1997), Savenkov (2010), and Klotz
et al. (2017) for various explorations of the Couette—Poiseuille
flow over the years. Second, the background flow profile that we
consider here is different than those already considered in previous
works (see Lezius & Johnston 1976; Alfredsson & Persson 1989,
for details).

The plan of the paper is the following. In Section 2 we show
how the linear shear flow (or plane Couette flow) is modified by
the presence of an extra force in the system. In a recent work, we
assumed that the background does not practically change due to
forcing (Ghosh & Mukhopadhyay 2020), here, however, we
explore the change in background and its consequence in detail.
As the background modifies in the presence of the extra force, the
domain of the background also modified depending on the
strength of the force. The relevance of the size of the new domain
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Figure 1. Schematic diagram of a shearing box centered at the point S inside
the small patch of an accretion disk. The box is of size L. C is the center of the
accretion disk. S is at a distance R from C. An arbitrary fluid particle inside the
box is at P at a distance R from C.

is studied in Section 3. We write the Navier—Stokes equation for
the modified background flow in the rotating frame, as the
primary plan is the application in accretion disks, in Section 4, and
we also obtain the corresponding Reynolds number after
nondimensionalizing it in Section 4.1. The perturbed flow
equations have been formulated appropriately in the same section,
but in Section 4.2, where we recast the Navier—Stokes equation
into Orr—Sommerfeld and Squire equations. Rotating Poiseuille
and Couette—Poiseuille flows under purely vertical and three-
dimensional perturbations are explored in detail in Section 5 and
Section 6, respectively. The dependens of the stability of the
respective flows on the rotational profile is also studied in the
same sections. In Section 7 we describe the accuracy of our
numerical results based on the technique we have used in this
work. In Section 8 we compare plane Poiseuille flow with plane
Couette flow in the presence of rotation. In the same section, we
also compare our critical parameters with those in the literature.
We finally conclude in Section 9 that depending on the boundary
conditions and the strength of the extra force, there is a deviation
in the flow from its linear shear nature. Furthermore, rotation
makes the flow unstable depending on the parameters, and hence
the flow plausibly becomes turbulent, which we suggest to be the
hydrodynamical origin of turbulence in accretion disks.

2. Background Flow in the Presence of Force

Let us consider a very small cubical box of size L at a
particular radius R, from the center of the system, as shown in
Figure 1. At this radius, the box is rotating with an angular
frequency €y such that Q = Qo(R/Ry)™? and the rotation
parameter ¢ =3/2 for Keplerian flow. In Figure 1, S is the
center of the box, and the local analysis is done with respect to
S. See Mukhopadhyay et al. (2005), Bhatia & Mukhopadhyay
(2016), and Ghosh & Mukhopadhyay (2020) for details of the
reference frame and the background flow therein. Now let us
set the local reference frame or box in such a way that the flow,
which is along the ¢-direction with respect to C, is in the y-
direction, and either ends of the box in the x-direction (in the
disk frame r-direction) have an equal and opposite velocity of
magnitude U (see Figure 1 of Ghosh & Mukhopadhyay 2020).
In this local reference frame or box, the velocity of the
Keplerian flow becomes — ¢€2X up to the first-order approx-
imation. This is the usual background flow (see the Appendix
and also Hawley et al. 1995; Afshordi et al. 2005;
Mukhopadhyay et al. 2005; Ghosh & Mukhopadhyay 2020)
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in the local region of an accretion disk. However, due to the
presence of an external force (may not be random) in the flow, the
above-mentioned background flow is expected to change. The
various possible origins of force in the system under consideration,
as described earlier by us (Ghosh & Mukhopadhyay 2020) in
detail, could be back-reactions of an outflow /jet to accretion disks,
the interaction between the dust grains and fluid parcel in
protoplanetary disks, etc. Using fluid-particle interactions, these
possibilities could be modeled in such a way that the extra force
turns out to be a function of the relative velocity between the fluid
and the particles. For details, see Section 2.1 and Appendix A of
Ghosh & Mukhopadhyay (2020). In the presence of an extra force,
let us consider the background flow velocity to be V, given by

V=0, WW(X), 0). 1)

The corresponding Navier—Stokes equation describing the flow
in the local box is

Cr;—‘t/—i—(V'V)V:—2+1/V2V+I‘, 2)
p

where P, p, v, and I' are the pressure, density, kinematic
viscosity, and extra force, respectively. The three components
of Equation (2) are

0= ——— +1I¥%, 3)
0= ———Y + vV2Vy + Ty, 4

0=——"— + Iy (5)

Equation (4) can be further simplified to

1 10P 0*Vy

v p oY

v vp 0Y
X2
= _K7 + CIX + C2, (6)
where
K = (& — L@_P), (7)
v vp OY

is assumed to be constant.
The corresponding boundary conditions are given by

Vy =FUp at X = £L, (8)

which imply that C; = — Uy/L and C,=KL?/2. The back-
ground flow in the presence of extra force is therefore modified
and becomes
K UoX
Vy = —(I? — X?) — —/—, 9
r=3 ( ) i ©)

which is the Couette—Poiseuille flow, when linear and
nonlinear shears are both present. By a simple rearrangement,
this reduces to

Ve = a(l — X?), (10)
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where
2 2
P ET_,TZ:()H ﬂ)
2 « KL (11)
Uu; Ik
and o = + —.
2KI? 2

The velocity Vy in Equation (10) can be made dimensionless
by dividing it with «, i.e.,

U= =1 a2, (12)
(0]

where « is the dimension of velocity, determined by the box
geometry. The new background flow therefore becomes
U,=(, U,y, 0). However, this is the plane Poiseuille flow
in new coordinates (X, Y, Z), where the boundary conditions
are given by Equation (8). Note that here X is dimensionless,
while Y and Z are dimensionful coordinates. Nevertheless, it is
useful to solve the problem within the known domain of the
Poiseuille flow, i.e., X € [—1, 1], in which it is known to be
unstable above a certain Reynolds number (Re).

