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We therefore look for hydrodynamics that could plausibly give
rise to unstable modes when the dynamics of thid parcel is
studied in a small cubical shearing bsee, e.g., Mukhopadhyay
et al.2005 Ghosh & Mukhopadhyag02Q for detail$ situated at
a particular radius in the Keplen disk. We are particularly
motivated and inspired by our recent resu{Ghosh &
Mukhopadhyay2020, which explored in detail the effect of
forcing in the linearly and ndinearly perturbed plane sheaws,
with and without rotation, which shed light on the issue of the
origin of hydrodynamical turbulence. In fact, other wdtkannou
& Kakouris 2001 Mukhopadhyay & Chattopadhy®013 Nath
& Mukhopadhyay2016 Razdoburdir?020 have considered an

extra forcing to be present in the system. However, in the shearing

box, the backgroundow has a linear shear pile up to rst-order
approximationseeAppendixand Balbus et all996 for detail$.
This linear shearow is called the plane Couettew. As in the
accretion disk, the shearing boxsituated at a particular radius, it
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Figure 1. Schematic diagram of a shearing box centered at the $anside
the small patch of an accretion disk. The box is of kiz€ is the center of the
accretion diskSis at a distanc®, from C. An arbitrary uid particle inside the
box is atP at a distanc& from C.

will have an angular frequency. We therefore have to consider theg ¢t,died in SectioB. We write the NaviesStokes equation for

effect of rotation while we desbg the motion of the accretion

the modied background ow in the rotating frame, as the

disk uid parcel inside the shearing box. Now, if an extra force is primary plan is the application in accretion disks, in Setjamd

present there in the shearing box, the backgroamdno longer
remains linear shear, but instead becomes quadratic stwar
what we generally call plane Couef®iseuille ow. However,
with a proper transformation, thiow can be transformed into
plane Poiseuille ow. This ow will further be embedded with
rotation in the context of Kepleriarow. Plane Poiseuille ow
without rotation is unstable nder linear two-dimensional

we also obtain the corresponding Reynolds number after
nondimensionalizing it in Sectiod.l The perturbed ow
equations have been formulated appropriately in the same section,
but in Sectiond.2 where we recast the Naw&tokes equation
into Or—Sommerfeld and Squire equations. Rotating Poiseuille
and CouettePoiseuille ows under purely vertical and three-
dimensional perturbationseaexplored in detail in Sectidhand

perturbation, having a critical Reynolds number 5772.22 with aSection6, respectively. The dependens of the stability of the

critical wavevector 1.080rszagl971]). Once it is established that
the very local ow (inside the bokin the Keplerian region with
forcing is plane Poiseuilleow with rotation, then we can argue

respective ows on the rotational prée is also studied in the
same sections. In Sectiohwe describe the accuracy of our
numerical results based on the technique we have used in this

that the ow inside the shearing box is unstable. We therefore planwork. In Sectior8 we compare plane Poiseuillew with plane

to explore plane Poiseuilleow in the presence of a rotational
effect. Although the effect of rotation on the stability of a Poiseuille
ow was studied by Lezius & Johnst(i976 and Alfredsson &
Persson(1989, our work is different form theirs in two aspects.
First, we extensively study the eitgpectra of a plane Poiseuille
ow, as well as a Couetioiseuille ow, with rotation for purely

Couette ow in the presence of rotation. In the same section, we
also compare our critical parantstevith those in the literature.
We nally conclude in Sectiofi that depending on the boundary
conditions and the strength of theraxforce, there is a deviation

in the ow from its linear shear natur€urthermore, rotation
makes the ow unstable depending on the parameters, and hence

vertical perturbations and three-dimensional perturbations. To théhe ow plausibly becomes turbulent, which we suggest to be the
best of our knowledge, this study has not been done in anhydrodynamical origin of tutdence in accretion disks.

extensive manner yet, particulafty the effect of rotation on the
stability analysis of a Couetieoiseuille ow. Although the
Poiseuille ow in the presence of rotatidnas been studied earlier,
to our knowledge, its application to the stability of accretiow

2. Background Flow in the Presence of Force
Let us consider a very small cubical box of sizeat a

has never been explored. In addition, no analysis of eigenspectrigarticular radius, from the center of the system, as shown in

for a Poiseuille ow in the presence of rotation has been performed

extensively so far. However, see, e.g., H4lt867), Cowley &
Smith (1985, Balakumar(1997), Savenkov(2010, and Klotz
et al. (2017 for various explorations of the Couefmiseuille
ow over the years. Second, the backgrouoa pro le that we

Figure 1. At this radius, the box is rotating with an angular
frequency o such that 8 ¢BR/Ry) 9 and the rotation
parameterg= 3/ 2 for Keplerian ow. In Figurel, Sis the
center of the box, and the local analysis is done with respect to
S See Mukhopadhyay et 4R005, Bhatia & Mukhopadhyay

consider here is different than those already considered in previou@016, and Ghosh & Mukhopadhya§2020) for details of the

works (see Lezius & Johnstatf76 Alfredsson & Perssofh989
for detail3.

