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Supplementary Figure 1: Schematic structures of 2D (a) layered double hydroxides (LDHs), (b) layered oxyhydroxides, and (c) layered double
oxides. The orange and gray circles represent O and H atoms, respectively.

Supplementary Note 1: Feature Ranking using Various ML Methods
Linear machine learning algorithms, e.g., linear regression, logistic regression, LASSO and ridge regression fit a model where the prediction is
the weighted sum of the input values. They find a set of coefficients to use in the weighted sum in order to make a prediction. These coefficients
can be used directly as a crude type of feature importance score. Feature ranking using linear regression works well when the data is not very
noisy (or there is a lot of data compared to the number of features) and the features are independent. Therefore, it is not optimal for selecting
the top performing features for improving the generalization of a model. Regularization is a method for adding additional constraints or penalty
to a model, with the goal of preventing overfitting and improving generalization. L1 regularization is included in LASSO, which adds a penalty
α

řn
i“1 |wi| to the loss function. Since each non-zero coefficient adds to the penalty, it forces weak features to have zero as coefficients.

Therefore, it is useful when the sole purpose is to reduce the number of features, but not necessarily for data interpretation, since it might
lead to the conclusion that certain features do not have a strong relationship with the output variable. Ridge regression with L2 regularization
adds a penalty α

řn
i“1 w

2
i to the loss function. Since the coefficients are squared in the penalty expression, it forces the coefficient values

to be spread out more equally. It leads to similar coefficients for the correlated features. The coefficients also do not fluctuate on small data
changes as is the case with unregularized or L1 models. A Random Forest consists of several decision trees, in which every node is a condition
on a single feature. It is designed to split the dataset into two so that similar response values end up in the same set. The measure based on
which the optimal condition is chosen is called the impurity. Therefore, it is possible to compute the extent to which each feature decreases
the weighted impurity in a tree during its training. The decrease in impurity from each feature is averaged for a forest, and the features are
ranked according to this measure. RFE is a wrapper-type feature selection method, which uses another model (e.g., linear Regression or SVM)
to select the best-performing features. It is achieved by fitting the given machine learning algorithm used in the core of the model, ranking
features by importance, discarding the least important features, and re-fitting the model. This process is repeated until a specified number of
features remains.
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Supplementary Note 2: Bayesian Hyperparameter Optimization
Hyperparameters, in contrast to model parameters, are set by the users before training, e.g., the number of trees in a random forest is a
hyperparameter. The aim is to find the hyperparameters of a given machine learning algorithm that return the best performance as measured on
a validation or test set. It can be represented in mathematical form as:

x˚ “ argmin
xPχ

fpxq (1)

where fpxq represents an objective score to minimize (e.g., RMSE) or maximize (e.g., MCC) accuracy metrics on the test set; x˚ is the set
of hyperparameters that yields the lowest value of the score, and x can take on any value in the domain χ. However, evaluating the objective
function to find the best score is extremely expensive. For optimizing each hyperparameter, a model is trained on the training data, predictions
made on the test data, and then the accuracy metric is calculated. With a large number of hyperparameters and complex models such as
ensembles or deep neural networks, which can take days to train, this process quickly becomes intractable to be performed manually.

Grid search and random search are slightly better than manual tuning because a grid of model hyperparameters is set up and the train-
predict-evaluate cycle is performed automatically in a loop. However, even these methods are relatively inefficient because they do not choose
the next hyperparameters for evaluation based on the previous results. Grid and random search methods are completely uninformed by past
evaluations, and as a result, often spend a significant amount of time evaluating “undesirable” hyperparameters.

Bayesian approaches, in contrast to the random or grid search, keep track of past evaluation results, which they use to form a probabilistic
model mapping hyperparameters to a probability of a score on the objective function – P (score|hyperparameters). In the literature, this model
is called a “surrogate” for the objective function and is represented as ppy|xq. The surrogate is easier to optimize than the objective function and
Bayesian methods work by finding the next set of hyperparameters to evaluate on the actual objective function by selecting hyperparameters
that perform best on the surrogate function.

