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Chemical hardness-driven interpretable machine learning
approach for rapid search of photocatalysts
Ritesh Kumar 1 and Abhishek K. Singh1✉

Strategies combining high-throughput (HT) and machine learning (ML) to accelerate the discovery of promising new materials have
garnered immense attention in recent years. The knowledge of new guiding principles is usually scarce in such studies, essentially
due to the ‘black-box’ nature of the ML models. Therefore, we devised an intuitive method of interpreting such opaque ML models
through SHapley Additive exPlanations (SHAP) values and coupling them with the HT approach for finding efficient 2D water-
splitting photocatalysts. We developed a new database of 3099 2D materials consisting of metals connected to six ligands in an
octahedral geometry, termed as 2DO (octahedral 2D materials) database. The ML models were constructed using a combination of
composition and chemical hardness-based features to gain insights into the thermodynamic and overall stabilities. Most
importantly, it distinguished the target properties of the isocompositional 2DO materials differing in bond connectivities by
combining the advantages of both elemental and structural features. The interpretable ML regression, classification, and data
analysis lead to a new hypothesis that the highly stable 2DO materials follow the HSAB principle. The most stable 2DO materials
were further screened based on suitable band gaps within the visible region and band alignments with respect to standard redox
potentials using the GW method, resulting in 21 potential candidates. Moreover, HfSe2 and ZrSe2 were found to have high solar-to-
hydrogen efficiencies reaching their theoretical limits. The proposed methodology will enable materials scientists and engineers to
formulate predictive models, which will be accurate, physically interpretable, transferable, and computationally tractable.
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INTRODUCTION
Hydrogen is one of the most promising fuels, which can meet the
ever-increasing energy demands. Most of the currently utilized
methods for hydrogen production are not eco-friendly and release
pollutants in various forms. On the other hand, photocatalytic
water splitting is truly considered a ‘green method’ for the
generation of hydrogen. Traditionally, photocatalysts were based
on bulk oxide materials such as TiO2

1. Large band gaps, low
harvesting of visible light, and high tendency for charge
recombination limit their wide-scale applications2. Recently, there
has been a surge in finding various classes of two-dimensional
(2D) materials for various applications including photocatalysis3.
2D materials offer several advantages such as increased active
sites per surface area, enhanced charge separation and transport
over their bulk counterparts2. They also mitigate the viability of
charge carrier recombination by reducing the distance required
for photogenerated electrons and holes for reaching the active
sites. Among 2D materials, transition metal chalcogenides4,5, and
carbon nitrides6,7 have been widely investigated. The other
notable 2D materials to exhibit promising photocatalytic proper-
ties are the 2D layered double hydroxides (LDHs)8,9. These 2D
materials belong to the octahedral symmetry group (Oh) or 1T
phase, in which six hydroxyl ligands (OH−1) are attached to a
metal atom in the octahedral geometry. However, even after
several years of extensive research into finding efficient 2D
photocatalysts, none have surpassed desired limits of hydrogen
generation9. It is primarily due to the fact that both theoretical and
experimental investigations are driven by chemical intuitions.
Manual search for promising materials among the vast chemical
space through computational or experimental means is a very
tedious, time-, and energy-intensive process.

To overcome this challenge, high-throughput (HT) methods
have been developed, which screen materials based on simulta-
neous fulfillment of several physical and chemical properties. This
approach, therefore, narrows down the search space considerably
for the identification of materials with desired properties10–12. HT-
based studies have been successful in the discovery of promising
materials for various applications such as photovoltaics13,
batteries14, and (photo)electrocatalysis10. Another emerging
approach is to utilize machine learning (ML) to uncover the
hidden pattern among existing data and predict desired material
target properties at a nominal cost compared to the conventional
theoretical or experimental methods. The ML methods can
accelerate the identification of new materials. Coupling the HT
approach with ML methods not only accelerates the process of
finding desired materials, but can also unravel the physics of the
underlying process15,16. However, such studies generally do not
identify the reason for key design principles discovered, which do
not advance scientific knowledge beyond simply discovering
promising materials.
Herein, we coupled the interpretable ML (iML) and HT-based

approach to identify stable octahedral 2D (2DO) photocatalysts for
water splitting. The first tier of the HT scheme consisted of
selecting 2DO materials with high thermodynamic and dynamic
stability. The overall stability was decided based on strongly
constrained and appropriately normed (SCAN)-calculated forma-
tion energies and convex hull distances along with elastic stiffness
coefficients and Γ-point phonon calculations. The total computa-
tional time required to perform the relevant DFT calculations
amounted to about three years or 450,000 CPU core hours,
justifying the need for an ML-based study to quickly screen new
stable 2D materials. Hence, highly accurate ML methods, including
mean feature ranking and Bayesian hyperparameter optimization
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were performed to predict formation energies and convex hull
distances and to classify overall stabilities into nine classes. The
chemical hardness-based features, which have hitherto been
unutilized for ML applications in materials science, can achieve
both the accuracy of the elemental features and distinguishability
of the structural features. We found that the 2DO materials with
chemically hard-soft or soft-soft interactions have optimum GW
band gaps, while hard-hard interactions render them unsuitable
for harvesting visible light. The simultaneous fulfillment of suitable
band gaps and band alignments resulted in 21 promising 2DO
photocatalysts. Upon calculating the solar-to-hydrogen efficien-
cies for all the 21 2DO candidates, the highest efficiencies reached
up to ~18% (theoretical limit) for HfSe2 and ZrSe2. Our proposed
approach utilizing elemental and chemical hardness features can
also discover other promising materials for a range of applications.

RESULTS
Database generation
LDHs have been widely employed for electrocatalytic reactions
such as water oxidation17 and have also been extensively utilized
as photoelectrocatalysts18. In the LDH class of materials, metals
can have three oxidation states: +2 (double hydroxide), +3
(oxyhydroxide), and +4 (double oxide) (Supplementary Fig. 1). The
two ligands (or functional groups) have oxidation states of (−1,
−1), (−1, −2), and (−2, −2) in double hydroxides, oxyhydroxides,
and double oxides, respectively. By changing the combination of
metals and ligands, there is a huge possibility of 2D materials (of
the order of ~104). We have generated a new database of 2D
materials, denoted as the 2DO database, which belongs to the 2D
LDH class of materials. The structural analogs of the LDH class of
materials in the 2DO database have been termed as octahedrane
(Fig. 1a), octahedrene (Fig. 1b), and octahedryne (Fig. 1c),
respectively. We have considered the metals, which most
commonly exist in these oxidation states19, shown using the
periodic table in Fig. 1d. Similarly, the choice of ligands was
limited to those having an oxidation state of either −1 or −2 (Fig.
1d). A total of 15, 18, and 16 metals with +2, +3, and +4 oxidation
states, respectively, are included for generating the 2DO database.
Similarly, 13 and 16 ligands with −1 and −2 oxidation states are
employed. Additional constraint of charge neutrality leads to a
total of 3099 2DO materials. The thermodynamic, dynamic and
electronic properties have been calculated for all the 2DO
materials.