3. The New Domain

In order to employ the results of the well-known Poiseuille
flow, we set the boundary conditions to new coordinates:
U,=0 at XY= =£1. It is therefore important to verify the
consequence of the domain of X" (i.e., running from —1 to 1) to
the domain of X (i.e., running from —L to L), as chosen
originally. From Equation (11), imposing X = +£1, we have

X=+ /2?0‘ —%, (13)
2 _ [y Uy 14
K el (1

Now if U3 /K2L* < 1, Equation (14) shows that

where

2a Ug
= = L+ KL (15)
leading to
2
x=+r - o4 Ys (16)

KL~ 2K2L%
This confirms that the domain size of X is close to 2L if
Ui /KL* < 1, ie., v2U§/L* < T}, when the flow is not
driven by the pressure, i.e., OP/0Y=0. However, in the
presence of a pressure gradient, the same condition will be true,

but its contribution will be added to the extra force.
However, if U? /K2L* > 1, Equation (14) shows that

2_0‘ ~ ﬂ. 17)
K KL
Hence
X = iﬂ _ ﬂ, (18)
KL KL

i.e., the domain size of X is approximately 2U,/KL. According
to the approximation Ug /K2L* > 1, 2U,/KL is much larger
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Figure 2. Modification of the background flow in the presence of a constant
extra force shown against the flow variable X for various cases of parameters
Uy and K, when L = 10.

than 2L. Hence, the domain increases compared to what was
chosen originally. Therefore our original choice of a small
Cartesian patch in the flow may violate this choice. This may
further create a problem for the application to accretion disks,
which is described below in detail.

Figure 2 shows the modified background flow in the presence
of a constant extra force for various Uy and K with L = 10. It is
clear that for Uy=10 and K =1, the new domain size almost
remains same as 2L=20, because Uj/K2L*= 1072 < 1.
However, when U, increases, keeping K fixed, the domain size
also increases. All these cases show the parabolic background
flows in which the focus changes from (0, 0) to (—Uy/KL, 0).
Interestingly, if we keep decreasing K, keeping U, fixed, the
linear background velocity eventually emerges again, as the extra
force is negligible in this case (see Equation (10)).

The approximation U /K2L* < 1 is therefore more suitable
for our problem as it leads to almost the same domain size, 2L,
as was chosen originally.

4. Navier-Stokes Equation in a Rotating Frame

Now our primary interest is to understand stability of
rotating shear flows, particularly in the context of accretion
disks. Hence, the plan is to examine the stability of the
background flow with velocity U,, within the new domain, i.e.,
X € [—1, 1], as discussed in Section 3, which is rotating with
respect to the center of the system at R,. Before doing so, we
have to establish suitable equations depending on the reference
frame and make them dimensionless for convenience. This
exploration is essentially the stability analysis of a plane
Poiseuille flow in the presence of rotation, here particularly the
Coriolis effect. We eventually obtain a dimensionless number
characterizing the flow to be laminar or turbulent in the domain
of interest, i.e., the Reynolds number in the new coordinate
system (X, Y, Z), which is Re,,.

4.1. Defining the Reynolds Number in a Local Region

Let us consider the local Cartesian frame or box at radius Ry, as
shown by Figure 1, rotating with the angular velocity w = (0, 0,
Qo) such that © = Qy(R/Rog) %, where Q¢ = Vy(X = 0)/
(qL,,/2) = 2a~JK [g\2a = a2K /gy, Ly is the character-
istic length scale of the system. The Navier—Stokes equation in this
frame is

%—F(V-V)V—k wxwxD+2wx V4L
t p

=vV2V + T, (19)
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where the position vector D= (X, Y, Z), and V =(9/0X,
0/0Y, 0/0Z) in Cartesian coordinates. If we divide both sides
of Equation (19) by «a, we obtain an equation for U, which is
given by

aUa4—0¢(lJa-V)Ua—&—c.u><w><24—2w><l](Y
ot' «

+ VR = vV, + 1, (20)

where P, = P/paand T',, = I' /. We now redefine the variables
in terms of dimensionless quantities, i.e., ¢ — /2/aKt,
X,Y,Z)— J2a/K(X, y, z), where d = (X, y, 2), and V —
JK/2aV,, where V, = (9/0X, /0y, 0/0z). Hence,
Equation (20) in terms of dimensionless variables, for an
incompressible fluid, becomes

%+(Ua~m,)Ua+i£xéxd+géx U,
ot q* q
1 14 K 2 /
+—Vuh = ViU, + T, 1)
o o 2o

The Reynolds number is therefore defined as

a2«

Re, = ———
K

and T, = T'\J/2/Ko>.

4.2. Perturbation Analysis

(22)

Equation (21) along with
Vol = 0 (23)

describes the dynamics of a fluid inside the local box. Now we
perturb Equations (21) and (23) linearly and check whether the
perturbation decays or grows with time. The velocity
perturbation is u’ = (u, v, w), the corresponding vorticity
perturbation is V x u/, and the pressure perturbation is p’.
After perturbing Equation (21), we eliminate the pressure term
from the governing equation and recast it into the corresp-
onding homogeneous Orr—Sommerfeld and Squire equations,
which are given by

(Q + U&yﬂ)viu 2 2%

ot dy Oy q 0z
— Rieavj‘yu =0, (24)
(% + U(YY%)C - U«iyg—: - %g—:
1
- Re&vig =0, (25)

where ( is the x-components of the vorticity perturbations, the
prime denotes the differentiation with respect to X, and the
extra force I is assumed to remain the same under perturbation
so that it is eliminated from the equation. If I" would have been
considered to be changed under perturbation, it would create an
additional impact on the flow in order to reveal instability, as
recently discussed by us (Ghosh & Mukhopadhyay 2020) in
the context of linear shear. However, for the present purpose,
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we plan to explore a minimum impact of force on the flow.
Nevertheless, Equations (24) and (25) are the homogeneous
part of the Orr—Sommerfeld and Squire equations, corresp-
onding to the perturbation in Equation (21) (see Ghosh &
Mukhopadhyay 2020, for inhomogeneous Orr—Sommerfeld
and Squire equations due to the effect of force). The
corresponding chosen no-slip boundary conditions are
u=v=w=0 at the two boundaries X = %1, or equivalently,

= g—; = ( = 0 at X = *1. Hence, the linearized eigenspec-
tra corresponding to Equation (21) will be described by
Equations (24) and (25) only. The eigenspectra will not change
due to the presence of the nonhomogeneous term arising due to
the presence of the extra force. Our main aim here is to observe
the changes in the eigenspectra those are caused by the changes
in various flow properties. Note importantly that in principle, a
small section of an accretion disk should not have any
boundary, as imposed here in order to introduce the boundary
condition for the solution purpose. However, the idea is that the
entire disk, at least the region in which turbulence is sought for,
is divided into small boxes, and if one box is unstable under
perturbation, others will follow. All boxes are assumed to be
arranged together. Hence, on either side of a boundary, the
perturbation remains working intact in the respective boxes.
Therefore, although boundaries are introduced for the solution
purpose, this does not practically introduce any artifact for the
present purpose. Nevertheless, Mukhopadhyay et al. (2005)
and Afshordi et al. (2005) showed that the results practically do
not depend on whether the analyses are based on the shearing
sheet or shearing box.

