
131

Horn-ICE Learning for Synthesizing Invariants and
Contracts

P. EZUDHEEN, Indian Institute of Science, India

DANIEL NEIDER,Max Planck Institute for Software Systems, Germany

DEEPAK D’SOUZA, Indian Institute of Science, India

PRANAV GARG, Amazon India, India

P. MADHUSUDAN, University of Illinois at Urbana-Champaign, USA

We design learning algorithms for synthesizing invariants using Horn implication counterexamples (Horn-

ICE), extending the ICE learning model. In particular, we describe a decision tree learning algorithm that

learns from non-linear Horn-ICE samples, works in polynomial time, and uses statistical heuristics to learn

small trees that satisfy the samples. Since most verification proofs can be modeled using non-linear Horn

clauses, Horn-ICE learning is a more robust technique to learn inductive annotations that prove programs

correct. Our experiments show that an implementation of our algorithm is able to learn adequate inductive

invariants and contracts efficiently for a variety of sequential and concurrent programs.

CCS Concepts: • Theory of computation → Program verification; • Computing methodologies →

Machine learning; Classification and regression trees;

Additional Key Words and Phrases: Software Verification, Constrained Horn Clauses, Decision Trees, ICE

Learning

ACM Reference Format:

P. Ezudheen, Daniel Neider, Deepak D’Souza, Pranav Garg, and P. Madhusudan. 2018. Horn-ICE Learning for

Synthesizing Invariants and Contracts. Proc. ACM Program. Lang. 2, OOPSLA, Article 131 (November 2018),

25 pages. https://doi.org/10.1145/3276501

1 INTRODUCTION

Synthesizing inductive invariants, including loop invariants, pre/post contracts for functions, and
rely-guarantee contracts for concurrent programs, is one of themost important problems in program
verification. In deductive verification, this is often done manually by the verification engineer, and
automating invariant synthesis can significantly reduce the burden of building verified software,
allowing the engineer to focus on the more complex specification and design aspects of the code.
There are several techniques for finding inductive invariants, including abstract interpreta-

tion [Cousot and Cousot 1977], predicate abstraction [Ball et al. 2001], interpolation [Jhala and
McMillan 2006; McMillan 2003], and IC3 [Bradley 2011]. These techniques are typically white-box
techniques that carefully examine the program, evaluating it symbolically or extracting unsatisfiable

Authors’ addresses: P. Ezudheen, CSA Department, Indian Institute of Science, C V Raman Avenue, Bangalore, 560012,

India, ezudheen@gmail.com; Daniel Neider, Max Planck Institute for Software Systems, Paul-Ehrlich-Str. 26, Kaiserslautern,

67663, Germany, neider@mpi-sws.org; Deepak D’Souza, CSA Department, Indian Institute of Science, C V Raman Avenue,

Bangalore, 560012, India, deepakd@iisc.ac.in; Pranav Garg, Amazon India, Bangalore, 560012, India, pranav.garg2107@

gmail.com; P. Madhusudan, Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801,

USA, madhu@cs.uiuc.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2018 Copyright held by the owner/author(s).

2475-1421/2018/11-ART131

https://doi.org/10.1145/3276501

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 131. Publication date: November 2018.

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3276501
https://doi.org/10.1145/3276501

131:2 P. Ezudheen, Daniel Neider, Deepak D’Souza, Pranav Garg, and P. Madhusudan

cores from proofs of unreachability of error states in bounded executions in order to synthesize an
inductive invariant that can prove the program correct.

A new class of black-box techniques based on learning has emerged in recent years to synthesize
inductive invariants [Garg et al. 2014, 2016]. In this technique, there are two distinct agents, the
Learner and the Teacher. In each round the Learner proposes an invariant for the program, and the
Teacher, with access to a verification engine, checks whether the invariant proves the program
correct. If not, it synthesizes concrete counterexamples that witness why the invariant is inadequate
and sends it back to the learner. The learner takes all such samples the teacher has given in all the
rounds to synthesize the next proposal for the invariant. The salient difference in the black-box
approach is that the Learner synthesizes invariants from concrete sample configurations of the
program, and is otherwise oblivious to the program or its semantics.
It is tempting to think that the learner can learn invariants using positively and negatively

labeled configurations, similar to machine learning. However, Garg et al. [2014] argued that we
need a richer notion of samples for robust learning of inductive invariants. Let us recall this simple
argument.
Consider a system with variables ®x , with initial states captured by a predicate Init(®x), and a

transition relation captured by a predicate Trans(®x, ®x ′), and assume we want to prove that the
system does not reach a set of bad/unsafe states captured by the predicate Bad(®x). An inductive
invariant I (®s) that proves this property needs to satisfy the following three constraints:

(1) ∀®x .Init(®x) ⇒ I (®x);
(2) ∀®x . ¬(I (®x) ∧ Bad(®x)); and
(3) ∀®x, ®x ′.I (®x) ∧ Trans(®x, ®x ′) ⇒ I (®x ′).

When a proposed invariant fails to satisfy the first two conditions, the verification engine can
indeed come up with configurations labeled positive and negative to indicate ways to correct the
invariant. However, when the third property above fails, it cannot come up with a single configura-
tion labeled positive/negative; and the most natural counterexample is a pair of configurations c
and c ′, with the instruction to the learner that if I (c) holds, then I (c ′) must also hold. These are
called implication counterexamples and the ICE (Implication Counter-Example) learning framework
developed by Garg et al. [2014] is a robust learning framework for synthesizing invariants. Garg
et al. [2014, 2016] devised several learning algorithms for learning invariants, in particular learning
algorithms based on decision trees that can learn Boolean combinations of Boolean predicates and
inequalities that compare numerical terms to arbitrary thresholds.
Despite the argument above, it turns out that implication counterexamples are not sufficient

for learning invariants in program verification settings. This is because reasoning in program
verification is more stylized, to deal compositionally with the program. In particular, programs with
function calls and/or concurrency are not amenable to the above form of reasoning. In fact, it turns
out that most reasoning in program verification can be expressed in terms of Horn clauses, where
the Horn clauses contain some formulas that need to be synthesized.
For example, consider the imperative program snippet

Ipre(®x,y) S(mod ®x); y := foo(®x); Ipost(®x,y),

which we want to show correct, where S is some straight-line program that modifies ®x , Ipre and
Ipost are some annotation (like the contract of a function we are synthesizing). Assume that we are
synthesizing the contract for foo as well, and assume the post-condition for foo is PostFoo(res, ®x),
where res denotes the result it returns. Then the verification condition that we want to be valid is

(

Ipre(®x,y) ∧ TransS (®x, ®x
′) ∧ PostFoo(y ′, ®x ′)

)

⇒ Ipost(®x
′
,y ′),

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 131. Publication date: November 2018.

Horn-ICE Learning for Synthesizing Invariants and Contracts 131:3

where TransS captures logically the semantics of the snippet S in terms of how it affects the
post-state of ®x .
In the above, all three of the predicates Ipre, Ipost and PostFoo need to be synthesized. When a

learner proposes concrete formulas for these, the verifier checking the above logical formula may
find it to be invalid, and find concrete valuations v ®x ,vy ,v ®x ′,vy′ for ®x,y, ®x

′
,y ′ that makes the above

implication false. However, notice that the above cannot be formulated as a simple implication
constraint. The most natural constraint to return to the learner is

(

Ipre(v ®x ,vy) ∧ PostFoo(vy′,v ®x ′)
)

⇒ Ipost(v ®x ′,vy′),

asking the learner to meet this requirement when coming up with predicates in the future. The
above is best seen as a (non-linear)Horn Implication CounterExample (Horn-ICE). (Plain implication
counterexamples are linear Horn samples.)

The primary goal of this paper is to build Horn-ICE (Horn implication counterexample) learners
for learning predicates that facilitate inductive invariant and contract synthesis that prove safety
properties of programs. It has been observed in the literature that most program verification mech-
anisms can be stated in terms of proof rules that resemble Horn clauses [Grebenshchikov et al.
2012]; in fact, the formalism of constrained Horn clauses (CHC) has emerged as a robust general
mechanism for capturing program verification problems in logic [Gurfinkel et al. 2015]. Conse-
quently, whenever a Horn clause fails, it results in a Horn-ICE sample that can be communicated to
the learner, making Horn-ICE learners a much more general mechanism than ICE for synthesizing
invariants and contracts.
Our main technical contribution is to devise a decision tree-based Horn-ICE algorithm. Given