Feature generation
In order to establish the structure-property relationship for the
2DO materials, we have generated their features/attributes. The
simplest and the most-widely used elemental features are based
on the composition of a material. The elemental features utilized
in our study are based on Magpie data20, such as electronegativity,
electron affinity, ionization energy. They are denoted by {E} (151
attributes) and were generated using the Matminer package21.
The 2DO materials can also be represented through structural
features such as packing fraction, Voronoi tessellations22, which
were generated using the Catlearn package23. The 335 elemental
and structural attributes are jointly denoted by {E, S}. The
elemental and structural features are described in detail in the
works of Ward et al.20 and Ward et al.22, respectively. Further, we
have also utilized another set of features based on local chemical
hardness to capture the interactions between metals and ligands.
Pearson and Parr defined the chemical hardness as24:

ηS ¼ 1=2
∂2E

∂N2

� �
Z

� 1=2ðIS � ASÞ (1)

where E, N, IS, AS, and Z are the total energy, number of electrons,
ionization energy, electron affinity, and atomic number of the
chemical species, respectively. Here, species refer to the cations
(e.g., Fe+2, Al+3) or ligands (e.g., OH−, O−2) and not the elements
present in a compound (e.g., Fe, Al, O, H). Local chemical hardness
values have been routinely applied to check the stability of
molecules, acid-base adducts, and coordination complexes25,26.
According to the hard and soft acids and bases (HSAB) principle, a
molecule composed of hard (soft) acid and hard (soft) base should
be more stable than that formed by a hard (soft) acid and soft
(hard) base. Here, the phrases ‘hard’ and ‘soft’ are based on the
classification by Pearson, i.e., the chemically hard acids and bases
have ηS values greater than 8.5 and 4.5, respectively. The species
having lower than these ηS values are soft acids and bases27.
Analogous to the case of molecules, it is expected that the
chemical hardness can play an important role in determining the
stability of the 2DO materials. Therefore, we utilized the local
chemical hardness values and their derived arithmetic mean,
geometric mean, and standard deviation as features. The ηS
values, calculated using the experimental ionization energies and
electron affinities of the corresponding species (Eq. (1)), have been
taken from several works by Pearson24,27,28. Accurate IS and AS can
also be calculated by using DFT with large basis sets such as 6-311
++G and cc-pVTZ, leading to the obtained ηS values in good
agreement with the actual values29,30. The geometrical mean of
chemical hardness (GM(η)) and mean difference in the chemical
hardness of metal and ligands (Δη) were evaluated through the
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Fig. 1 The 2DO database. Structural representation of 2DO materials consisting of (a) octahedrane, (b) octahedrene, and (c) octahedryne.
d Periodic table showing Pearson chemical hardness values of all metal cations and ligands (legend bars on the right side) used in the
present study.
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following expressions:

GMðηÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηMηL1ηL2

3
p

(2)

Δη ¼ ðηM � ηL1Þ þ ðηM � ηL2Þ
2

(3)

where ηM, ηL1 , and ηL2 are the Pearson chemical hardness of metal
cation and the two ligands bonded to the metal cation,
respectively. Combining elemental and chemical hardness fea-
tures (Supplementary Table 1) resulted in 162 attributes repre-
sented by {E, η}. Further, the values of ηS for the hard cations or
acids in our database span a wide range (8.5–67.8), while that of
the soft cations and hard (soft) ligands or bases span very narrow
ranges, i.e., 5.5–8.5 and 4.5–7.0 (2.2–4.5), respectively.

ML workflow
For each target properties (ΔEf, ΔEhull, overall stability), we
employed a common methodology for ML as outlined in Fig. 2.
Since the number of features generated is >100 in each of the
feature sets, only the most prominent features have to be selected
to increase the speed of ML algorithms and to prevent overfitting.
For this purpose, mean feature ranking31 have been performed,
for which several types of ML algorithms have been utilized for
measuring scores of all the features. These ML algorithms include
Random Forests (RF), linear regression (or logistic regression for

classification), least absolute shrinkage and selection operator
(LASSO), recursive feature elimination (RFE), and extreme gradient
boosting (XGBoost)32. This approach samples important features
in a better way as each type of ML algorithm measures the
correlation between each feature and the target variable in a
unique manner. The different ways in which each method ranks
the features are described in Supplementary Note 1. All features
could be ranked differently by each algorithm and the features
with the highest mean ranking should be selected. The top 15
features receiving the highest mean scores have been chosen. In
order to ensure that they are not linearly correlated, we calculated
Pearson’s correlation coefficients (p) between any two features
from the list. The p is defined as:

p ¼ cov ðxi; xjÞ
σxiσxj

(4)

where cov(xi, xj) and σxi=j are the covariance of features xi and xj
and standard deviation of the feature xi/j, respectively. From the
pair of features having ∣p∣ >0.80, we selected the feature having a
higher mean score. The selected features have been utilized in the
rest of the ML studies.
After feature engineering, the performance of various ML

algorithms are compared using the PyCaret package33. The
PyCaret evaluates different models using default hyperparameters
(parameters of a model initialized before training) and 10-fold
cross-validation. It sorts their performance according to the
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desired metric such as root-mean-square error (RMSE). After the
selection of the best ML algorithm, their hyperparameters need to
be optimized, since using default values may not lead to optimal
performance. The conventional methods such as random search
or grid search methods are time-consuming and it is usually not
guaranteed that the best hyperparameters have been found
within the search space provided. In order to circumvent this
problem, we utilized Bayesian optimization of hyperparameters
using Tree-structured Parzen Estimator (TPE) algorithm as
implemented in the Optuna package34. The process of Bayesian
hyperparameter optimization has been explained in detail in
Supplementary Note 2. Their optimization process can be
summarized through hyperparameter importance, slice, and
contour plots, which have also been explained in Supplementary
Note 2.
Several accuracy metrics such as coefficient of determination

(R2), RMSE, mean absolute error (MAE), and Mathews correlation
coefficient (MCC) (for classification) were evaluated for the ML
model obtained after hyperparameter optimization over 2000
random trials for train-test split. The ML model corresponding to
the random trial yielding minimum train/test RMSE and maximum
train/test R2 (or MCC score for classification) was selected.
Furthermore, to reveal the effect of each feature on ML-
predicted target values globally and locally, several types of SHAP
plots such as feature importance, dependence, individual, and
multioutput plots were generated using the SHAP package35

(details of SHAP described in Supplementary Note 3).

Formation energy as a criterion for thermodynamic stability
As a first step in the HT screening, we checked the thermodynamic
stability of the 2DO materials. Formation energy (ΔEf) is the metric
that is applied universally to evaluate the thermodynamic stability.