The plan of the paper is the following. In Sectibwe show
how the linear shearow (or plane Couetteow) is modi ed by

reference frame and the backgrourav therein. Now let us
set the local reference frame or box in such a way thatdahe
which is along thd -direction with respect t€, is in they-
direction, and either ends of the box in thdirection(in the

the presence of an extra force in the system. In a recent work, welisk framer-direction) have an equal and opposite velocity of
assumed that the background does not practically change due tmagnituddJ, (see Figure 1 of Ghosh & Mukhopadhy2§20).

forcing (Ghosh & Mukhopadhyay2020, here, however, we

In this local reference frame or box, the velocity of the

explore the change in background and its consequence in detaiKeplerian ow becomes g X up to the rst-order approx-

As the background modes in the presence of the extra force, the
domain of the background also moell depending on the

imation. This is the usual backgroundw (see theAppendix
and also Hawley et al.1995 Afshordi et al. 2005

strength of the force. The relevance of the size of the new domaiMukhopadhyay et al2005 Ghosh & Mukhopadhyay020
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in the local region of an accretion disk. However, due to the where

presence of an external forgeay not be randojin the ow, the
above-mentioned backgrounaw is expected to change. The

various possible origins of force in the system under consideration,

as described earlier by {&hosh & Mukhopadhyayp020 in
detail, could be back-reactions of an awt/ jet to accretion disks,
the interaction between the dust grains andd parcel in
protoplanetary disks, etc. Usingiid-particle interactions, these
possibilities could be modeled such a way that the extra force
turns out to be a function of the relative velocity between tie
and the particles. For detailgesSection 2.1 and Appendix A of
Ghosh & Mukhopadhyag2020. In the presence of an extra force,
let us consider the backgroundw velocity to beV, given by

V. (0, W(X),0. (9

The corresponding NavieBtokes equation describing thew
in the local box is

sV

g

v.-wyv YP 2y p @

02 g‘_z, : (x %)2
(8]
5 , (11
anda Yo L
2KL2 2

The velocityVy in Equation(10) can be made dimensionless
by dividing it with «, i.e.,
Uw X 1 02 (12
«
where« is the dimension of velocity, determined by the box
geometry. The new backgroundow therefore becomes
U,= (0, U,y, 0). However, this is the plane Poiseuillew
in new coordinate§0, Y, Z), where the boundary conditions
are given by Equatio(B). Note that hered is dimensionless,
while Y andZ are dimensionful coordinates. Nevertheless, it is
useful to solve the problem within the known domain of the

Poiseuille ow, i.e., 0 01, 1], in which it is known to be

where P, p, v, and T' are the pressure, density, kinematic unstable above a certain Reynolds nun(Bs.
viscosity, and extra force, respectively. The three components

of Equation(2) are

1P
0 - , 3
> % 3
0 - 2\, , 4
oSy A Y ( (4)
1
0 - . 5
o< £ ©)
Equation(4) can be further simplied to
e L 1) (W%
v p sY X2
& 1 PI\X?
- = X
v (1/ vp SY ) 2 @ C
X2
K7 GX G (6)
where
1 <P
K (i ——), U
v vp SY

is assumed to be constant.
The corresponding boundary conditions are given by

Vv FlUgat X L, (8

which imply thatC,= Ug/L and C,= KL% 2. The back-
ground ow in the presence of extra force is therefore medii
and becomes

K UgX
WA —(L2 X _— 9
Yy 2( 9 i ©)
which is the CouettéPoiseuille ow, when linear and

nonlinear shears are both present. By a simple rearrangement,

this reduces to

W oa(l 0%, (10

3. The New Domain

In order to employ the results of the well-known Poiseuille
ow, we set the boundary conditions to new coordinates:
U,=0at0 d. It is therefore important to verify the
consequence of the domain 0f(i.e., running from 1to 1) to
the domain ofX (i.e., running from L to L), as chosen

originally. From Equatior11), imposing O d, we have
X q/z_o‘ ﬁ, (13
K KL
where
[2a U2
— LJI1 . 1
K \/( K2L4) (19

Now if U2 /K24 <« 1, Equation(14) shows that

20 ug
VK 2K2L3’ (19
leading to
Up Us
X a R TTE (16)

This conrms that the domain size of is close to 2 if
UE/KAL* < 1, ie., v2UE/L* < (3, when the ow is not
driven by the pressure, i.e.,P/ Y= 0. However, in the
pfesence of a pressure gradient, the same condition will be true,
but its contribution will be added to the extra force.