Tree-structured Parzen Estimator (TPE): In our study, we utilized TPE as the surrogate function. The Tree-structured Parzen Estimator
builds a model by applying Bayes rule. Instead of directly representing ppy|xq, it instead uses:

ppy|xq “
ppx|yq ˚ ppyq

ppxq
(2)

ppx|yq, which is the probability of the hyperparameters given the score on the objective function, in turn is expressed:1

ppx|yq “

#

lpxq, if y ă y˚

gpxq, if y ě y˚

where y ă y˚ represents a lower value of the objective function than the threshold. There are two different distributions for the hyperparameters:
one where the value of the objective function is less than the threshold, lpxq, and one where the value of the objective function is greater than
the threshold, gpxq.

Selection function: The selection function is the criteria by which the next set of hyperparameters are chosen from the surrogate function.
The most common choice of criteria is the expected improvement:1

EIy˚ pxq “

ż y˚

´8

py˚ ´ yqppy|xqdy (3)

where y˚ is a threshold value of the objective function, x is the proposed set of hyperparameters, y is the actual value of the objective function
using hyperparameters x, and ppy|xq is the surrogate probability model expressing the probability of y given x. The aim is to maximize the
expected improvement with respect to x, which means finding the best hyperparameters under the surrogate function ppy|xq.

If ppy|xq is zero everywhere for y ă y˚, then the hyperparameters x are not expected to yield any improvement. On the other hand, if the
integral is positive, then the hyperparameters x are expected to yield a better result than the threshold value. On the application of Bayes Rule
to the expected improvement, its expression becomes:1

EIy˚ pxq “
γy˚lpxq ´ lpxq

şy˚

´8
ppyqdy

γlpxq ` p1 ´ γqgpxq
9

ˆ

γ `
gpxq

lpxq
p1 ´ γq

˙´1

(4)

According to the term on the far right, the expected improvement is proportional to the ratio lpxq{gpxq and therefore, to maximize the expected
improvement, this ratio has to be maximized. Therefore, the TPE works by drawing sample hyperparameters from lpxq, evaluating them in
terms of lpxq{gpxq, and returning the set that yields the highest value under lpxq{gpxq corresponding to the greatest expected improvement.
These hyperparameters are then evaluated on the objective function. If the surrogate function is correct, then these hyperparameters should
yield a better value when evaluated.

Plots obtained using Optuna: The hyperparameter importance plot depicts the average importance of each hyperparameter towards the
objective in the overall trials. The variation of objective value (e.g., test RMSE) as a function of each hyperparameter with different trials can
be seen through slice plots. Finally, the contour plots describe the variation of the objective value against a pair of hyperparameters in the form
of contours, where each dot represents a trial.
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Supplementary Note 3: Theory of SHAP
SHAP stands for SHapley Additive exPlanations signifying that the concept of SHAP has emerged from Shapley values, which was developed
by Lloyd Shapley in the field of game theory.2 Through Shapley values, one can calculate the contribution of each player in a coalition game,
assuming N players and S subset of the N players. Let νpSq be the total value of the S players. When a player i join the S players, the player
i’s marginal contribution is νpS Y tiuq ´ νpSq. The contribution of the player i can be estimated by taking the average of the contribution over
possible different permutations in which the coalition can be formed:

φipνq “
ÿ

SĎNztiu

|S|!pN ´ |S| ´ 1q!

N !
pνpS Y tiuq ´ νpSqq (5)

There are four axioms proposed by Shapley to achieve a fair contribution:2

• Axiom 1: The sum of the Shapley values of all players equals the value of the total coalition.

• Axiom 2: All players have a fair chance to join the game.

• Axiom 3: If a player i contributes nothing to any coalition S, then the contribution of the player i is zero, i.e., φipνq “ 0.