a set of (Boolean) predicates over configurations of programs and numerical functions that map
configurations to integers, the goal of the learning algorithm is to synthesize predicates that are
arbitrary Boolean combinations of the Boolean predicates and atomic predicates of the form n ≤ c ,
where n denotes a numerical function, and where c is arbitrary. The classical decision tree learning
algorithm by Quinlan [1986] learns such predicates from samples labeled +/− only, and the work
by Garg et al. [2016] extends decision tree learning to learning from ICE samples. In this work, we
extend the latter algorithm to one that learns from Horn-ICE samples.
Extending decision tree learning to handle Horn samples turns out to be non-trivial. When a

decision tree algorithm reaches a node that it decides to make a leaf and label it true, in the ICE
learning setting it can simply propagate the labels across the implication constraints. However,
it turns out that for Horn constraints, this is much harder. Assume there is a single invariant we
are synthesizing and we have a Horn sample (s1 ∧ s2) ⇒ s ′ and we decide to label s ′ false when
building the decision tree. Then we must later turn at least one of s1 and s2 to false. This choice
makes the algorithms and propagation much more complex, and ensuring that the decision tree
algorithm will always construct a correct decision tree (if one exists) and works in polynomial time
becomes much harder. Furthermore, statistical measures based on entropy for choosing attributes
(to split each node) get more complicated as we have to decide on a more complex logical space of
Horn constraints between samples.
The contributions of this paper are the following:

(1) A robust decision tree learning algorithm that learns using Horn implication counterexamples,
runs in polynomial time (in the number of samples) and has a bias towards learning small
trees (expressions) using statistical measures for choosing attributes.

(2) We show that algorithm guarantees that a decision tree consistent with all samples is con-
structed, provided there exists one. An incremental maintenance of Horn constraints during
tree growth followed by an amortized analysis over the construction of the tree gives us an
efficient algorithm.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 131. Publication date: November 2018.

131:4 P. Ezudheen, Daniel Neider, Deepak D’Souza, Pranav Garg, and P. Madhusudan

Teacher

Boogie/Z3

Learner

Horn Solver

Annotated
Boogie program,

SMT formula

Counter-
examples

Horn constraints,
Partial valuation

Sat/Unsat,
Forced points

Data points,
Horn constraints

Conjectured invariants

Program

Fig. 1. Architecture of the Horn-ICE invariant synthesis tool

(3) We show that we can use our learning algorithm to learn over an infinite countable set of
predicates P, and we can ensure learning is complete (i.e., that will find an invariant if one is
expressible using the predicates P).

(4) An implementation of our algorithm and an automated verification tool built with our
algorithm over the Boogie framework for synthesizing invariants. We evaluate our algorithm
for finding loop invariants and summaries for sequential programs and also Rely-Guarantee
contracts in concurrent programs.

The paper is structured as follows. In Sec. 2 we present an overview of Horn-ICE invariant
synthesis; in Sec. 3 we describe the decision tree based algorithm for learning invariant formulas
from Horn-ICE samples; in Sec. 4, we describe the algorithm that propagates the data point
classifications across Horn constraints; we describe the node/attribute selection strategies used in
the decision tree based learning algorithm in Sec. 5 and the experimental evaluation in Sec. 6. We
discuss related work in Sec. 7, and conclude with directions for future work in Sec. 8.

2 OVERVIEW

In this section, we first argue the need for building learners that work with non-linear Horn-ICE
examples and then give an example of how our Horn-ICE invariant synthesis framework works
on a particular example. Fig. 1 shows the main components of our Horn-ICE invariant synthesis
framework. The Teacher has a program specification she would like to verify. Based on the style of
proof, she determines the kind of invariants needed (a name for each invariant, and the set of terms
it may mention) and the corresponding verification conditions (VCs) they must satisfy. The Learner
conjectures a concrete invariant for each invariant name, and communicates these to the Teacher.
The Teacher plugs in these conjectured invariants and asks a verification engine (in this case Boogie,
but we could use any suitable program verifier) to check if the conjectured invariants suffice to
prove the specification. If not, Boogie returns a counterexample showing why the conjectured
invariants do not constitute a valid proof. The Teacher passes these counterexamples to the Learner.
The Learner now learns new invariants that are consistent with the set of counterexamples given
by the Teacher so far. The Learner frequently invokes the Horn Solver to guide it in the process
of building concrete invariants that are consistent with the set of counterexamples given by the
Teacher. The Teacher and Learner go through a number of such rounds, until the Teacher finds
that the invariants supplied by the Learner constitute a valid proof.