However, ifUZ2/K2.4 > 1, Equation(14) shows that

2« Uo
[= 1 = 1
K KL (17
Hence
x on Yo (18
KL KL

i.e., the domain size of is approximately @o/ KL. According
to the approximationé/K2L* > 1, 2Uy/ KL is much larger
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Figure 20. Eigenspectra for a CouetRoiseuille ow, described by
Equation (49), in the presence of Keplerian rotatigg= 1.5 for k, = 1,

differentk, Re= 1500 and¢ = 1.
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Figure 21. Eigenspectra for a Couetfeoiseuille ow, described by
Equation(49), in the presence of Keplerian rotati¢gm= 1.5) for different

ky, k,= 1, Re= 1500 and = 1.

increasingk, or £. This can be qualitatively understood in the
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1.5F

O_i, max

Re = 1500

0.5

Figure 22. Maximum growth ratgo; may) as a function of for a Couette
Poiseuille ow withg= 1.5, 2.0 having vertical perturbation fgrmaximizing
0i,maxandRe= 1500.

where the functiorf (ky, ky, k, U, Ua, g is determined by the
natures of background ow, perturbation, and rotation,
ocp3= o0; oy, according to our convention of the original exact
solution given by Equatio(83) and eigenspectra. Note, however,
that the solution in the-direction in principle should not be of the
plane waveform adl is a function ofx, which indeed we do not
choose in order to compute the eigenspectra. It is easy to check that
the magnitude of (ky, ky, k;, U, Ua, g is smaller than therst
term in parentheses in Equati@60), and o, increases with
increasingk, for the background ows and generally for the
parameters considered here. Therefore Equ@idrton rms that
ask, increasesy, increases, with a shift in the positiwedirection,

as seen in Figure$3 and 21 Similarly, with increasing;, the
CouettePoiseuille ow tends to become a pure Poiseuitbev and

o @ x? 1/ k2)§ k,. Thereforef andk, play interchange-
able roles, and hence, with increasifyg, increases, as seen in
Figure 19,

Figure 22 describes the maximum growth rdte .y as a
function of ¢ for a CouettePoiseuille ow having a vertical
perturbation withk, maximizingo;. It shows that; nax increases
monotonically with¢ for bothgs. It also shows that§ 1, 0i max
for g= 2 is larger than that fog= 1.5. However, the situation
reverses for¢> 1. This phenomenon can be understood
qualitatively from Figure23, where we show the variation of
J 4/q%  4x/q 2/ qfrom Equation(54) as a function ok
for several combinations af and £&. We see that fog = 0.5,

4/92  4x/q  2/qis larger forg= 2 than forg= 1.5. As

following analysis. Assuming that approximate solutions for 3 result,ocp in Equation(54) becomes larger fay= 2 than for

Equations(52) and (53) areu, ¢
k w(ky ky, k) andr

explocpat.
(X, ¥, 2), we obtain

or (U ;—k;)ky f(ke ky ke O, U, 9, (69

k - r), where

g= 1.5. This explains the behavior of max for £ 1 in
Figure22 Similarly, the explanation of largefmaxfor £> 1 in
Figure22 can be extracted from the curves wgth 1.5 andg= 2
at£= 5.0 in Figure23. It is further veried from Figure22 that
belowaa certairg, depending om, the ow becomes stable with
negatives; max
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Figure 23. Variation of | 4/q2 4x/q 2/ from Equation(54) as a Figure 25. Variation of | 4/9> 4x/q  2/q from Equation(54) as a
function ofx for several combinations ef and¢. function ofx for £ = 1 and for several’s.

T that oy max IS NOt expected to increase with the increase of
I 1 throughout at any.

6.3. Viable Magnitude of Force

Re=1500 | From the bound og for a Keplerian ow described above,
we can estimate the extra force, From Equation51), we
have

7 U ERE o1
Bl T 1 o E (61)

// ] The size of the shearing boX,, is 0.09% (Nath &

] Mukhopadhyay2015, whereR;= 2GM/ ¢? is the Schwarzs-
/ child radius for the central black hole of magswith G andc
04 / b the gravitational constant and speed of light in free space,
/ ] respectively. From Mukhopadhy42013, we obtain that for
/ 1 accretion diskRe 10" Considering all these and the lowest
¥ 1 bound on¢, i.e.,£= 0.167 for a Keplerian disk, we obtain

0.2 L L L 1 L L L 1 L L L 1 L L L 1

‘ 12 1.4 1.6 1.8 2 U Bmn v 10 cmsed :‘/mﬂq“l_co' (62)