• Axiom 4: For any pair of games ν, w : φpν, wq “ φpνq ` φpwq where pν ` wqpSq “ νpSq ` wpSq for all S. This property enables
simple arithmetic summation.

The above concept can be easily extended to machine learning algorithms such as Random forests or gradient boosting in extracting the
contribution of each feature towards final predictions. Variables enter the machine learning model sequentially or repeatedly in the trees of the
model. In each step of the tree growth, the algorithms evaluate all the variables equally to settle with the variable that contributes the most.
Therefore, the marginal contribution of each variable can be calculated.

Supplementary Note 4: Different Hyperparameters Used
• LightGBM:3

– Learning rate. Gradient boosting involves creating and adding trees to the model sequentially. New trees are created to correct
the residual errors in the predictions from the existing sequence of trees. It leads to fitting of training dataset by the model, and
evenutally overfitting of data. The learning in the LightGBM model can be slowed down by applying a weighting factor for the
corrections by new trees when they are added to the model. This weighting factor is called the learning rate.

– Number of leaves. The number of leaves is one of the most important parameters that controls the complexity of the model. The
maximum number of leaves each weak learner has can be set by this hyperparameter. A large number of leaves increases accuracy
on the training set and increases the chance of overfitting at the same time.

– Minimum child samples. It is the minimal number of data, which can be contained in one leaf. Its optimal value depends on the
number of training samples and the number of leaves. Setting it to a large value can avoid growing a very deep tree, but may cause
underfitting.

– Bagging fraction. The percentage of rows used per each iteration of tree construction can be speicified with the bagging fraction
hyperparameter. Therefore, some rows will be randomly selected for fitting each learner or tree. It improves generalization and the
speed of training.

– Feature fraction. LightGBM randomly selects a subset of features on each iteration (tree) and the feature fraction hyperparameter
deals with column sampling. For example, if it is set to 0.6, LightGBM will select 60% of features before training each tree. There
are two advantages of using for this feature – speeding up training, and dealing with overfitting.

– Bagging frequency. A bagging frequency of integer k means performing bagging at every k iteration, while a value of zero will
disable the bagging. LightGBM randomly selects a bagging fraction * 100% of the data every kth iteration to use for the next k
iterations. It can be used for dealing with overfitting when used along with the bagging fraction hyperparameter.

– λL1 /λL2 . Both hyperparameters are used for controling the L1 or L2 regularization to deal with the issue of overfitting.

• Extra Trees:4

– Number of estimators. It is the number of trees that are used to grow in a forest. More number of trees should produce a more
generalized result. However, choosing more number of trees leads to the increase in complexity of the ET model.
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– Maximum depth. It is the maximum depth or number of levels in a decision tree. If it is set to none, then nodes are expanded
until all leaves are pure or until all leaves contain less than the minimum samples required for splitting. As the maximum depth
of the decision tree increases, the performance of the model over the training set increases continuously. On the other hand, the
performance over the test set increases initially but after a certain point, it starts to decrease rapidly due to overfitting.

– Minimum samples at a leaf node. It is the minimum number of data points allowed in a leaf node. A split point at any depth will
only be considered if it leaves at least minimum samples at the leaf node of training samples in each of the left and right branches.
It is used for controlling the growth of the tree by setting a minimum sample criterion for terminal nodes. This hyperparameter
helps in preventing the overfitting as the parameter value increases.

– Minimum samples required for splitting. It is the minimum number of data points placed in a node before the node is split. By
increasing the value of the minimum samples required for splitting, the number of splits occuring in the decision tree can be
reduced. Therefore, it can prevent the model from overfitting. When its value is increased significantly, there is an overall dip in
both the training and test scores. This is due to the fact that the minimum requirement of splitting a node is so high that there are
no significant splits observed. As a result, the ET model starts to underfit.