5. Perturbation Analysis of a Rotating Poiseuille Flow
5.1. Three-dimensional Perturbation

In order to understand the evolution of linear perturbation,
let the linear solutions be (e.g., Mukhopadhyay et al. 2005)

u = (X, )ekr, (26)
(= C(X, pyekr, 7

with k= (0, k,, k) and r=(0, y, z). Substituting these in
Equations (24) and (25), neglecting nonlinear terms, we obtain

% + i(D? — k*) '[kyUpy (D* — k%) — kyUlly

- ,L(DZ - k2)2]12 + (D2 — k2)—'3ikzé =0. (28)
iRe, q
and
66 . > ! 21, . 1 ) PN
—= + iky Uy ¢ — | Upy + — |kl — (D - k) =0,
ot q en
(29)

where D = 6%.
Further combining Equations (28) and (29), we obtain

QQ +iLQ =0, (30)
ot
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where
o=(¢)e= (2 £2)
Li1=(D? — k*) 'lkyUoy(D* — k%) — kyUly
- iRleu, (" - kz)z]’

L1 = %aﬁ e

2
Lo = —(Uéy + _)kz»
q

1
Loy = kyUsy —
2 T ke,

(D? — k2. (32)
Now the solution of the Equation (30) is given by
0 = > CuQum(X)exp{(—ioun)}, (33)
m=1

where the index m corresponds to the combined Orr—
Sommerfeld and Squire modes and Qpy,(x) satisfies the
eigenvalue equation

‘CQX,m(X) = Om QX,m~ (34)

Here o is a complex quantity, given by ¢ =0, + io;. In this
article, o,, 0; and hence o for different parameters and different
flows are obtained numerically. The numerical method for
discretization is described in Section 7.

It is well known that a Poiseuille flow is linearly unstable
under two-dimensional perturbation with k, =1.02 and k, =0,
and the critical Re is about 5772.22. However, for the same Re,
this flow is stable under perturbation with k, =k, = 1. Never-
theless, in the presence of Keplerian rotation of the whole
system, i.e., due to the effect of the Coriolis force in the local
rotating box, the situation changes. Figure 3 shows the
eigenspectra for a linearly perturbed Poiseuille flow in the
rotating frame (while the small region under consideration is
rotating) with ¢ =1.5 (Keplerian rotation) for k, =k, =1 for
different Re . Here we observe that while the flow is stable for
Re, = 100 and 1000 with k,=k, =1, it is unstable for
Re, = 10,000. Figure 4 also depicts the eigenspectra for the
same flow as in Figure 3, but for Re, = 6000 and 7000. This
confirms that an instability arises between Re, = 6000 and
7000. The critical Re,, is around 6431.473. Figure 5 depicts a
sample of velocity eigenfunction, which is given here for the
most unstable mode corresponding to a Poiseuille flow for
Re, = 7000, ky,=k,=1, and g=1.5.

Depending on the localization of the eigenfunctions, the
corresponding modes are named. If the eigenfunctions have their
maxima around the center of the domain, the corresponding
modes are called body modes. If the eigenfunctions are localized
around the boundary, the corresponding modes are called wall
modes. See Kersale et al. (2004) for details about these modes.
From Figure 5, we see that the modes are body modes.

We have imposed no-slip boundary conditions to obtain all
the eigenspectra corresponding to a Poiseuille flow in the
presence of rotation. However, for different boundary condi-
tions, the unstable nature of the flow does not disappear from
the system. Xiong & Tao (2020) argued that with the change in
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Figure 3. Eigenspectra for a linearized Poiseuille flow in the presence of
Keplerian rotation (g = 1.5) of the box for Re, = 100, 1000, and 10,000, with
ky=k,=1.
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Figure 4. Same as Figure 3, but for Re, = 6000 and 7000.

boundary conditions, only the critical Reynolds number and
other parameters, which reveal an instability, change.

To have a qualitative sense of why a plane Poiseuille flow in
the presence of Keplerian rotation becomes unstable under
three-dimensional perturbation unlike in the nonrotating case,
below we investigate the effect of pure vertical perturbation.

5.2. Pure Vertical Perturbation

We consider pure vertical perturbation of the form u,
¢~ u(t), ((t)exp(ik,z) for ease of analytical exploration, and
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Figure 5. Velocity eigenfunction for the most unstable mode corresponding to
a linearized Poiseuille flow in the presence of Keplerian rotation (¢ = 1.5) of
the box for Re, = 7000 with k, = k. = 1. Dotted—dashed and dashed lines
indicate the real and imaginary parts of u, respectively.

hence Equations (24) and (25) respectively reduce to
Ou 2i 1

— — (= ——%k’u 35
ot gk, Re, ° %)
and
8< . 2 / l 2
— — ik =+ Uy |u=—- k:¢. 36
ot Z(q Y) Re, ~ ¢ (56)

Note, however, that this is just for the sake of an approximate
analytical exploration, as due to shear in the x-direction, the
perturbation cannot have this form, as we did not even choose
it in our exploration of the eigenspectrum analysis. Combining
Equations (35) and (36), we obtain a second-order temporal
differential equation for u(), given by

2 2 / 4
Pu 2kou 4 2W K)o @
O0t>  Re, Ot q° q Re?

Let us consider the solution of Equation (37) to be
u(t) ~ exp(at), v = 2k /Re, and (= 4/q* + 2U.y /g + K2/
Re?. Hence from Equation (37), we obtain a quadratic equation for
o, given by

o+ v+ 3=0, (33)
whose solution is

g + 4 2U(1'Y

o=—-= —— -

2 q q

If the background flow follows Equation (12), then
Equation (39) becomes

o=-2as |t _L (40)
2 q ¢

From the above equation, it is clear that whenever the quantity
under the root is real positive, one of the solutions for the
vertical perturbation may grow with time exponentially. This
depends on whether the magnitude of the term involved with

. (39)
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a pure vertical perturbation, i.e., k, = 0 and k, = 1.

the square root (second term) is greater or smaller than the first
term. As X’ varies between —1 and +1, it is very obvious that
the vertical perturbation will grow for the system under
consideration. However, as the growing modes correspond to a
real positive o;, there is a lower bound of X" for the modes to be
confined in the system.