Fig_ure '24. Maxi_mum growth rate(qi,ma,) as a function (_)tq for a C_ou_e_tte whereRe n1014, M mM, andM., is the mass of the Sun.
Poiseuille ow with ¢ = 0.5, 1.0 having vertical perturbation fgrmaximizing N t diuRR th d |d\7b
imaxandRe= 1500. ow at a radiusR, the speed wou e

Figure24 describes the maximum growth rate as a function Uo GM ¢ (63
of q for a CouettePoiseuille ow with ¢= 0.5, 1.0 and V R J2r’

Re= 1500 for vertical perturbation witk, maximizing o;. It

shows thatoj max increases with increasing for £= 0.5. whereR= pR, Ifthe uid is at 100R, thenUy  ¢/104/2. From
However, foré = 1, ai,maxin_creases with incr_easircgon_ly up Equations(62) and (63), we obtain ¢  0.5/m n cm sec?.
tog 1.6 subsequently, it dec_reases. This behavior can b his con rms that the extra force is indeed very small for the
qualitatively understood from Figub, where we show the accretion disk around an astrophysical black hole wiResks

variation of the discriminant in the Equati as a function ;
of x with £= 1 and forq= 1.0, 1.4, 1.?5, 1.@nd 2.0. It shows hugg. For examplg, a Supermassive black2 hole of médd.10
that the case af= 1.4 gives rise to the maximum discriminant. Naving an accretion disk wittRe 10?2 leads to (

However, the maximum discriminants fo= 1 and 2are 5 d 10 ®cmsec?, which is too small compared to the
almost the same, and they are the least of aljghé&lencercp acceleration due to the gravity of the black hole at that position.
from Equation(54) will be the highest foq= 1.4 and lowest ~ This conrms that indeed a tinyy, i.e., a very small effect of
for g= 1 and 2. This qualitative analysis therefore indicates external force, would make th@w unstable.
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Figure 26.Error as a function ol for a CouettePoiseuille ow with £ = 1,

Figure 27. Eigenspectra for a Couetfeoiseuille ow with £= 1 in the
g= 1.5,Re= 1500,k, = 0, andk,= 1.0.

presence of Keplerian rotation féte= 1500, k,= 0, andk,= 1, obtained
using Chebfun andnite-difference methods.

7. Accuracy of Numerics

Throughout the work, we have used theite-difference
method to obtain the eigenspectra. We particularly have used
the second-order central difference method. Equédid)ris an 0 e
eigenvalue equation, which is the functian To solve it
numerically, we discretize the domain that ranges from
X=X = 1ltox= x= 1. In our calculation, we have divided
the domain intdN + 1) segments, where the width of the each
segment is dened as

1 o o e e L e e e e B N

02+

(64

[ 002~

For all the eigenspectragsented in this worlty = 499. Therefore 0.6 | o
the dimension off in Equation(34) after using the nite-difference
method is R x 2N. To check the accuracy and the convergence of | oqe
the eigenvalues for the chosen matrix dimension, we show the -0.8 L
variation of the error o max(N) a malN 1099 as a i 0 03
function of N in Figure 26 for a typical set of parameters. It I
con rms that the chosdd= 499 leads to the optimum numerical
values ofc;, which hardly changes with further increasMgin

fact, the variation 0Ofr; yax for 199< N < 1099 is not more than
10 4 Figure 28. Eigenspectra of a linearized Poiseuillew in the presence of
However, to check the accuracy of the eigenspectra,rotation for three-dimensional perturbation vkfl= k, = 1 for three different
particularly the most unstable modes as these are the mogt2"dR& 10,000
important feature of this Work, we have also ved the result greaﬂy depends amand also on the nature of perturbation_ To
Of the nite'difference method W|th those Obtained Using make th|S statement more Concrete1 we ShOW in F|@ame
Chebfun (Driscoll et al.2014. Figure 27 demonstrates the  gjgenspectra of a plane Poiseuillew in the presence and
eigenspectra for a CouetRoiseuille ow for a given set of  ghgsence of rotation for a three-dimensional perturbation with
parameters. It comms that the two eigenspectra match each k = k.= 1. Here, we note that the Poiseuillew is stable even
other quite well, which comms the accuracy of our results. ¢, Re,  10,000with k,= k,= 1, when rotational effect has
. . not been taken into account. In contrast, when rotation is there,
8. Discussion the ow becomes unstable, and @increases, the maximum
In the previous sections, we have observed that the stabilitygrowth rate increases for the same set of other parameters. We
of a rotating Poiseuille ow and a Couettdoiseuille ow therefore argue that rotation makes the plane Poiseulle
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Req = 10000
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* g=15
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