– Minimum weight fraction of leaf. It is the minimum weighted fraction of the sum total of weights (of all the input samples) required
to be at a leaf node. Samples have equal weight when sample weight is not provided.
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Supplementary Figure 2: (a) Mean score of best features selected from the {E} feature set (highly correlated features removed) for ∆Ef

regression. (b) Pearson correlation between the best {E} features (after removing highly correlated features) selected from feature ranking.
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Supplementary Table 1: List of all attributes selected from mean feature ranking utilized in the present study

Symbol Feature name Feature type

Ě∆χ Mean electronegativity difference Elemental
χ̄ Mean electronegativity Elemental
χ̂ Average deviation in electronegativity Elemental
χmin Minimum electronegativity Elemental
∆χmin Minimum electronegativity difference Elemental
σp∆χq Standard deviation of electronegativity difference Elemental
δχmin

shell“1 Minimum electronegativity difference in 1st shell neighbors Structural
M̂N Average deviation in Mendeleev Number Elemental
ĘMN Mean Mendeleev Number Elemental
Tmax
M Maximum melting point Elemental

ĚTM Mean melting point Elemental
T̂M Average deviation in melting point Elemental
T range
M Melting point range Elemental

ICmax Maximum ionic character Elemental
ĎIC Mean ionic character Elemental
ĚEAA Mean electron affinity of anions Elemental
P̄ Mean group Elemental
P̂ Average deviation in group Elemental
Amin Minimum atomic mass Elemental
Zmode Mode of atomic numbers Elemental
N̂p,V Average deviation in number of p-electrons (valence) Elemental
N̄U Mean number of unfilled electrons Elemental
Nmin

V Minimum number of valence electrons Elemental
ĎδNp,V shell“1 Mean difference in number of valence p-electrons in 1st shell neighbors Structural
ĎEg Mean bandgap Elemental
δEmax

g,shell“1 Maximum difference in band gap in 1st shell neighbors Structural
sαpCN “ 4q Mean weighted ordering parameter for atoms having CN = 4 Structural
sαpCN “ 6q Mean weighted ordering parameter for atoms having CN = 4 Structural
PF Packing fraction Structural
rmax
cov Maximum covalent radius Elemental
V range Range in volume of unit cell per atom Elemental
V min Minimum volume of unit cell per atom Elemental
ĚSG Mean space group number Elemental
GMpηq Geometric mean of local chemical hardness Chemical hardness
ηmax
L Maximum chemical hardness of ligand Chemical hardness
ηmin
L Minimum chemical hardness of ligand Chemical hardness

Ď∆η Mean chemical hardness difference Chemical hardness
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Supplementary Figure 3: Test RMSE and R2 values (shown in legends) for ∆Ef regression corresponding to all ML algorithms using {E}
feature set.
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Supplementary Figure 4: (a) Mean score of best features selected from the {E, S} feature set (highly correlated features removed) for ∆Ef

regression. (b) Pearson correlation between the best {E, S} features (after removing highly correlated features) selected from feature ranking.
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Supplementary Figure 5: Test RMSE and R2 values (shown in legends) for ∆Ef regression corresponding to all ML algorithms using {E, S}
feature set.
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Supplementary Figure 7: (a) Mean score of best features selected from the {E, η} feature set (highly correlated features removed) for ∆Ef

regression. (b) Pearson correlation between the best {E, η} features (after removing highly correlated features) selected from feature ranking.
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Supplementary Figure 8: Test RMSE and R2 values (shown in legends) for ∆Ef regression corresponding to all ML algorithms using {E, η}
feature set.