2.1 The Need for Nonlinear Horn-ICE Learning

Several authors of this paper were also authors of the original ICE learning framework [Garg et al.
2014]. The present work came about in our realization that implication counterexamples are just
not sufficient. It is now commonly accepted that constrained Horn clauses are the right formulation

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 131. Publication date: November 2018.

Horn-ICE Learning for Synthesizing Invariants and Contracts 131:5

main() {

result = fib(5);

assert (result > 2);

}

int fib(int x) {

if (x < 2) return 1;

else return fib(x-1) + fib(x-2);

}

Fig. 2. A sequential program with a recursive function

for most verification tasks. This includes programs with function calls (that cannot be inlined, say
due to recursion, or due to deep nesting) and concurrent programs. Learning to solve these clauses
gives rise to Horn-implication counterexamples naturally.
It may be tempting to think that vanilla ICE learning (i.e., learning using linear Horn-ICE

samples) is sufficient for learning invariants and contracts for sequential and concurrent programs.
Let us now see why non-linear Horn-ICE learning is necessary by considering the synthesis of
pre/post contracts and inductive invariants for loops in a sequential program with several functions
f1, f2, . . . , fk .
If we were given (say by the user) inductive pre/post contracts for all functions, we can use ICE

learning to synthesize the required loop invariants, and would not need to deal with non-linear
Horn-ICE samples. However, we assume a completely automated verification setting where such
contracts are not given and need to be synthesized as well.
First, notice that a completely bottom-up modular approach for synthesizing contracts is hard.

Consider one of the functions, say foo. Let us even assume that foo is a leaf function that does not
call other functions. It is still hard to figure out what contract to generate for foo without looking
at its clients. There are many trivial contracts (e.g., {true} foo {true}) and some that may be too
trivial for use (e.g., {x > 0} foo {result > 0} may be useless for the client to prove its assertions).
There may be no łmost usefulž contract or, even if it exists, it may be inexpressible in the logic or
too expensive and unnecessary for the program’s verification. The correctness properties being
proved (i.e., the assertions stated across the program) should somehow dictate the granularity of
the contracts.

In our setup, invariants are synthesized simultaneously but verification is modular (i.e., the VCs
are local to a process/function) and the configurations learned from them are local. One can in fact
think of our solution as a simultaneous synthesis of contracts for all functions (in the sequential
program setting), where the synthesis engines communicate and are simultaneously constrained
through Horn clauses.
For example, consider the following program in Fig 2 adapted from one of the SVComp bench-

marks and found in our benchmark suite.
For proving the assertion in main, we do not need the most precise contract for fib. However,

when looking only at fib, it is hard to predict what the client would need of its behavior. The
contract that says fib(x) computes a value greater than or equal to x is sufficient, but is not inductive.
Our tool generates an invariant equivalent to

@pre: x >= 0 ; @post: result >= x && result > 0

which is inductive and proves the program correct. The communication between the client main
and the function fib, and between the contracts in fib itself is what Horn implication constraints
facilitate, allowing fib’s contract to adapt to the client’s needs.

In fact, Horn implications are needed in many other scenarios too, even such as finding inductive
pre/post contracts for a single function that calls itself recursively. For example, take the fib

function in Fig. 2 with the candidate contract @pre: x >= 0 and @post: result >= x. This
contract is not inductive, and an honest teacher (one that does not make arbitrary choices for the
learner) would have to return a counterexample of the form:

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 131. Publication date: November 2018.

131:6 P. Ezudheen, Daniel Neider, Deepak D’Souza, Pranav Garg, and P. Madhusudan

IF pre of fib contains a configuration with x=2 AND post contains a

configuration with (x=0, result=0) and another with (x=1, result=1),

THEN post must contain the configuration (x=2, result=1).

This counterexample takes the form of a non-linear Horn implication counterexample, and cannot
be represented as an ICE counterexample. It relates one configuration in the precondition and two
configurations in the postcondtion, all satisfying the current conjectured contract, to a configuration
in the postcondition that does not satisfy the current contract.