The general expression for calculating ΔEf is:

ΔEf ¼ E2D � EM
n

�
X
i

Eiref (5)

where E2D, EM, n, and Eiref are the total energies of the 2D material,
bulk metal, number of metal atoms in unit cell, and reference
molecules or compounds, respectively. All the structures of the
metals and reference molecules or compounds have been chosen
in their respective standard states. For instance, Eiref for the
octahedrane Ni(OH)2 is the total energies of oxygen and hydrogen
molecules. Generally, the PBE functional along with some
corrections for reference molecules are utilized for calculating
the formation energies36,37. They introduce several ambiguities
and may not be reproducible to a different dataset38. Recently, the
SCAN functional39 under the meta-GGA (MGGA) approximation40

was developed, which has been found to be very accurate for
formation energies, compared to other commonly used func-
tionals41–43. Therefore, the PBE-relaxed structures were further
optimized using the SCAN functional.
The trends in the ΔEf values for 3099 2DO materials are difficult

to be established through simple data analysis. Hence, to gain
insights into the factors governing ΔEf and for accelerating its
prediction, the ML scheme was applied for the prediction of ΔEf as
the target property. Feature ranking, including removal of highly
correlated features, was performed for all the three feature sets.
The best features obtained are shown in Supplementary Figs. 2a,
4a, and Fig. 3a and listed in Supplementary Table 1. Interestingly,
the GM(η) values received the second best mean score, while the
local chemical hardness features were not selected. GM(η) is
equivalent to the global hardness value (i.e., η values correspond-
ing to the material)44,45. We also checked the effect of changing
the number of features on the performance of the ML models
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(Supplementary Table 2). Decreasing the number of features leads
to an underperformed ML model, while no significant changes are
observed on increasing the number of features. Hence, in order to
have a balance in the speed and accuracy of ML models, the
number of features selected from the feature ranking have been
fixed at 15 in the rest of the ML studies.
The selected attributes were employed to check the perfor-

mance of different ML algorithms separately for each feature set
using the PyCaret package. LightGBM (LGBM) emerged as the best
ML algorithm for all feature sets as shown in Supplementary Figs.
3, 5, and 8. LightGBM46 is a gradient boosting framework, which
performs ensemble learning of decision trees, similar to several
other ML methods such as XGBoost and CatBoost. It uses leaf-wise
tree growth while others use depth-wise tree growth. This renders
the leaf-wise gradient boosting algorithm to converge faster than
the depth-wise growth.
After selecting the best algorithm, its hyperparameters were

optimized over 200 random trials with test RMSE as the objective
using the Optuna package. A total of six hyperparameters were
used in the LightGBM models including learning rate, number of
leaves, minimum child samples, bagging fraction, feature fraction,
λL1 , λL2 , and bagging frequency. Each of these hyperparameters
has been explained in detail in Supplementary Note 4. The
learning rate, λL1 , and the number of leaves emerged as best from
the hyperparameter importance plot for the ML(LGBM) model
(Supplementary Fig. 9a). The slice plots for all the six hyperpara-
meters are shown in Supplementary Fig. 9b–i. The contour plot in
Fig. 3b shows that the maximum number of trials yielding the
lowest RMSEs exhibit high learning rate (~0.1) for a wide range of
λL1 (10−4–1) and number of leaves (25–50).
The optimized hyperparameters were used for selecting the

best model in terms of lowest RMSE and highest R2 from 2000
random train-test splits. We compared the performance of the
best ML(LGBM) models built using the three feature sets. The ML
(LGBM)-predicted ΔEf using {E} alone are found to be slightly
superior than using {E, S}, having comparable test RMSEs (0.139
and 0.142 eV atom−1) (Supplementary Fig. 6a and b). It is in
agreement with the previous reports, which show that utilizing
only elemental features is sufficient for predicting ΔEf47,48.
However, the ML models built using only {E} features hit a
roadblock, when applied for predicting target properties of
isocompositional compounds. Such compounds are present in
the 2DO database in the form of 2D linkage isomers such as Cd
(CN)2 and Cd(NC)2, which have same composition (Cd, 2C, and 2N
for both compounds), but the ligands have different connectivities
to metals (through C and N in Cd(CN)2 and Cd(NC)2, respectively).
On comparing the ML(LGBM)-predicted ΔEf using {E} and {E, S} for
the 2DO linkage isomers, it is found that their ΔEML

f ({E}) values are
same (Supplementary Table 3). The {E, S} feature set can clearly
distinguish the ΔEf for such compounds. Therefore, only elemental
features may not be applicable for all types of materials. However,
even the structural features such as δχmin

shell¼1 (minimum electro-
negativity difference in 1st shell neighbors; Supplementary Table
1) are not easy to interpret.
Hence, we used the {E, η} feature set for predicting ΔEf values as

an alternative for the elemental and structural features. This
feature set can also distinguish the ΔEf for the 2DO linkage
isomers. For instance, in the case of linkage isomers AlO(NCS) and
AlO(SCN), the ligands NCS− and SCN− are comparatively harder
and softer, respectively, on account of N being smaller and more
electronegative than S. Therefore, Al+3 (chemically hard) cation
will prefer NCS− over SCN−, and hence has more exothermic ΔEf.
This trend is aptly captured by the {E, η} feature set. Hence, it is
more intuitive than the {E, S} feature set. Moreover, only
connectivity information is needed in {E, η} features, while
complete structural information is necessary for generating the
{E, S} feature set. The ML(LGBM) model utilizing the selected {E, η}
features also performs best when compared to the other two

feature sets. The test RMSE, MAE, and R2 were obtained to be
0.131, 0.099, and 0.979 eV atom−1, respectively (Fig. 3c), which is
comparable to or better than the previously reported accuracy
metrics for ΔEML

f of 2D materials, e.g., Schleder et al. (RMSE=
0.205 eV atom−1)49, and Siriwardane et al. (MAE= 0.083 eV
atom−1)50. Hence, we utilized only {E, η} in the rest of our ML
studies. Further, in order to confirm that the amount of training
sample is sufficient for developing the ML models, learning curves
have been plotted for the ML(LGBM) model with RMSE and R2 as
the performance metrics in Supplementary Fig. 10. It is clear that
both the train and test scores (both RMSE and R2) converge at a
training size of 90%. Therefore, the training size has been fixed at
90% of the total data throughout the manuscript.
Most ML models are ‘black-boxes’, as the input-output

processes are opaque, inhibiting the rationalization of the
underlying physics51. Interpreting such black-box models is
necessary to develop new theories and design principles for
accelerating the discovery of promising materials52. For this
purpose, we utilized SHAP values for both global (feature
importance and dependence plots) and local (individual plots)
interpretability. The feature importance plots for ΔEML

f ({E, η}) are
shown in Supplementary Fig. 11a and b, where Δχ (mean
electronegativity difference) is found to be the most important
feature. Δχ has positive impact (correlation) on the model output
for its lower values and negative impact for its higher values
(Supplementary Fig. 11a). This trend can be confirmed by the
dependence plot for the Δχ feature (Fig. 3d). A SHAP feature
dependence plot shows a variation of the SHAP values of a feature
(e.g., Δχ) against the given and another interacting feature (e.g,
Eg) values, where the color bar indicates interaction between the
two features. The SHAP selects the feature that exhibits maximum
interaction effects with the given feature (i.e., Δχ)53. Therefore, the
dependence of the target variable can be explained in terms of
both the chosen and the interacting features.
According to Fig. 3d, ΔEML

f is almost independent of Δχ for
values up to 1.0, subsequently decreasing monotonically with
respect to the higher values of Δχ and lower values of Eg. It can be
attributed to the ionic character (IC) of a compound varying as a
function of the electronegativity difference according to the
relation:

IC% ¼ 1� e�0:25ðχA�χBÞ2
h i

´ 100 (6)

where χA/B is the electronegativity of the element A or B.
Therefore, increasing electronegativity difference leads to higher
ionicity in the compounds. It is also well known that ionic
compounds are mostly composed of hard acids and hard bases,
thereby leading to higher stability according to the HSAB
principle28. For lower values of Δχ (<1.0), covalent character will
be predominant, which could be due to either soft-soft or hard-
soft type of interactions. It may result in ΔEML

f being independent
of the Δχ in this range. In other words, the Δχ has implicit chemical
hardness behavior. For the case of GM(η), ΔEML

f mostly decreases
from 4 to 5, then increases from 5 to ~6, after which no clear
relationship with GM(η) is observed (Supplementary Fig. 12a).
Therefore, the dependence plot for GM(η) does not seem to follow
any general trend. However, interestingly, most of the 2DO
compounds following a decreasing trend for the GM(η) values of
4–5, have very high values (>3000 K) of the interacting feature
T rangeM (range in melting points). Upon closer inspection, such 2DO
compounds are found to consist of soft ligands like NCO−1,
OCN−1, SCN−1, and NCS−1 and soft metal cations. Therefore, many
2DO materials with GM(η) values up to ~5 have negative SHAP
values, leading to negative impact on the ML output (i.e, lower
ΔEML

f values). Hence, these compounds have exothermic ΔEML
f , on

account of the soft-soft interactions. For higher values, the 2DO
materials are not guaranteed to have only soft-soft or hard-hard
type of interactions, due to the range of ηS for hard cations being
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largest compared to the other type of species. Hence, the negative
SHAP values are observed for only few 2DO materials having GM
(η) in the range of 8–14, indicating possible hard-hard interactions.
The features Δχ and GM(η) can identify the 2DO materials
composed of hard-hard and soft-soft species, respectively, having
the most exothermic ΔEf values. The dependence plots for the
other features χ (mean electronegativity), and ICmax (maximum
ionic character) are shown in Supplementary Figs. 12b and c,
respectively. ΔEML

f shows a inverse dependence on χ up to its
value of 3.0 and a direct dependence thereafter. Since elements
with higher electronegativity also have higher η values, the 2DO
compounds lying in the region of ~3 values of χ are composed of
hard-hard species. Hence, these compounds have the most
exothermic ΔEML

f values, in agreement with the insight obtained
from the discussion on Δχ feature. The trends in the feature
dependence plots of ICmax and Δχ are similar, mainly differing in
the feature values at which the relationships with ΔEML

f change.
ΔEML

f is independent of ICmax for the 2DO compounds with lower
values (<0.2) of ICmax, decreases up to ~0.7, and finally increases. It
may be due to Δχ and IC being interrelated to each other (Eq. (6)).
Furthermore, the individual SHAP plots depicting local inter-

pretability are shown for linkage isomers of the octahedrane Mg
(NCS)(NCO) in Fig. 4. The features such as χmin (minimum
electronegativity), ICmax, P (mean group number), and χ push
the predicted value towards the lower (or left) side of the base
value (mean of the target property over train data), while other
features drive the base value towards its higher (or right) side. For
example, ICmax has overall negative impact on model output and
its value (0.678) for the linkage isomers of Mg(SCN)(OCN) is higher
than its average value over the train data (0.462) (Supplementary
Fig. 11b), hence it pushes the base value towards left. The values
of all features except that of GM(η) are same for all the four
linkage isomers, therefore affect the ΔEML

f ({E, η}) in exactly the
same way. The usage of such elemental features alone cannot

distinguish the target properties of the linkage isomers. Only GM
(η) helps the ML(LGBM) model in differentiating the predicted ΔEf
values for such compounds. For instance, while GM(η) has
negligible effect on ΔEML

f for Mg(NCS)(NCO) (Fig. 4b), it has more
positive impact for Mg(NCS)(OCN) (Fig. 4d) and Mg(SCN)(OCN)
(Fig. 4h), leading to their predicted values being more closer to the
corresponding true ΔEf values (Supplementary Table 3).

Convex hull as a criterion for thermodynamic stability
ΔEf is not the sole criterion for determining the thermodynamic
stability of materials. Convex hull distance (ΔEhull), which is defined
as the decomposition energy of a particular phase into most
stable phases and is equal to the distance from the convex hull
line38, is another metric for evaluating thermodynamic stability.
Considering them together is a more stringent criterion than by
using only formation energies. For instance, a 2D material lying
above the convex hull may decompose into its competing bulk or
other 2D phases even if it has exothermic formation energy. The
convex hull for all the 3099 2DO materials were constructed from
the 1418 most stable bulk phases corresponding to their
elemental compositions, extracted from the Open Quantum
Materials Database (OQMD)54. The ΔEhull values were determined
relative to the energies of competing bulk and 2D materials by
utilizing the Pymatgen55 package. The energies of the bulk
compounds obtained from OQMD were recalculated first using
PBE and then using SCAN functional with same parameters as
used for the 2D materials. The convex hull constructions have
been shown for few binary and ternary compounds in Supple-
mentary Fig. 13. All compounds lying on the convex hull line or at
distances <0.2 eV atom−1 from the line are considered thermo-
dynamically stable.
We applied our ML scheme to these ΔEhull values as the target

property using only {E, η} feature set. The best features selected
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Fig. 4 Local interpretability into ΔEf regression using SHAP. Optimized structures and individual SHAP plots using the ΔEML
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R. Kumar and A.K. Singh

6

npj Computational Materials (2021)   197 Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences



from mean feature ranking after removing highly correlated
features are shown in Supplementary Fig. 14a. Using PyCaret,
LightGBM again emerged as the best algorithm (Supplementary
Fig. 15). The three best hyperparameters obtained using Optuna
are minimum child samples, learning rate, and feature fraction
(Supplementary Fig. 16a). The contour plot for the three
hyperparameters and the slice plots for all hyperparameters are
shown in Supplementary Figs. 16b and 17, respectively.
The regions yielding the lowest RMSEs have become narrower
for the pairs of minimum child samples and feature fraction with
the learning rate. The best ML(LGBM) model was obtained by
optimizing the accuracy metrics for 2000 random train-test splits,
using the obtained hyperparameters. The model achieves a good
accuracy as it has a test MAE, RMSE, and R2 values of 0.066,
0.090 eV atom−1, and 0.896, respectively (Supplementary Fig. 18a).
To the best of our knowledge, there is only one other study
reporting ML-predicted ΔEhull, by Bartel et al. with a best MAE of
0.06 eV atom−1 for bulk materials using the composition-based
features48. However, it is to be noted that the ML(LGBM) model
does not perform very well for the data points having ΔEhull values
>2 eV atom−1. It may be because there are only 13 such data
points compared to 3085 data points existing in the range of
0–1.5 eV atom−1. Nevertheless, the 2DO materials in the higher
ΔEhull value region are very unstable and unlikely to be
synthesized. The only area of interest is between 0 and 0.2 eV
atom−1, where the ML(LGBM) model performs really well. We also
do not find any case in which ΔEhull in the region of >2 eV atom−1

are predicted within the 0–0.2 eV region and vice versa. It
establishes the efficacy of the developed ML model for predicting
ΔEhull.
We calculated the SHAP values to gain insights into the best ML