8



learning_rate

lambda_l1

num_leaves

min_child_samples

bagging_fraction

feature_fraction

bagging_freq

lambda_l2

0.0 0.2 0.4 0.6 0.8
Importance

H
y
p

e
rp

a
ra

m
e

te
rs

O
b

je
c
ti
v
e

 v
a

lu
e

bagging_fraction feature_fraction

lambda_l1 lambda_l2 learning_rate min_child_samples num_leaves

bagging_freq

Trials

(a)

(e) (f) (g) (h) (i)

(b) (c) (d)

6

Supplementary Figure 9: (a) Hyperparameter importance plot for ML(LGBM) model corresponding to ∆Ef ({E, η}) regression. (b)-(i)
Slice plots for bagging fraction, bagging frequency, feature fraction, λL1
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hyperparameters for ML(LGBM) model corresponding to ∆Ehull ({E, η}) regression. The legend bar shows number of trials.
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Supplementary Table 2: Effect of changing the number of features on the performance of ∆EML
f ({E, S})

Number of
features se-
lected after
feature rank-
ing

Number of
features se-
lected after
removing
correlated
features

Final features selected Train RMSE Test RMSE

10 9 Ě∆χ, GMpηq, χ̄, ICmax, M̂N , χmin, T range
M , P̄ ,

N̂p,V

0.106 0.146

11 10 Ě∆χ, GMpηq, χ̄, ICmax, M̂N , χmin, T range
M , P̄ ,

N̂p,V , Ēg

0.098 0.131

12 11 Ě∆χ, GMpηq, χ̄, ICmax, M̂N , χmin, T range
M , P̄ ,

N̂p,V , Ēg , σp∆χq

0.097 0.131

13 11 Ě∆χ, GMpηq, χ̄, ICmax, M̂N , χmin, T range
M , P̄ ,

N̂p,V , Ēg , σp∆χq

0.097 0.131

14 11 Ě∆χ, GMpηq, χ̄, ICmax, M̂N , χmin, T range
M , P̄ ,

N̂p,V , Ēg , σp∆χq

0.097 0.131

15 11 Ě∆χ, GMpηq, χ̄, ICmax, M̂N , χmin, T range
M , P̄ ,

N̂p,V , Ēg , σp∆χq

0.097 0.131

16 12 Ě∆χ, GMpηq, χ̄, ICmax, M̂N , χmin, T range
M , P̄ ,

N̂p,V , Ēg , σp∆χq, S̄G
0.096 0.134

17 13 Ě∆χ, GMpηq, χ̄, ICmax, M̂N , χmin, T range
M , P̄ ,

N̂p,V , Ēg , σp∆χq, S̄G, P̂
0.095 0.133

18 13 Ě∆χ, GMpηq, χ̄, ICmax, M̂N , χmin, T range
M , P̄ ,

N̂p,V , Ēg , σp∆χq, S̄G, P̂
0.095 0.133

19 14 Ě∆χ, GMpηq, χ̄, ICmax, M̂N , χmin, T range
M , P̄ ,

N̂p,V , Ēg , σp∆χq, S̄G, P̂ , N̂U

0.094 0.132

20 15 Ě∆χ, GMpηq, χ̄, ICmax, M̂N , χmin, T range
M , P̄ ,

N̂p,V , Ēg , σp∆χq, S̄G, P̂ , N̂U , µ̂B

0.092 0.130

Supplementary Table 3: Comparison of formation energies predicted by different sets of features

2D material ∆ESCAN
f [eV/atom] ∆EML

f ({E})
[eV/atom]

∆EML
f ({E, S})

[eV/atom]
∆EML

f ({E, η})
[eV/atom]

Cd(CN)2 0.738 0.671 0.628 0.701
Cd(NC)2 0.676 0.671 0.656 0.694
Ba(NCO)2 -1.080 -0.937 -1.069 -0.990
Ba(OCN)2 -0.813 -0.937 -0.849 -0.924
La(CN)(NH) -0.526 -0.568 -0.547 -0.569
La(NC)(NH) -0.594 -0.568 -0.584 -0.583
AlO(NCS) -0.959 -0.708 -0.781 -0.749
AlO(SCN) -0.615 -0.708 -0.545 -0.710
FeSe(CN) 0.466 0.348 0.454 0.376
FeSe(NC) 0.481 0.348 0.414 0.381
Mg(NCO)(NCS) -0.616 -0.365 -0.607 -0.413
Mg(OCN)(NCS) -0.430 -0.365 -0.454 -0.373
Mg(NCO)(SCN) -0.403 -0.365 -0.403 -0.397
Mg(OCN)(SCN) -0.198 -0.365 -0.174 -0.363