Figure 6 shows, by full numerical solutions, the eigenspectra
for a Poiseuille flow in the presence of Keplerian rotation in the
case of pure vertical perturbation, ie., k,=0andk, =1, for
Re,, = 1000, 1200, and 1500. From the inset, it is very clear
that the flow is stable for Re, = 1000. However, it is unstable
for Re, = 1200 and 1500, and the critical Re, is around
1129.18.

These results argue that for an astrophysical accretion disk,
when the flow is necessarily three-dimensional with rotation, a
very small force makes the system unstable as its Re is huge
(see, e.g., Mukhopadhyay 2013). Even if OP/0Y vanishes, a
finite Iy /v = Re,Iy would suffice for instability due to the
emergence of a small contribution of X (Poiseuille) effect
along with an x (Couette) effect in the background. In fact, at
large Uy, when the quadratic term in X in Equation (9) is small
compared to the linear term in X, Re, — vU; /2LT%. There-
fore a very small force I'y along with a similarly small v~ would
render a huge Re,, which might lead to linear instability and
subsequent nonlinearity and turbulence in accretion disks. In a
plane Couette flow in the laboratory, when v is not very small,
a small force would still lead to instability and turbulence at
large U,. For an intermediate Uy, the instability is expected to
arise at an intermediate Re,,, as seen in experiments. The above
arguments remain intact if the force is solely due to the
unavoidable pressure gradient, whether tiny or not, such that
K =1/(vp)OP/0Y. We discuss in detail the relative importance
of the external force and background velocity along with the
viscosity in order to control the flow stability in Section 6
below.
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5.3. Dependence of the Stability on the Rotation Profile

In the last two subsections, we have observed how the
Keplerian rotation affects the three-dimensional and vertical
perturbations. Here, we observe how the stability of a plane
Poiseuille flow depends on the rotation profile, i.e., on different
q. Figure 7 describes the eigenspectra of a Poiseuille flow for
three different rotational profiles under a purely vertical
perturbation. Here we note that for a fixed Re,, larger ¢ has
a higher growth rate. In addition, we note that while g =1
provides a stable flow, the other three chosen ¢ result in
unstable flow. For a three-dimensional perturbation (i.e., k, and
k, are both nonzero) also, the stability decreases with increasing
g, as is evident from Figure 8. However, as opposed to the
purely vertical perturbation, in the three-dimensional case,
flows of all g are stable for the chosen set of parameters.

Let us understand this fact from Equation (40). We consider
two extreme cases of ¢, i.e., ¢ =1 and ¢ = 2. Equation (40) for
these two cases becomes

o= —% +2JX 1 (41)
and

a:—%i\/%\,’—l, 42)

respectively. From Equation (41), we can obtain that the system
will be unstable if (X — 1) is a positive real number and

v _ K

X—1>- =" (43)
4 2Re,,

Now, (X — 1) is negative other than at ¥ = l as X € [—1, 1].

However, at X = 1, Equation (43) is not valid there either as

k%/Re,>0 always. Therefore a plane Poiseuille flow with g = 1

will always be stable. This explains the reason behind the stable
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Poiseuille flow with vertical perturbations for g=1, as
depicted in the Figure 7.

To make the system unstable for g = 2, from Equation (42),
we require (2X — 1) to be a positive real number and

k2
w/22(-1>%= iy (44)

Re,

Now (2&X — 1) could be positive within the domain of X.
Hence, for ¢ =2, a plane Poiseuille flow will be unstable
depending on the parameters, i.e., k, and Re,.

Now for a general g (usually 1 < g <2 for the present
interest), to make the system unstable, X/q — 1/g* has to be a
positive real number and also from Equation (40)

k2
2£_L>l— <

_ 45
g ¢* 2 Re, )

It is important to check in which domain of X, X/q — 1/¢* i

positive and Equation (45) is satisfied. Moreover, it is also
important to know how the maximum growth rates for vertical
perturbations depend on g. The answers to these queries can be

found in Figure 9, where the variation of 2,/X/q — 1/¢* as a
function of X is shown for five different ¢. It shows that the

size of the domain, in which 2/ X/q — 1/¢* remains a real
number and hence (X/q — 1/¢*) remains a positive real
number, decreases as g decreases. From Equation (40), it is
obvious that the maximum growth rates will be higher for those

¢'s for which 2,/X/q — 1/¢* will be larger. From Figure 9,
we note that as g decrease, 24/ X/q — 1/g* also decreases.

This reveals that larger ¢ will have higher growth rates with a
larger domain. This explains the reason behind the higher
growth rates (less stability) for vertical (three-dimensional)
perturbations for larger ¢ for a fixed Re,,.
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Figure 9. Variation of 2,/X/q — 1/¢> from Equation (40) as a function of X
for g =1.2, 1.5, 1.8, and 2.0 and for a oppositely rotating flow with ¢ = 1.5.

Interestingly, the above findings argue for a striking
similarities between the Papaloizou—Pringle instability (PPI;
see e.g., Papaloizou & Pringle 1984; Balbus 2003) and the
instability that we have obtained here, specifically, the one with
the vertical perturbations. For PPI, the pressure gradient is
nonzero in the equilibrium. In our case, we also consider a
modified background due to the presence of a pressure gradient
and/or an external force in the local frame. For PPI, the
perturbations have to be nonaxisymmetric. These nonaxisym-
metric perturbations contain the information of rotation
(Balbus 2003). However, in our case, it is the vertical
perturbation that couples with the rotation, playing an
important role to reveal (faster) instability. Our vertical
perturbation is therefore equivalent to the nonaxisymmetric
perturbations required for PPIL.

Now importantly, the sign of the terms involved with ¢ (but
not ¢ itself) in the equations can be both positive and negative.
The negative sign implies the opposite sense of rotation as
compared to the positive sign. Figure 10 shows that the
eigenspectra for a plane Poiseuille flow in the presence of
rotation with either of the orientations for a vertical perturba-
tion. We note that the eigenspectra are identical for both
orientations of Keplerian rotation for a fixed Re,. From
Equation (40) and Figure 9, it is obvious that the negative
rotational effect (when the term involved with 1/q is negative)
is nullified by the negativity of X', which is equivalent to the
positive rotational effect in the positive X region. Hence, for
the entire zone of X, the net effect appears to be unchanged in
either of the orientations of rotation. This explains why
eigenspectra are independent of the orientation of rotation for
a vertical perturbation. Nevertheless, for three-dimensional
perturbation, this conclusion is also true. The reason is the
following. In order to obtain the eigenspectra, we should have
the secular determinant corresponding to the operator £ in
Equation (31). The information of rotation enters into the
picture by L, and L. In this secular equation, £, and L
appear as a multiplication by themselves. More interestingly,
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Figure 10. Eigenspectra of a linearized Poiseuille flow in the presence of
rotation for vertical perturbation with k, =0, and k. = 1 for Re,, but for two
opposite orientations of Keplerian rotation.

we note that

L12Lr = (g - %)41@(@2 — k2L (46)

L12 L, therefore does not depend on the orientation of rotation
because of the presence of X', which spans from —1 to +1.