(LGBM) model. The SHAP feature importance plot shown in Fig. 5
depicts that N̂p;V (average deviation in the number of valence p
electrons) is the most important feature followed by ηmax

L
(maximum chemical hardness of ligand) and ηmin

L (minimum
chemical hardness of ligand). The lower and higher values of N̂p;V
have positive and negative impacts on the ML(LGBM) model,
respectively, which is also verified by its SHAP dependence plot
shown in Supplementary Fig. 19a. Its slope increases up to the N̂p;V
value of 1.0 (hence, ΔEML

hull will also increase), subsequently the
slope starts to decrease. For the case of ηmax

L , most of its lower
values have a significant negative impact on the ML(LGBM) model
and the higher values have a positive impact. The exact opposite
trend is shown by the ηmin

L feature, also captured by their

corresponding dependence plots (Supplementary Figs. 19b and c).
Further, lowest values of ΔEML

hull will occur for the points at which
all the features have highest negative impact on the ML(LGBM)
model. For example, few 2DO materials having N̂p;V values in the
range of 1.80–2.25 lead to very low (<0.1) ΔEML

hull values. The N̂p;V
values of ~2 are obtained for ligands such as OH−1, SH−1, O−2, S−2,
Se−2, F−1, Cl−1, Br−1, and I−1, when they are not attached to p-
block metals. The hard ligands such as OH−1, O−2, F−1, and Cl−1,
when bonded to hard metal cations, yield low ΔEML

hull values.
Similarly, the combination of soft ligands such as SH−1, S−2, Se−2,
Br−1, and I−1 and soft metal cations result in lower convex hull
distances. A few 2DO materials having ηmax

L and ηmin
L values in the

range of 5–7 (hard ligands) or ~4 (soft ligands), also lead to
negative SHAP values, indicating higher thermodynamic stability.
The corresponding interacting features (χ̂ and NU) have high
numerical values in these regions. These findings signify that both
soft and hard ligands lead to lower ΔEhull values when they
interact with soft and hard metal cations, respectively. Further-
more, the individual SHAP plots for the 2DO linkage isomers of Mg
(NCS)(NCO) are shown in Supplementary Fig. 20. It was again
found that only the chemical hardness-based features (ηmax

L and
ηmin
L ) enable the ML(LGBM) model in discerning the target

property (ΔEhull) for these compounds.

Classification of overall stability
A concern with most of the HT studies for identifying photo-
catalysts is that they include only their thermodynamic stabilities
while ignoring dynamic stabilities10,11. The thermodynamic
stability of a 2D material only specifies its energetic preference
with respect to competing bulk and 2D compounds, where all the
structures are considered in their frozen ground states. In
experimental conditions, the atoms do not remain stationary, so
the realizability of the 2D material is affected to a reasonable
extent by its dynamical stability56. Generally, the elastic constants
(Cij) and minimum eigenvalue of dynamical matrix (j~ω2

minj)
determine the dynamic stability of the 2D material. In order to
consider both types of stabilities, we also calculated the elastic
constants and j~ω2

minj for all the 3099 2DO materials. The elastic
constants are evaluated through the stress-strain relationship or
generalized Hooke’s law57:

σ ¼ Cϵ (7)

where ϵ= {ϵ1, ϵ2, ϵ3, ϵ4, ϵ5, ϵ6} are the set of applied strains, σ= {σ1,
σ2, σ3, σ4, σ5, σ6} are the corresponding set of stresses, and C is the
6x6 elastic constant matrix or the stiffness tensor. The internal
routine of VASP was utilized for generating six finite lattice
distortions of 2 × 2 × 1 supercells of the 2DO materials and the
elastic constants were subsequently derived from Eq. (7). The
indices 1, 2, and 3 represent normal or planar strain/stress and the
indices 4, 5, and 6 represent shear strain/stress. For 2D materials,
only the planar strain/stress is to be considered in the x and y
directions for the strain and stress tensors, resulting in three elastic
stiffness coefficients—C11, C22, and C1238. These elastic constants
are then multiplied by the length of the c-axis to represent them
in the units of Nm−1 58. Further, the density functional
perturbation theory (DFPT) was utilized to obtain dynamical
matrices of the 2 × 2 × 1 supercells of all the 2DO materials. The
dynamical matrix was diagonalized at the Γ-point to get
eigenvalues, which is square of the mass-weighted phonon
frequencies (~ω)38. The negative eigenvalues correspond to
imaginary frequencies and hence signify dynamical instability.
The workflow for the interpretable ML regression described in the
preceding sections can be easily extended for Cij and ~ω as the
target properties.
Thygesen et al.38 classified thermodynamic and dynamic

stabilities of 2D materials into high, medium, or low according
to a criterion based on the values of the above four properties as
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Fig. 5 Global interpretability into ΔEhull regression using SHAP.
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shown in Table 1. This criterion classifies the overall stability of 2D
materials into nine classes – Hh, Hm, Hl, Mh, Mm, Ml, Lh, Lm, and
Ll, where uppercase letters denote the thermodynamic stability
and lowercase letters denote dynamic stability and H/h ≡ high, M/
m≡medium, L/l≡ low. The maximum number of 2DO materials
in our database belong to the Mm class (49.21%), while other
classes constitute remaining half of the database, with the Ll
containing only 8 (0.26%) samples. Hence, the octahedral 2D
materials database is highly skewed in terms of the overall stability
classes.
In the previous sections, we established chemical hardness

along with few elemental features to be the key factors deciding
the thermodynamic stability of the 2DO materials. To check if they
also affect the overall stability of the 2DO materials, we performed
ML classification for the above nine classes using the workflow
described earlier. In order to remove inherent bias in the
imbalanced data, the lowest populated classes (Hl and Lh) were
oversampled using the SMOTE method. It leads to a change in the
class population of the train data after oversampling, as shown in
Supplementary Table 4. This data has been subsequently utilized
for choosing the best features from mean feature ranking. The
less-correlated, important features are shown in Supplementary
Fig. 21a, and their Pearson correlation coefficients in Supplemen-
tary Fig. 21b. The suitability of various ML algorithms were
checked for the classification task using the selected features and
the Extra Trees (ET) classifier emerged as the best model
(Supplementary Fig. 22). The ET algorithm performs ensemble-
based bagging of decision trees and is hence similar to the
popular RF algorithm. However, the ET method does not bootstrap
samples (i.e., sampling is done without replacement) and nodes
are split on random rather than the best splits, thus differing from
the RF59. For hyperparameter optimization, the MCC score for test
data was selected as the objective. It led to the final ML(ET) model
correctly classifying all the imbalanced classes better than those
built using other metrics such as accuracy, precision, and F1 score
due to the highest number of true predicted cases (Supplemen-
tary Table 5). The contour, and slice plots for the hyperparameter