10



High

Low

SHAP value (impact on model output)

Dc

MN

c

Trange

ICmax

P

cmin

N
p,V

E
g

s(Dc)

GM(h)

¯

¯

¯

¯

^

^

M

F
e

a
tu

re
 v

a
lu

e

F
e

a
tu

re
s

Dc

MN

c

Trange

ICmax

P

cmin

N
p,V

E
g

s(Dc)

GM(h)

¯

¯

¯

¯

^

^

M

F
e

a
tu

re
s

-1.50 -1.25 -1.00 -0.75 -0.50 -0.25 0.25 0.500.00
SHAP value (Red = positive impact)

0.200.05 0.150.100.00

(a) (b)
0.946

6.254

2.545

0.440

3.003

0.462

2687

1.660

2.752

1.510

13.643

Supplementary Figure 11: (a) SHAP feature importance plot for ∆EML
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Supplementary Figure 15: Test RMSE and R2 values (shown in legends) for ∆Ehull regression corresponding to all ML algorithms.

Supplementary Table 4: Number of training (90% of total data) samples in each class before and after applying oversampling using SMOTE

Hh Hm Hl Mh Mm Ml Lh Lm Ll
Before 103 329 50 139 1372 410 7 206 173
After 103 329 100 139 1372 410 100 206 173
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Supplementary Note 5: Hyperparameter Optimization for Multiclass Classification of Over-
all Stability

The contour plot obtained after Bayesian hyperparameter optimization for the ML(ET) model is shown in Figure 23(a) for three hyperparameters
– maximum depth, minimum weight fraction of leaf, and number of estimators. The regions yielding highest test MCC scores are the ones in
which minimum weight fraction of leaf and number of estimators are less than zero and around 500, respectively, for a wide range of maximum
depth values (10 to 50). The slice plots for all the hyperparameters are shown in Figures 23(b) to 23(f), in which the objective values (test MCC
scores) are shown as a function of the hyperparameter values and number of trials.
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Supplementary Figure 23: (a) Contour plot for the maximum depth, minimum weight fraction of leaf, and number of estimators hyperpa-
rameters utilized in the ML(ET) model corresponding to multiclass classification of overall stability. (b)-(f) Slice plots for the maximum
depth, minimum samples at a leaf node, minimum samples required for splitting, minimum weight fraction of leaf, and number of estimators
hyperparameters for the ML(ET) model. The legend bar shows number of trials.
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Supplementary Figure 24: The ROC-AUC plot obtained for multiclass classification of overall stability using the ML(ET) model.

Supplementary Table 5: Number of correctly predicted samples in each class when optimized by different performance metrics for train data
(90% of total data)

Metric True Hh True Hm True Hl True Mh True Mm True Ml True Lh True Lm True Ll
Accuracy 100 202 52 111 1373 279 7 179 149
Precision 109 233 52 136 1371 317 8 183 158
F1 105 209 53 121 1365 283 8 182 158
MCC 108 237 53 136 1369 351 7 195 162

Supplementary Table 6: Performance metrics for each class predicted by the best ML(ET) model

Metric True Hh True Hm True Hl True Mh True Mm True Ml True Lh True Lm True Ll
Precision 0.69 0.89 0.61 0.65 0.90 0.90 0.54 0.77 0.79
Recall 0.95 0.65 0.96 0.88 0.90 0.77 0.88 0.85 0.84
F1 0.80 0.75 0.75 0.75 0.90 0.83 0.67 0.81 0.82

Supplementary Note 6: SHAP Multioutput Decision Plot
• Both the x-axes represent the model’s output in the form of probabilites.