2.2 An Illustrative Example

We now illustrate how our Horn-ICE learning framework works on a concrete example, in this
case a concurrent program for which we want to synthesize Rely-Guarantee contracts.

Fig. 3a shows a concurrent program, adapted from Miné [2014], with two threads T1 and T2 that
access two shared variables x and y. The precondition expresses that initially x = y = 0 holds. The
postcondition asserts that when the two threads terminate, the state satisfies x ≤ y. For the Teacher
to obtain a Rely-Guarantee proof for this program [Jones 1983; Xu et al. 1997], she needs to come up
with invariants associated with the program points P0śP4 inT1 andQ0śQ4 inT2 (as in Floyd-Hoare
proofs of sequential programs), as well as two łtwo-statež invariants G1 and G2, which act as the
łguaranteež on the interferences caused by each thread respectively. Fig. 3b shows a partial list of
the VCs that the invariants need to satisfy, in order to constitute a valid Rely-Guarantee proof of
the program. The VCs are grouped into four categories: łAdequacyž and łInductivenessž are similar
to the requirements for sequential programs, while łGuaranteež requires that the atomic statements
of each thread satisfy its promised guarantee, and łStabilityž requires that the invariants at each
point are stable under interferences from the other thread. We use the notation ł[[x := x+1]]ž
to denote the two-state (or łbefore-afterž) predicate describing the semantics of the statement
łx := x+1ž, which in this case is the predicate x ′ = x + 1 ∧ y ′ = y. The guarantee invariants G1
and G2 are predicates over the variables x,y, x ′,y ′, describing the possible state changes that an
atomic statement in a thread can effect, while P0śP4 and Q0śQ4 are predicates over the variables
x,y. By P0′ we mean the predicate P0 applied to the variables x ′,y ′.

Pre: x = y = 0

T1 || T2

P0 while (*) {

P1 if (x < y)

P2 x := x + 1;

P3 }

P4

Q0 while (*) {

Q1 if (y < 10)

Q2 y := y + 3

Q3 }

Q4

Post: x <= y

(a) The program

Adequacy Inductiveness
1. (x = 0 ∧ y = 0) → P0 1. P0→ P1 ∧ P4
2. P4 ∧Q4→ (x ≤ y) 2. P1 ∧ (x < y) → P2

3. P2 ∧ [[x := x + 1]] → P3′

4. P3→ P0
· · ·

Stability Guarantee
1. P0 ∧G2→ P0′ 1. P2 ∧ [[x := x + 1]] → G1
2. P1 ∧G2→ P1′ 2. Q2 ∧ [[y := y + 3]] → G2

· · ·

(b) The verification conditions

Fig. 3. A concurrent program and corresponding Rely-Guarantee VCs.

The Teacher asks the Learner to synthesize the invariants P0śP4 and Q0śQ4 over the variables
x,y, and G1 and G2 over the variables x,y, x ′,y ′. As a first cut the Learner conjectures łtruež for
all these invariants. The Teacher encodes the VCs in Fig. 3b as annotated procedures in Boogie’s
programming language, plugs in true for each invariant, and asks Boogie if the annotated program
verifies. Boogie comes back saying that the ensures clause corresponding to VC Adequacy-2 may
fail, and gives a counterexample, say ⟨x 7→ 2,y 7→ 1⟩, which satisfies P4 and Q4, but not x ≤ y.
The Teacher returns this counterexample as a Horn sample d1 ∧ d2 → false, where d1 is the data

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 131. Publication date: November 2018.

Horn-ICE Learning for Synthesizing Invariants and Contracts 131:7

True

⟨P0, 0, 0⟩11

⟨G2, 0, 0 − 1, 0⟩10

⟨P2, 0, 0⟩7

⟨G2, 0, 0, 1, 1⟩6

⟨P0, 2, 1⟩3

⟨P4, 2, 1⟩1

⟨Q4, 2, 1⟩2

⟨P1, 0, 0⟩12

⟨P1, −1, 0⟩8

⟨P3, 2, 1⟩4

⟨P0, −1, 0⟩9

⟨P2, 1, 1⟩5

False

(a) Horn constraints given by the Teacher

n1

n2 n3

n4 n5

l = P0

l = G2

3,
9,
11

?

6,
10

+ 1,
2,
4,

.
.
.

?