We can also obtain the domain of ¢ that could give rise to an
instability depending on other parameters. From Equation (40),
the first condition for instability regardless of the orientation of
rotation is

X 1
———=> 0, @7
q q
or in other words,
X > l (48)
q

For the flows with ¢ <1 (when ¢ is positive for the present
purpose), the above condition is violated. Hence, our primary
domain of ¢ for the plausible unstable flows in the present
context is g < 00, excluding the domain g € [0, 1]. However, in
the present context, the domain of interest is g € [1, 2] and
q — oo (conventional plane Couette flow without rotation).
Figure 11 describes the eigenspectra for a plane Poiseuille
flow in the presence of rotation for a vertical perturbation to
capture two phenomena. On one hand, it shows that for a fixed
g, the increment of Re,, increases the growth rates of a vertical
perturbation. On the other hand, it also depicts that the
increment of g for a fixed Re,, increases the growth rates of a
vertical perturbation. However, the latter has a stronger effect
than the former. This is because when we observe the flow for a
fixed g but at different Re,s, we observe the same flow at
different levels of initial velocity (lower Re, corresponds to a
more streamlined flow). However, for different gs, we study
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Figure 11. Eigenspectra of a linearized Poiseuille flow in the presence of
rotation for vertical perturbation with k, =0, and k. =1 for two different ¢
and Re,,.

altogether different flows, when the stronger rotation is more
prone to instability.

Figure 12 describes the variation in the maximum growth
rate (0;max) as a function of g for vertical perturbation with
Re, = 1500. Here the growth rates are maximized over the
wavenumbers, k, i.e., we consider those k_s that give rise to the
maximum growth rate corresponding to each g. Figure 12
further shows that o; o increases with increasing g, which can
be understood qualitatively from Figure 9 and Equation (40).

Figure 13 describes eigenspectra of a plane Poiseuille flow in
the presence of rotation for five different k,. Interestingly, here
we note that as k, increases (i.e., the perturbation becomes
more three-dimensional from purely vertical in nature), the
flow becomes increasingly stabilized, or the unstable flow
becomes stable. As we have already mentioned earlier, a plane
Poiseuille flow becomes unstable at a Re = 5772.22 for planer
(i.e., k,=0.0) perturbation. However, we have seen in the
previous subsections and as we also discuss in Section § below,
this rotational effect makes the flow unstable at a Re that is
about two orders of magnitude lower than that obtained based
on a planer perturbation. For a plane Poiseuille flow, the
rotational effect (or the corresponding Coriolis effect) is
therefore more likely to lead to instability than that from
Tollmien—Schlichting waves (Alfredsson & Persson 1989),
which are the corresponding planer perturbation modes at the
critical Re. See Section 6.2 to understand other detailed physics
behind the eigenspectra.

6. Perturbation Analysis of a Rotating Couette—
Poiseuille Flow

6.1. The Formulation of a Dimensionless Background Flow

As shown in Section 2, a plane Couette flow in the presence
of external force develops a nonlinear shear in addition to its
background linear shear, as shown by Equation (9). This is
called Couette—Poiseuille flow. Of course, in a suitable
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coordinate frame, a plane Couette—Poiseuille flow will turn out
to be a plane Poiseuille flow, as shown in Equation (10).
Nevertheless, as shown by Figure 2, depending upon the flow
parameters, i.e., strength of force and background velocity, the
domain of a plane Poiseuille flow, more precisely, a plane
Couette—Poiseuille flow, varies. This further affects the flow
behavior under perturbation. Here, we explore a Couette—
Poiseuille flow under various flow parameters. We therefore
have to make Equation (9) dimensionless. In dimensionless

10
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units, Equation (9) turns out to be

U= &1 —x?) —x, (49)
where ¢ =KL?/2Uy=TyL?/2vU, and x=X/L. The back-
ground velocity vector therefore is U = (0, U, 0).

To examine the stability of the background flow with
velocity U within the domain, x € [ — 1, 1], in a rotating frame
at Ry, we consider the same prescription of angular velocity of
the rotating frame as chosen in Section 4.1, given by w = (0, 0,
Qo), Q = Qo(R/Rp) ™4, and Qo= Uy/gL. Although a similar
type of flow was explored by Balakumar (1997), they did not
consider the effect of rotation, which is crucial for astrophysical
bodies, in particular, for accretion disks. Following the same
procedure as in Section 4.1, particularly from Equations (19) to
(22), we can redefine the Reynolds number corresponding to
the flow as

UsL

Re = (50)
v
and I, = TL/Uj. We can also rewrite & as
¢ = IyReL/2U3;. (51)

6.2. The Perturbation Analysis

To perform a perturbation analysis for the background flow
described by Equation (49), we follow the same procedure as
described in Section 4.2 and obtain the corresponding Orr—
Sommerfeld and Squire equations similar to Equations (24) and
(25), given by

) 9 u  20¢ 1
—+U—|Vu—-U'—+=2=—- —Vu=0, (52
(8t 5‘y) Ut R T O
and
0 0 Oou 20u 1
— 4+ U= -U——-2—= - —V¥=0, (53
(3t <9y)C 0z qOz Re ¢ &)

where the prime denotes differentiation with respect to x. The

corresponding no-slip boundary conditions are u=v=w =0
Ou

at the two boundaries x =41, or equivalently, u = P

(=0 at x==1 (see Mukhopadhyay et al. 2005; Ghosh &
Mukhopadhyay 2021). We then substitute solution forms given
by Equations (26) and (27), but replacing X by x, in
Equations (52) and (53), and eventually obtain Equation (30)
through Equations (28) and (29), where £ and the elements of
L are given by Equations (31) and (32), but replacing U,,, Re,,
and D = 9/0X by U, Re, and D = 0/0x, respectively.