optimization corresponding to the MCC score as the objective are
shown in Supplementary Fig. 23 and described in Supplementary
Note 5. The optimized hyperparameters were then used to
maximize the MCC score over 200 random train-test splits and 10
SMOTE trials, leading to the best ML(ET) model. The confusion
matrix and receiver operating characteristic (ROC) curve obtained
from this model are shown in Fig. 6a and Supplementary Fig. 24,
respectively. Further, the individual precision, recall and F1 scores
are shown in Supplementary Table 6. Most of the values for these
metrics are >0.80 for the individual classes, depicting that the final
ML(ET) model is fairly accurate for the imbalanced dataset.
As a next step, the SHAP values were evaluated for the best ML

(ET) model. The feature importance plot, in this case, describes not
only the impact of each feature on the overall model but also on
each class separately as shown in Fig. 6b. T range

M feature affects the
ML(ET) model to the highest extent. Among individual classes, the
largest impact of each feature is on the highest-populated class
Mm. Although the chemical hardness-related features—Δη and
GM(η) have the lowest overall impact on the ML(ET) model, they
exhibit no bias towards any class apart from the Mm class. The
other features are biased towards at least one other class apart
from Mm, e.g., IC (mean ionic character) is more biased towards
Ml and Lm classes. We also performed local interpretability of the
ML(ET) model using SHAP multioutput decision plots (explained in
Supplementary Note 6) for the 2DO linkage isomers Ba(CN)2 and
Ba(NC)2 as an illustration (Supplementary Fig. 25). The octahe-
dranes Ba(CN)2 and Ba(NC)2 belong to the classes Mm and Mh,
respectively, on account of the NC−1 ligand being slightly harder
than the CN−1 ligand. Utilizing only elemental features would
misclassify both compounds to the same class. Therefore, upon
utilizing the ML(ET) model with the selected {E, η} features, it was
found that all classes except Mh and Mm receive zero
probabilities (initial probability for each class= 1/9= 0.11). The
probabilities of classes Mh and Mm received for Ba(CN)2 are 0.48
and 0.52, respectively, and hence it is assigned to the Mm class.
On the other hand, the probabilities of classes Mh and Mm
received for Ba(CN)2 are 0.54 and 0.46, respectively, and hence it is

Table 1. Stability criteria and number of 2D materials belonging to each class of stability.

Dynamic (→) j~ω2
minj< 10−5, Cii > 0 10�5<j~ω2

minj< 2, Cii > 0 j~ω2
minj> 2, Cii < 0

Thermodynamic (↓) (high) (medium) (low)

ΔEf < 0.2, ΔEhull < 0.2 (High) 114 366 55

ΔEf < 0.2, ΔEhull > 0.2 (Medium) 154 1525 456

ΔEf > 0.2, ΔEhull > 0.2 (Low) 8 229 192
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assigned to the Mh class. This is attributed to the contribution of
the chemical hardness-based features Δη and GM(η) to the model
being reversed for the two compounds (Supplementary Fig. 25a
and b).
Finally, the profile of the overall stability of the 2DO materials as

a function of a chemical hardness attribute has been shown using
violin plots in Fig. 6c. The arithmetic mean of the local chemical
hardness values (η) are shown on the y-axis, and the overall
stability classes on the x-axis. The median value for the Hh class is
highest compared to other classes. It decreases from Hh to Hl,
then increases slightly for the Mh class and remains constant for
the medium thermodynamic stability classes, i.e.,Mh,Mm, andMl.
Similarly, the medians of the violin plots remain constant for the
low thermodynamic stability classes, but are lower than that of the
medium thermodynamic classes. In particular, the violin plot for
the Hh class shows two distributions (with high probabilities)
above and below the median value, respectively, which are
highest and lowest compared to that of the other classes. It
depicts that these two distributions correspond to the 2DO
materials composed of hard-hard and soft-soft interactions,
respectively. This observation is in accordance with the HSAB
principle, according to which a compound formed from hard-hard
and soft-soft metal cations and ligands should be more stable
than that from the hard-soft or soft-hard species. Therefore, the
HSAB principle can predict the overall stability of the 2DO
materials to a reasonable extent. Further, the lowering in median
values observed for the classes Hm and Hl can be attributed to
one of the components (metals or ligands) being softer, leading to
a decrease in the dynamic stabilities.

Screening stable 2D photocatalysts
In the preceding sections, we discussed the first and essential
criteria for screening a photocatalyst, i.e., its stability60. We next
analyze the other critical factors related to the electronic structure
of the 2D material, which decide whether it can enable
photocatalysis. The process of photocatalysis usually occurs in
three steps. The first step involves the absorption of light in the
form of photons by the material. The energy of the photon to be
absorbed should correspond to the band gap of the material.
Hence, only semiconductors can act as photocatalysts. The
electrons, upon photon absorption, get excited into the conduc-
tion band, leaving behind the oppositely charged holes in the
valence band. The second step involves the migration of these
photogenerated charge carriers to the active sites. Upon reaching
the active sites, the electrons and holes are utilized in the
reduction and oxidation reactions, respectively. However, the two
reactions can proceed only if the energy of the electron (hole) is
greater (lower) than the standard reduction (oxidation) potential
of the reaction.
Therefore, the fundamental requirements for a photocatalyst is

that it should be highly stable, should have band gap within the
visible region and should satisfy the standard redox potentials of
the the reaction under consideration (water splitting in our case).
The energy gap (or band gap) between the highest occupied and
the lowest unoccupied electronic energy levels is usually defined
in two ways, i.e., optical and fundamental band gaps61. The optical
gap (Eoptg ) of material corresponds to the energy of the lowest
electronic transition, accessible via absorption of a single photon.
The optical band gaps are obtained from the UV–visible
(absorption) spectra using the Tauc method62,63. On the other
hand, the fundamental band gap (Efundg ) is the difference between
ionization energy (I) and electron affinity (A) of the material. The
fundamental band gaps are obtained by a combination of
photoelectron spectroscopy and inverse photoemission spectro-
scopy61. Usually, the fundamental band gaps are larger than the
optical band gaps, i.e., Efundg � Eoptg . The band edges on the other
hand are obtained through electrochemical methods such as the