(b) Corresponding partial decision tree pro-
duced by the learner

Fig. 4. Intermediate results of our framework on the introductory example.

point ⟨P4, 2, 1⟩ and d2 is the data point ⟨Q4, 2, 1⟩. We use the convention that the data points are
vectors in which the first component is the value of a łlocationž variable łlž which takes one of the
values łP0ž, łP1ž, etc, while the second and third components are values of x and y respectively.
This Horn constraint is shown in the bottom of Fig. 4a.

To focus on the technique used by the Learner let us pan to several rounds ahead, where the
Learner has accumulated a set of counterexamples given by the Teacher, shown in Fig. 4a. The
Learner’s goal is simply to find a small (in expression size) invariant φ that is consistent with the
given set of Horn constraints, in that for each Horn constraint of the form d1 ∧ · · · ∧ dk → d ,
whenever each of d1, . . . ,dk satisfy φ, it is the case that d also satisfies φ.

Our Learner uses a decision tree based learning technique. Here the internal nodes of the decision
tree are labeled by the base predicates (or łattributesž) and leaf-nodes are classified as łTruež, łFalsež,
or ł?ž (for łUnclassifiedž, which happens during construction). Each leaf node in a decision tree
represents a logical formula which is the conjunction of the node labels along the path from the
root to the leaf node, and the whole tree represents the disjunction of the formulas corresponding to
the leaf nodes labeled łTruež. The Learner builds a decision tree for a given set of Horn constraints
incrementally, starting from the root node. Each leaf node in the tree has a corresponding subset of
the data-points associated with it, namely the set of points that satisfy the formula associated with
that node. In each step the Learner can choose to mark a node as łTruež, or łFalsež, or to split a
node with a chosen attribute and create two child nodes associated with it.

Before marking a node as łTruež or łFalsež the Learner would like to ensure that the consistency
of the decision tree with respect to the Horn constraints is preserved. For this he calls the Horn
Solver, which reports whether the proposed extension of the partial valuation is indeed consistent
with the given set of Horn constraints, and if so which are the data-points that are łforcedž to be
true or false. For example, let us say the Learner has constructed the partial decision tree shown in
Fig. 4b, where node n4 has already been set to łTruež and nodes n2 and n5 are unclassified. He now
asks the Horn Solver if it is okay for him to turn node n2 łTruež, to which the Horn Solver replies
łYesž since this extended valuation would still be consistent with the set of Horn constraints in
Fig. 4a. The Horn Solver also tells him that the extension would force the data-points d12, d8, d7, d5,
d4, d3, d1 to be true, and the point d2 to false.

The Learner uses this information to go ahead and set n2 to łTruež, and also to make note of
the fact that n5 is now a łmixedž node with some points that are forced to be true (like d1) and

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 131. Publication date: November 2018.

131:8 P. Ezudheen, Daniel Neider, Deepak D’Souza, Pranav Garg, and P. Madhusudan

some false (like d2). Based on this information, the Learner may choose to split node n5 next. After
completing the decision tree, the Learner may send the conjecture in which P0śP4, G1 and G2 are
set to true, and Q1śQ4 are set to false. The Teacher sends back another counterexample to this
conjecture, and the exchanges continue. Finally, our Learner would make a successful conjecture
like: x ≤ y for P0, P1, P3, P4, andQ0śQ4; x < y for P2; y = y ′∧x ′ ≤ y ′ forG1; and x = x ′∧y ≤ y ′

for G2.

3 DECISION TREE LEARNINGWITH HORN CONSTRAINTS

In this section describe our decision-tree based learning algorithm that works in the presence of
non-linear Horn samples. We begin with some preliminary definitions.

3.1 Preliminary Definitions

Valuations and Horn Constraints. We will consider propositional formulas over a fixed set of
propositional variables X , using the usual Boolean connectives ¬, ∧, ∨,→, etc. The data points
we introduce later will also play the role of propositional variables. A valuation for X is a map
v : X → {true, false}. A given formula over X evaluates, in the standard way, to either true or false
under a given valuation. We say a valuation v satisfies a formula φ over X , written v � φ, if φ
evaluates to true under v .