To have a qualitative idea about the eigenspectra, the
analytical exploration based on pure vertical perturbations,
shown in Section 5.2 for a plane Poiseuille flow, is of great use.
Replacing U, by U’ in Equation (39) for a Couette—Poiseuille
flow, the growth rate turns out to be

(54)
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where ep = ZkZ2 / Re. For the marginal instability, the
discriminant in Equation (54) becomes zero, and hence

2
2 + 1

If we consider £ =0 in Equation (55), we see that a marginal
instability occurs at ¢ =2. However, for the concerned flow,
this condition is relaxed by the presence of £. The constraint on
g can be drawn from the domain size, i.e., |x| < 1. The
restrictions on g for marginal instability are therefore

q (55)

q > forx < 1, (56)

2
26+ 1

and

Lforx> —1.

<
151 "2¢

(57
Similarly, we can obtain the constraint on ¢ as well. To have
the instability, the discriminant in Equation (54) has to follow
the condition given by

q q q
and hence &x>1/qg— 1/2. The constraint on & is therefore
given by

(58)

€> (59)

1 1
qa 2
For a Keplerian flow, i.e., g=1.5, £ > 0.167.

Figure 14, however, describes the exact eigenspectra for a
Couette—Poiseuille flow in the presence of Keplerian rotation
(g =1.5) for vertical perturbation with k,=0 and k=1 for
several & and Re. As the figure shows, for £ = 0.3, the system is
unstable, while for £ =0.15 and 0.17, the system is stable. This
is to recall that the apparent discrepancy between the results
based on Equation (59) and Figure 14 is due the inexact nature
of the eigenvalue given by Equation (54). Equation (54)
corresponds to a qualitative description of the vertical
perturbation for a Couette—Poiseuille flow. While deriving
Equation (54), we have considered the perturbation to be the
function of z only. However, in reality, in order to obtain the
eigenvalues (here for vertical perturbation), the perturbation has
to be the function of both x and z, as indeed was considered in
order to obtain eigenspectra shown in Figure 14. This leads to a
differential equation of x, which we solve with the no-slip
boundary condition to have the eigenspectra. Hence, while
Equation (54) and the conditions derived from it give a
qualitative idea for the eigenspectra, they do not provide an
exact information. In Figure 14, we also note that for £ =0.3,
the system is more unstable for Re = 2000 than for Re = 1500.
It is quite easy to understand from Equation (54) that keeping
the other parameters, i.e., g, &, and k_, fixed, if we increase Re,
~cp decreases, and hence ocp increases.

Figures 15 and 16 describe the eigenspectra for a Couette—
Poiseuille flow in the presence of rotation with different
rotation parameters for vertical and three-dimensional perturba-
tions, respectively. For both cases, we see that as the rotation
parameter increases, the system becomes more unstable. If
there is no rotation in the system, it is stable for the parameters
considered in these two cases. Figure 17 depicts an example for
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the nature of the velocity eigenfunction, which is given for the
most unstable mode corresponding to a Couette—Poiseuille
flow with Re = 3000, k, = 0.5, k,=1, and g = 1.5. According
to Kersale et al. (2004), these are body modes.

Figures 18 and 19 describe the eigenspectra for a Couette—
Poiseuille flow in the presence of rotation for vertical and three-
dimensional perturbations, respectively, for different . For
both cases, we note that as £ increases, the system becomes
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Figure 17. Velocity eigenfunction for the most unstable mode corresponding to
a linearized Couette—Poiseuille flow in the presence of Keplerian rotation
(g = 1.5) of the box for Re = 3000 with k, = 0.5 and k. = 1. Dotted—dashed
and dashed lines indicate the real and imaginary parts of u, respectively.

more unstable. From Equation (54), we can qualitatively
explain this behavior. The discriminant in Equation (54) and
hence ocp increase as ¢ increases for a fixed q.

Figure 20 describes the eigenspectra for a Couette—Poiseuille
flow in the presence of Keplerian rotation for for k, =1 and
various k,. We note that as k, increases and other parameters are
kept fixed, the system becomes more unstable. From
Equation (32), it is clear that rotation (i.e., ¢) is coupled with
k. and the shear velocity is coupled with k,. As k_ increases, the
effect of rotation in the system therefore dominates the effect of
shear. It is now quite evident from the whole discussion that
rotation and shear have opposite effects on the stability of the
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Figure 18. Eigenspectra for a Couette—Poiseuille flow, described by
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Figure 19. Eigenspectra for a Couette—Poiseuille flow, described by
Equation (49), in the presence of Keplerian rotation (¢ = 1.5) for three-
dimensional perturbation with k, = 0.5 and k. = 1, Re = 1500 and different .

flow. Rotation tries to make the flow more unstable, while
shear tries to stabilize it. This is also clearly described in
Figure 21. The figure describes the eigenspectra for a Couette—
Poiseuille flow in the presence of Keplerian rotation for k, =1
and various k,. As k, increases, the flow becomes more
dominated by shear than rotation which causes the flow to
become more stable.

Interestingly, Figures 13, 19 and 21 show that the entire
eigenspectrum keeps shifting to the positive o, direction with
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Figure 21. Eigenspectra for a Couette—Poiseuille flow, described by
Equation (49), in the presence of Keplerian rotation (¢ = 1.5) for different
ky, k, =1, Re = 1500 and £ = 1.

increasing k, or & This can be qualitatively understood in the
following analysis. Assuming that approximate solutions for
Equations (52) and (53) are u, ( ~ exp(ocpst + k - r), where
k = (k. ky, k;) and r = (x, y, 2), we obtain

/"
0, = (U + U—~2)k,, + flky, ky, k;, U, U”, q), (60)
2k)
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Figure 22. Maximum growth rate (0;max) as a function of £ for a Couette—
Poiseuille flow with ¢ = 1.5, 2.0 having vertical perturbation for k, maximizing
Oimax and Re = 1500.

where the function f (ky, ky, k., U’, U”, q) is determined by the
natures of background flow, perturbation, and rotation,
Ocp3 = 0; — i0,, according to our convention of the original exact
solution given by Equation (33) and eigenspectra. Note, however,
that the solution in the x-direction in principle should not be of the
plane waveform as U is a function of x, which indeed we do not
choose in order to compute the eigenspectra. It is easy to check that
the magnitude of f (ky, k,, k;, U’, U”", q) is smaller than the first
term in parentheses in Equation (60), and o, increases with
increasing k, for the background flows and generally for the
parameters considered here. Therefore Equation (60) confirms that
as k, increases, o, increases, with a shift in the positive o, direction,
as seen in Figures 13 and 21. Similarly, with increasing &, the
Couette—Poiseuille flow tends to become a pure Poiseuille flow and
o— (1 —-x>-1 / 122)§ky. Therefore £ and k, play interchange-
able roles, and hence, with increasing &, o, increases, as seen in
Figure 19.