Mott-Schottky plot64. The band edge values obtained through
such methods lie on the normal hydrogen electrode (NHE) scale.
For obtaining experiment-level accuracy in the band gaps and
band edges through computational methods, the GW approxima-
tion is the most preferred technique65. However, the band gaps
obtained from the GW method correspond to the fundamental
band gaps rather than the optical band gaps. Moreover, the
positions of the band edges obtained from GW, followed by
alignment with the corresponding vacuum levels, lie on the
absolute potential scale. They can be rescaled to the NHE
reference by adding a value of 4.44 eV66.
On the basis of the aforementioned conditions, we proceed

towards second tier of HT screening of the 2DO materials as
water-splitting photocatalysts. Among all the 2DO materials, only
114 compounds belonging to the Hh class were selected for
further studies, as shown in Fig. 7. The PBE band structure
calculations were performed for these compounds, and 37 2DO
materials with PBE band gaps (EPBEg ) in the range of 0.5–2.0 eV
were selected. This criterion was chosen to ensure the 2DO
materials to be optically active in the visible light region,
consistent with previous HT studies on photocatalysis10. Further,
it is expected that the chemical hardness may also have an effect

                 High 
    Thermodynamic & 
              Dynamic
              Stability

     1.65 eV<Eg (GW)
            <3.26 eV;
        VBM & CBM
             aligned

3099 2DO materials

114

37

    21 photocatalysts
(6 nonpolar + 15 polar)

     0.5 eV<Eg (PBE)
            <2.0 eV

Fig. 7 HT workflow. The HT scheme utilized in the current study for
screening stable 2DO photocatalysts. The first tier screened 3099
2DO materials based on their overall stability. The second tier
selected semiconductors from the Hh class having PBE band gaps
between 0.5 and 2.0 eV. The selected 37 2DO materials were finally
screened based on suitable GW band gaps and band alignments.
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on the band gap of the 2DO materials. To verify this, the EPBEg
values of the 2DO semiconductors belonging to the Hh class have
been plotted against the ηS values of all three components (metal
cation and ligands) in Fig. 8a. It is observed that the 2DO materials
composed of both hard cations (ηM> 8.5) and hard ligands (ηL >
4.5) have large band gaps, those with hard-soft interactions have
moderate band gaps, and those with soft-soft interactions have
low band gaps. This finding has been further verified for all the
semiconductors in our database (Supplementary Fig. 26). The
observed trend in band gaps can be attributed to the compounds
formed from hard-hard interactions being predominantly ionic in
nature28, leading to large band gaps. Therefore, the 2DO materials
with soft-soft interactions or hard-soft interactions (where at least
one component should be soft) will invariably result in lower band
gaps, making them suitable candidates for photocatalysis. In
general, the PBE-calculated band gaps are underestimated with
respect to the experimental band gaps. In order to obtain highly
accurate band gaps, the GW calculations were performed. The
2DO materials with the GW band gaps (EGWg ) lying outside the
visible region (1.65–3.26 eV)67 were left out from this subset,
resulting in 29 potential 2DO photocatalysts. All of these 29 2DO
materials are either the octahedrenes or octahedrynes but not the
octahedranes. Again, the reason can be attributed to the
octahedrane materials in the Hh class being composed of either
very hard or very soft metal cations leading to their band gaps
lying outside the visible range.
Apart from the band gap, the other essential requirement for a

material to host photocatalytic properties is that it should also
satisfy the oxidation and reduction potentials of the water-
splitting reaction. In order to find possible water-splitting
photocatalysts among the 29 2DO materials, the positions of
valence band maximas (VBMs) and conduction band minimas
(CBMs) were compared with respect to the standard water
oxidation (EHþ=H2

) and water reduction (EO2=H2O) potentials. Here,
the GW-obtained VBM and CBM values were aligned with respect
to the vacuum levels of the 2DO materials, calculated using the
electrostatic potential method. The values of EHþ=H2

and EO2=H2O at
pH = 0 with respect to the vacuum level are –4.44 and –5.67 eV68,
respectively. We found six nonpolar 2DO materials—HfS2, ZrS2,
PtS2, HfSe2, ZrSe2, and PtSe2, on which both hydrogen evolution
reaction (HER) and oxygen evolution reaction (OER) can take place
(Supplementary Table 7). There are also several 2DO materials, in
which the metal is attached to two different ligands such as BiSeI.
For such 2D materials, vacuum levels corresponding to the top

(001) and bottom (001) surfaces will be inequivalent, leading to an
intrinsic electric field. They are called 2D intrinsically polarized
materials69,70. Their EHþ=H2

and EO2=H2O levels have to be aligned
against the vacuum levels of surfaces on which the conduction
and valence band edges are localized. For instance, the reduction
and oxidation levels for the octahedrene BiSeI will be aligned with
respect to the vacuum levels of (001) and (001) surfaces due to the
localization of CBM and VBM on the respective surfaces (Fig. 8b).
Among the intrinsically polarized 2DO materials, further 15
candidates were found to be suitable for the complete photo-
catalytic water-splitting reaction (Supplementary Table 7). Such
materials facilitate the HER and OER on different surfaces (e.g., HER
on (001) and OER on (001) for BiSeI as shown in Fig. 8b). It leads to
suppressed backward reaction of the evolved H2 and O2 gases60

and charge recombination70.
The photocatalytic activity of the 21 promising candidates can

be compared based on solar efficiency metrics such as applied
bias photon-to-current efficiency (ABPE), incident photon-to-
current efficiency (IPCE), absorbed photon-to-current efficiency
(APCE), and solar-to-hydrogen efficiency (ηSTH)71. Among all the
four metrics, ηSTH is the most vital metric to characterize a
photocatalyst device, while the other metrics represent diagnostic
efficiency measurements. It describes the overall efficiency of the
photocatalyst when no external potential is applied71. It is defined
as the ratio of the generated chemical energy to the input solar
energy. The chemical energy produced equals the H2 production
rate multiplied by the standard Gibbs free energy change per
mole of H2. The input solar energy is the incident illumination
power density multiplied by the electrode surface area, where the
illumination source should closely resemble the shape and
intensity of the Air Mass 1.5 Global (AM1.5G) standard72. The
original definition of ηSTH can be modified to depend on the band
gap and band edges of the photocatalyst, according to the
following expression73:

ηSTH ¼ ΔG
R1
E

Pð_ωÞ
_ω dð_ωÞR1

0 Pð_ωÞdð_ωÞ þ ΔΦ
R1
Eg

Pð_ωÞ
_ω dð_ωÞ (8)

where P(ℏω) is the AM1.5G spectral irradiance of the solar
spectrum as a function of the photon energy ℏω, ΔG is the
standard Gibbs free energy change corresponding to the water
splitting (1.23 eV) reaction, ΔΦ is the difference in vacuum levels of
the two surfaces, and Eg is the band gap of the 2D material. The
term E determines the energy required by photons to drive the
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HER and OER, and its evaluation is described in Supplementary
Note 7. The ηSTH values were calculated for all the 21
photocatalysts screened from the HT scheme using equation (8)
to compare their overall efficiencies. The highest ηSTH values were
obtained for HfSe2 and ZrSe2 (both having ηSTH of 17.14%), which
is comparable to the theoretical limit (~18%) for the photocatalytic
water-splitting reaction73. Furthermore, among the 21 selected
2DO materials, 1T-ZrS2 (ηSTH= 2.03%) and 1T-PtSe2 (ηSTH=
11.09%) have already been synthesized experimentally and
proven to be suitable photocatalysts74–76. This validates our
proposed approach for finding efficient 2D photocatalysts and
establishes ZrSe2 and HfSe2 as the two most promising candidates
for photocatalysis. Creating heterojunctions from the set of 21
2DO photocatalysts to form either type-II7 or Z-scheme photo-
catalysts77 would further increase their intrinsic photocatalytic
efficiencies. Such type of photocatalysts mimic the behavior of 2D
intrinsically polarized materials on different monolayers.