• The plot is centered on the lower x-axis at the base value of 0.11 (=1/9; equal probability taken initially for each of the nine classes). All
the SHAP values are relative to this expected value.

• The y-axis lists the model’s features. By default, the features are sorted in the descending order of their importance.
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• The prediction of each class for an observation is represented by a colored line. At the top of the plot, each line strikes the x-axis at its
corresponding predicted value. The class with the highest predicted value at the top x-axis is the class to which the ML model classifies
the observation, shown by a dashed line.

• Moving from the bottom of the plot to the top, SHAP values for each feature are added to the model’s base value. This shows how each
feature contributes to the overall prediction.
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Supplementary Figure 25: SHAP multioutput decision plots for (a) Ba(CN)2 and (b) Ba(NC)2 using the ML(ET) model.

Supplementary Note 7: Determination of E in the STH expression
It is assumed that cocatalysts would be needed to overcome the water-splitting overpotentials. Previous reports have shown that the required
overpotentials for OER and HER are below 0.5 V and 0.1 V, respectively, by utilizing several cocatalysts5,6. However, energy loss during
carrier migration between different materials is to be expected, therefore we assumed required overpotentials for OER and HER to be 0.6 and
0.2 V, respectively7. Then the expression for E will be given by:

E “

$

’

’

’

&

’

’

’

%

Eg, p∆EO ě 0.6eV,∆ER ě 0.2eVq

Eg ` 0.6 ´ ∆EO, p∆EO ă 0.6eV,∆ER ě 0.2eVq

Eg ` 0.2 ´ ∆ER, p∆EO ě 0.6eV,∆ER ă 0.2eVq

Eg ` 0.8 ´ ∆EO ´ ∆ER, p∆EO ă 0.6eV,∆ER ă 0.2eVq
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Supplementary Table 7: ηSTH values for 2D materials filtered out from HT-screening

2DO compound EGW
g [eV] ∆ϕ [eV] ∆ER [eV] ∆EO [eV] ηSTH (%)

BiSBr 2.97 0.01 0.14 1.61 2.13
BiSCl 3.13 0.27 1.41 0.49 1.20
BiSeBr 2.46 0.32 0.29 0.93 8.06
BiSeCl 2.58 0.62 0.04 1.31 4.34
BiSeI 2.43 0.16 0.42 0.78 8.61
IrSeOH 2.95 2.58 3.98 0.32 1.15
HfSe2 1.82 0.00 0.10 0.49 17.14
PtSe2 2.22 0.00 0.47 0.52 11.09
ZrSe2 1.85 0.00 0.12 0.50 17.14
PtSeTe 1.82 0.77 0.40 0.19 10.84
RhS(NCO) 3.08 1.20 1.27 0.58 1.63
RhS(OH) 2.88 3.30 4.30 0.65 2.88
PtSSe 2.50 0.69 0.29 0.98 7.39
ZrSSe 2.29 0.05 0.60 0.46 8.75
HfS2 2.92 0.00 0.05 1.64 1.85
PtS2 2.84 0.00 0.20 1.40 3.47
ZrS2 2.89 0.00 0.05 1.61 2.03
BiTeBr 2.43 0.78 0.57 0.63 8.25
ScTeBr 2.89 0.66 1.32 0.34 1.45
IrTeCl 2.90 0.93 1.65 0.02 0.57
BiTeI 2.23 0.36 0.88 0.12 4.66
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Supplementary Table 8: Comparison of PBE and GW band gaps with the experimental band gaps

2DO compound EPBE
g [eV] EGW

g [eV] Eexpt
g [eV]

PtS2 1.71 2.84 1.608

PtSe2 1.31 2.22 2.109

HfS2 1.19 2.92 2.0010

SnS2 1.70 3.04 2.2911
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