Figure 22 describes the maximum growth rate (0;max) as a
function of ¢ for a Couette—Poiseuille flow having a vertical
perturbation with k, maximizing o;. It shows that o; ,,,, increases
monotonically with £ for both gs. It also shows that if £ < 1, 0; max
for g =2 is larger than that for ¢ = 1.5. However, the situation
reverses for &>1. This phenomenon can be understood
qualitatively from Figure 23, where we show the variation of
\/—4/q2 + 4&x/q + 2/q from Equation (54) as a function of x
for several combinations of g and £ We see that for £=0.5,
\/—4/612 + 4&x/q + 2/q is larger for ¢ = 2 than for g = 1.5. As
a result, ocp in Equation (54) becomes larger for g =2 than for
g=15. This explains the behavior of o;,.x for £€<1 in
Figure 22. Similarly, the explanation of larger o; . for £ >1 in
Figure 22 can be extracted from the curves with g = 1.5 and g =2
at £€=15.0 in Figure 23. It is further verified from Figure 22 that
below a certain &, depending on ¢, the flow becomes stable with
negative o; max.
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Figure 23. Variation of \/ —4/q* + 4éx/q + 2/q from Equation (54) as a
function of x for several combinations of ¢ and &.
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Figure 24. Maximum growth rate (0;max) as a function of g for a Couette—
Poiseuille flow with £ = 0.5, 1.0 having vertical perturbation for k, maximizing
0 max and Re = 1500.

Figure 24 describes the maximum growth rate as a function
of g for a Couette—Poiseuille flow with £=0.5, 1.0 and
Re = 1500 for vertical perturbation with k, maximizing o;. It
shows that o;,.x increases with increasing g for £=0.5.
However, for £ =1, 0; n.x increases with increasing g only up
to g ~ 1.6, subsequently, it decreases. This behavior can be
qualitatively understood from Figure 25, where we show the
variation of the discriminant in the Equation (54) as a function
of x with ¢ =1 and for ¢ =1.0, 1.4, 1.6, 1.8, and 2.0. It shows
that the case of g = 1.4 gives rise to the maximum discriminant.
However, the maximum discriminants for g =1 and 2 are
almost the same, and they are the least of all the gs. Hence ocp
from Equation (54) will be the highest for ¢ = 1.4 and lowest
for g=1 and 2. This qualitative analysis therefore indicates
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Figure 25. Variation of \/ —4/q* + 4&x/q + 2/q from Equation (54) as a
function of x for £ = 1 and for several ¢'s.

that ; max 1S not expected to increase with the increase of g
throughout at any &.

6.3. Viable Magnitude of Force

From the bound on ¢ for a Keplerian flow described above,
we can estimate the extra force, I'y. From Equation (51), we

have
Uy = IyLRe .
28

The size of the shearing box, L, is 0.05R; (Nath &
Mukhopadhyay 2015), where R, =2GM/c” is the Schwarzs-
child radius for the central black hole of mass M, with G and ¢
the gravitational constant and speed of light in free space,
respectively. From Mukhopadhyay (2013), we obtain that for
accretion disk, Re > 10'*. Considering all these and the lowest
bound on &, i.e., £ =0.167 for a Keplerian disk, we obtain

(61)

Up= J5m in Ty x 10° cmsec™! ~ \/m%, (62)
where Re = 710'%, M = @M, and M, is the mass of the Sun.
Now at a radius R, the speed would be

vo— |GM _ ¢
0 R \/%’

where R = pR,. If the fluid is at 100 R, then Uy = ¢/ 10+/2. From
Equations (62) and (63), we obtain Iy = 0.5// 7 cm sec™ 2.
This confirms that the extra force is indeed very small for the
accretion disk around an astrophysical black hole whose Re is
huge. For example, a supermassive black hole of mass 10’ M,
having an accretion disk with Re = 107> leads to Iy=
5 x 107 cm sec™?, which is too small compared to the
acceleration due to the gravity of the black hole at that position.
This confirms that indeed a tiny I'y, i.e., a very small effect of
external force, would make the flow unstable.

(63)



THE ASTROPHYSICAL JOURNAL, 922:161 (17pp), 2021 December 1

T T T T I
107 =1 .
[ q=15
Re = 1500
k,=0.0,k,=1.0]
g
0k .
107 : : ‘ R
200 500 1000
N

Figure 26. Error as a function of N for a Couette—Poiseuille flow with £ = 1,
g =15, Re=1500, k, =0, and k. = 1.0.

7. Accuracy of Numerics

Throughout the work, we have used the finite-difference
method to obtain the eigenspectra. We particularly have used
the second-order central difference method. Equation (34) is an
eigenvalue equation, which is the function x. To solve it
numerically, we discretize the domain that ranges from
x=xp=—1tox=xy=1. In our calculation, we have divided
the domain into (N + 1) segments, where the width of the each
segment is defined as

Xy — Xo

. 64
N+1 (64

For all the eigenspectra presented in this work, N =499. Therefore
the dimension of £ in Equation (34) after using the finite-difference
method is 2N x 2N. To check the accuracy and the convergence of
the eigenvalues for the chosen matrix dimension, we show the
variation of the error =o0jmax (V) — Oimax(V = 1099) as a
function of N in Figure 26 for a typical set of parameters. It
confirms that the chosen N =499 leads to the optimum numerical
values of o;, which hardly changes with further increasing N. In
fact, tzle variation of o;max for 199 <N < 1099 is not more than
~107"

However, to check the accuracy of the eigenspectra,
particularly the most unstable modes as these are the most
important feature of this work, we have also verified the result
of the finite-difference method with those obtained using
Chebfun (Driscoll et al. 2014). Figure 27 demonstrates the
eigenspectra for a Couette—Poiseuille flow for a given set of
parameters. It confirms that the two eigenspectra match each
other quite well, which confirms the accuracy of our results.