DISCUSSION
In summary, an iML-HT approach is developed towards establish-
ing structure-stability relationships for finding efficient 2D
photocatalysts. A new database called the 2DO database contain-
ing around 3000 octahedral 2D materials is developed based on
2D LDHs. The four physical properties— ΔEf, ΔEhull, Cij, and j~ω2

minj,
which ultimately decide the thermodynamic and dynamic
stability, are calculated for all the 2DO materials using the first-
principles calculations. The factors governing the two fundamen-
tal physical properties (ΔEf and ΔEhull) are revealed through state-
of-the-art ML techniques. The elemental and chemical hardness-
based features help the ML models discerning the prediction of
target properties for the 2DO linkage isomers, establishing their
superiority over the structural features. We also performed ML
multiclass (nine classes) classification of overall stability for the
2DO materials and found it to be reasonably accurate for the
highly imbalanced dataset. Interestingly, we found that the
maximum 2DO materials belonging to the Hh class comprised
of hard-hard and soft-soft interactions. Hence, the stability of the
2DO materials is mainly governed by the HSAB principle, which is
widely applied for molecules and transition metal complexes.
Furthermore, all the highly stable 2DO materials are screened for
their potential applications in photocatalytic water splitting, from
which 21 potential candidates are selected, with the efficiencies of
HfSe2 and ZrSe2 reaching the theoretical limit. The predicted
efficiencies for these compounds are experimentally realizable. It
is due to the existence of few photocatalysts having solar-to-
hydrogen efficiencies close to the theoretical limit of 18%. For
example, Fe2O3, Ta3N5, and TiO2 nanotubes have solar-to-
hydrogen efficiencies of 12.9%72, 15.9%72, and 16.0%78,
respectively.
The predicted PBE and GW band gaps for few 2DO materials are

also compared with the experimentally observed band gaps
(Eexptg ) in Supplementary Table 8. Except for PtSe2, all other E

expt
g

values are optical band gaps, while the GW method measures the
fundamental band gaps. As discussed, the Efundg values are always
greater than the Eoptg values. This effect is more pronounced in the
2D materials, leading to very large exciton binding energies
(difference in Efundg and Eoptg )38,79. Moreover, the calculated GW
band gaps are in excellent agreement with previously reported
values for few known 2DO compounds38,79. Apart from the basic
requirements of suitable band gaps and band edges, a photo-
catalyst should also possess other desirable physical and chemical
properties, such as high charge carrier mobilities for fast charge
migration, large visible light-harvesting for practical applications,
low charge recombination for efficient charge utilization, low
tendency for back reaction and low overpotentials to have high
catalytic activities. These properties can be easily evaluated
through first-principles to verify the efficacy of the proposed 2D

photocatalysts7,60. However, most photocatalysts suffer from high
charge recombination in their bulk form, leading to reduced
photocatalytic activity. The intrinsically polarized 2DO materials in
our database reduces the charge recombination propensity in two
ways—by decreasing the distance required for the photogener-
ated charge carrier to migrate to the active sites due
to nanostructuring, and by helping the electrons and holes to
accumulate at the opposite sides of the materials, leading to
spatial separation. Hence, these 2DO materials are also expected
to have efficient photocatalytic activities. In addition, our HT
scheme can also help in the identification of photocatalysts
suitable for other reactions such as carbon dioxide reduction
reaction (CO2RR)80, nitrogen reduction reaction (NRR)81, and
pollutant degradation2, which require further investigations. There
is also a possibility for the 2DO materials belonging to the Hm
(e.g., Ni(OH)282) and Mh (e.g., Co(OH)283) classes to act as potential
candidates for photo(electro)catalysis. Apart from catalysis, the
2DO materials from our database can also be promising for
applications in spintronics, 2D ferromagnets, quantum computers,
and topological insulators, to name a few. This can be attributed
to the wide range of band gaps from 0 to >5 eV exhibited by these
compounds and the presence of magnetic and heavy atoms.

METHODS
Density functional theory calculations
All the first-principles calculations were performed using density functional
theory (DFT) as implemented in the Vienna ab initio simulation package
(VASP version 5.4.4)84. Electron-ion interactions were described by all
electron projector augmented wave (PAW) pseudopotentials85. A vacuum
of 20 Å was included along the c-direction to prevent interactions among
the periodic images. Both ionic positions and cell shapes of the 2D
structures were optimized using the Perdew-Burke-Ernzerhof (PBE)
functional under generalized gradient approximation (GGA)86. The Brillouin
zone was sampled by a 15 × 15 × 1 Monkhorst-Pack k-point grid. The plane
waves with a kinetic energy cutoff of 500 eV were used in all the
calculations. The relaxation was performed using a conjugate gradient
scheme until the energies and each component of forces were <10−6 eV
and 0.005 eVÅ−1, respectively.

GW calculations
The GW calculations were carried out within many-body perturbation
theory using non-self-consistent GW approximation (G0W0)87 as imple-
mented in the VASP. G0 is the Green’s function of the electrons, and W0
denotes the screened Coulomb interactions. The input parameters utilized
for the G0W0 calculations included 60 frequency grids, 100 empty bands
per atom, 500 eV energy cutoff, and a 11 × 11 × 1 Monkhorst-Pack k-grid.

ML training and post-processing
The ML models were developed to learn pattern among the existing data
({X, y}) by mapping the input attributes ({X} = {x1, x2, . . . , xn}) to the target
property (y) through the hypothesis function (h): yi = h(xi). All the codes
related to ML were built using Scikit-learn (version 0.23) package88 of the
Python (version 3.6) programming language. The complete data was
divided into 90% and 10% for training and testing of the ML models,
respectively. PyCaret (version 2.0) package was used for comparing the
performance of various ML algorithms. For hyperparameter optimization of
the selected ML algorithm, the Optuna (version 2.3.0) package was used.
SHAP (version 0.36.0) package was utilized for interpreting ML models. For
multiclass classification, resampling of imbalanced data was performed
using the Synthetic Minority Oversampling Technique (SMOTE)89 method
as implemented in the imblearn package90.

DATA AVAILABILITY
The data used in developing the ML models are freely available at https://github.
com/ritesh001/HT-iML_Photocatalysis in the form of spreadsheets. All the electronic,
structural, and mechanical properties of 2DO materials utilized in the present study
will be soon uploaded on the aNaNt database91.
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CODE AVAILABILITY
The Jupyter notebooks for reproducing main results in the manuscript is also freely
available at https://github.com/ritesh001/HT-iML_Photocatalysis.
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