8. Discussion

In the previous sections, we have observed that the stability
of a rotating Poiseuille flow and a Couette—Poiseuille flow
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050 L B B B B S S B
L %
0 . o
[
—02L
b'_ -
| ooz
I 0: xo* ]
06 ¢ RINEE k=k=10
| 02F . ®e 18 Re, = 10000
| = o 1e
|00 g 18 . No rotation |
-0.8 I Lyl LS 4
0 05 i [EP4 * qg=15
: ® g=20
L *
_1 A R - S B R
-0.25 0 0.25 0.5 0.75 1 1.25 1.5
g,

r

Figure 28. Eigenspectra of a linearized Poiseuille flow in the presence of
rotation for three-dimensional perturbation with k, = k. = 1 for three different
q and Re,=10,000.

greatly depends on g and also on the nature of perturbation. To
make this statement more concrete, we show in Figure 28 the
eigenspectra of a plane Poiseuille flow in the presence and
absence of rotation for a three-dimensional perturbation with
k, =k, = 1. Here, we note that the Poiseuille flow is stable even
for Re, = 10,000 with k, = k, = 1, when rotational effect has
not been taken into account. In contrast, when rotation is there,
the flow becomes unstable, and as g increases, the maximum
growth rate increases for the same set of other parameters. We
therefore argue that rotation makes the plane Poiseuille flow
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Table 1
Critical Values of the Reynolds Number (Re, i) and Critical Values of &,
(k. ric) for Three Different Rotation Parameters, ¢, for a Plane Poiseuille Flow
in the Presence of Rotation for Vertical Perturbation, i.e., k, = 0

q Rea.cric kz,cric

2.0 137.2969 4.066
1.8 174.84 4.5762
1.5 327.58 6.1

unstable. On the other hand, rotation has an opposite effect on a
plane Couette flow. This is clear from Equation (39) by
substituting U,y = —X and hence U;Y = —1. Equation (39)
then becomes

J%:I:Q,/qZ, (65)
q
and hence
o=-X4+ g, (66)
2 Qq

where k is the epicyclic frequency, given by k = /22 — q).
Now for g < 2, k is always a positive real number, and hence, a
plane Couette flow with a rotational effect is always stable as
long as g <2. On the other hand, Equation (40) shows that
even if ¢ <2, a plane Poiseuille flow with rotation becomes
unstable in a particular domain of flow depending on g.

In Section 5.3 we have argued that as ¢ increases for a fixed
Re,, the maximum growth rates increases. This statement
matches results in the literature well, i.e., Lezius & Johnston
(1976; their Figure 2) and Alfredsson & Persson (1989).
However, these authors considered “Ro” as the rotation
parameter, and it is inverse of g. In addition, the background
flow considered by them is 6(X — X'?). This is the reason
behind the different critical Re and wavevector in the present
work compared to Lezius & Johnston (1976) and Finlay (1990;
see their Table 1). While they obtained a critical Re~ 89 and a
critical wavevector ~5, we have obtained them as 137.2969
and 4.066, respectively, for the vertical perturbation and g = 2,
e.g., as provided in Table 1, which lists the critical Re (Re,, cric)
and the critical wavevector (k) for different rotation
parameters. We note that Re, .. increases as g decreases, as
expected from the whole discussion.

Note importantly that the inclusion of rotation does not
invalidate the Squire theorem, which states that a flow that is
unstable in three dimensions will be unstable in two
dimensions at a lower Re. This is obvious from Figures 13
and 21. As k, is nonzero and increases further, keeping other
parameters fixed, we see that the growth rate of the most
unstable mode or least stable mode decreases.

9. Conclusion

In the presence of extra force, a plane Couette flow behaves
more like a plane Poiseuille flow. However, depending on the
strength of force and the boundary conditions, it may almost
behave like a plane Couette flow, or the deviation from plane
Couette flow may be small. Nevertheless, when this flow is
studied in the presence of the Coriolis effect, it becomes
unstable under three-dimensional perturbations as well as pure
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vertical perturbations. In fact, the rotational effect makes the
flow more unstable, and hence, turbulence inside the under-
lying shearing box is inevitable.

In the literature before this work, when the hydrodynamic
instability of the Keplerian accretion flow has been studied in the
local region, the flow has been approximated to be a plane
Couette flow with rotation embedded in it. However, recent
works (Nath & Mukhopadhyay 2016; Ghosh & Mukhopadhyay
2020; Razdoburdin 2020) suggested that the presence of an extra
force (random or constant) is inevitable in such a flow, at least
the effect of an external force is worth exploring. We have
therefore argued here that the background flow of a local
Keplerian accretion disk will deviate from a plane Couette flow.
We have considered here such a deviated background flow
modified to the plane Poiseuille flow. This modification depends
on the strength of force and the boundary conditions. Controlling
these two factors, a plane Couette flow and also its nature can be
revived. We know that a plane Poiseuille flow is unstable
beyond the respective critical values of certain parameters for
planer perturbation. We therefore can argue that the local
Keplerian flow becomes unstable due to the presence of an extra
force.

However, the effect of the Coriolis force, which is inevitable
for a shearing box in the Keplerian disk, makes the problem
more interesting. We know that rotation stabilizes the linear
shear flow. However, for a plane Poiseuille flow, it has opposite
effects. In the presence of rotation, a plane Poiseuille flow
becomes unstable at a Re that is about two orders of magnitude
smaller than that required for the instability without rotation.
We have shown here that as the rotation parameter g increases,
the flow becomes more unstable (or at least less stable) for a
particular set of parameters. The important point here is that the
presence of an extra force modifies the local Keplerian flow
from linear shear to nonlinear shear, and the Coriolis effect
makes it unstable for a very small Re. We have also argued that
even the presence of a tiny force, that could lead to the required
amount of deviation from the linear shear, makes it unstable
even in the presence of rotation. When the flow becomes
unstable, it is eventually expected to become nonlinear and
turbulent. It therefore helps us to understand the subcritical
transition to turbulence in a hydrodynamic accretion flow and
other laboratory flows where external forcing, however tiny, is
unavoidable.
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Appendix
The Derivation of the Background Flow in the Local
Region of the Keplerian Accretion Disk

Let us consider a fluid element inside the box at the point P.
With respect to C, the flow is along the ¢ direction. Inside the
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box, however, the flow will be along the y-direction only. Now
let us assume that the velocity at P with respect to the box is Vy.
Nevertheless, the velocity at the same point with respect to C
would be R()y+ Vy. Had there been no shearing box, the
velocity of the fluid at the point P would be (2R with respect to
C. Hence,

ROy + Vy =QR = Vy = R(Q — Qo)
= R(2(Ro + X) — Q(Ry)),
[R — Ry = X <€ Ry, R]

FLe)
= R[Q(Ro) + X(d—R)RO + . —Q(Ro)]

~ Rx(@)
dR Jx,

R
= QX
CoO% R

X
=—qgQoX| 1+ —
610( Ro)

= —qQ()X. (Al)
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