A partial valuation for X is a partial map u : X ⇀ {true, false}. We denote by domtrue(u) the set
{x ∈ X | u(x) = true} and domfalse(u) the set {x ∈ X | u(x) = false}. We say a partial valuation u is
consistent with a formula φ over X , if there exists a full valuation v for X , which extends u (in that
for each x ∈ X , u(x) = v(x) whenever u is defined on x), and v � φ.

Let φ be a formula over X , and u a partial valuation over X which is consistent with φ. We say a
variable x ∈ X is forced to be true by u in φ, if for all valuations v which extend u, whenever v � φ

we have v(x) = true. Similarly we say x is forced to be false by u in φ, if for all valuations v which
extend u, whenever v � φ we have v(x) = false. We denote the set of variables forced true (by u in
φ) by forced-true(φ,u), and those forced false by forced-false(φ,u). For a partial valuation u over X ,
and subsets T and F of X , which are disjoint from each other and from the domain of u, we denote
by uTF the partial valuation extending u by mapping all variables in T to true and all variables in F
to false.
A Horn clause (or a Horn constraint) over X is disjunction of literals over X with at most one

positive literal. Without loss of generality, we will write Horn clauses in one of the three forms:
(1) true→ x , (2) (x1 ∧ · · · ∧ xk) → false, or (3) (x1 ∧ · · · ∧ xl) → y, where l ≥ 1 and each of the xi ’s
and y belong to X . A Horn formula is a conjunction of Horn constraints.

Data Points. Our decision tree learning algorithm is paired with a teacher that refutes incorrect
conjectures with positive data points, negative data points, and, more generally, with Horn con-
straints over data points. Roughly speaking, a data point corresponds to a program configuration
and contains the values of each program variable and potentially values that are derived from the
program variables, such as x + y, x2, or is_list(z). For the sake of a simpler presentation, however,
we assume that a data point is an element d ∈ D of some (potentially infinite) abstract domain
of data points D (we encourage the reader to think of programs over integers where data points
correspond to vectors of integers).

Base Predicates and Decision Trees. The aim of our learning algorithm is to construct a decision tree
representing a Boolean combination of some base predicates. We assume a set of base predicates,
each of which evaluates to true or false on a data point d ∈ D. More precisely, a decision tree is
a finite binary tree T whose nodes either have two children (internal nodes) or no children (leaf
nodes), whose internal nodes are labeled with base predicates, and whose leaf nodes are labeled with

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 131. Publication date: November 2018.

Horn-ICE Learning for Synthesizing Invariants and Contracts 131:9

true or false. The formulaψT corresponding to a decision tree T is defined to be
∨

π ∈Πtrue

(
∧

ρ ∈π ρ
)

where Πtrue is the set of all paths from the root of T to a leaf node labeled true, and ρ ∈ π denotes
that the base predicate ρ occurs as a label of a node on the path π . Given a set of data points X ⊆ D,
a decision tree T induces a valuation vT for X given by vT(d) = true iff d � ψT . Finally, given a
finite set of Horn constraints C over a set of data points X , we say a decision tree T is consistent
with C if vT �

∧

C . We will also deal with łpartialž decision trees, where some of the leaf nodes
are yet unlabeled, and we define a partial valuation uT corresponding to such a tree T , and the
notion of consistency, in the expected way.

Horn Samples. In the traditional setting, the learning algorithm collects the information returned
by the teacher as a set of samples, comprising łpositivež and łnegativež data points. In our case,
the set of samples will take the form of a finite set of Horn constraints C over a finite set of data
points X . We note that a positive point d (resp. a negative point e) can be represented as a Horn
constraint true→ d (resp. e → false). We call such a pair (X ,C) a Horn sample.
In each iteration of the learning process, we require the learning algorithm to construct a

decision tree T that agrees with the information in the current Horn sample S = (X ,C), in that
T is consistent with C . The learning task we address then is łgiven a Horn sample S, construct a
decision tree consistent with Sž.

3.2 The Learning Algorithm

Our learning algorithm, shown in Algorithm 1, is an extension of the algorithm by Garg et al.
[2016], which in turn is based on the classical decision tree learning algorithm of Quinlan [1986].
Given a Horn sample (X ,C), the algorithm creates an initial (partial) decision tree T which has
a single unlabeled node, whose associated set of data points is X . As an auxiliary data structure,
the learning algorithm maintains a partial valuation u, which is always an extension of the partial
valuation induced by the decision tree. In each step, the algorithm picks an unlabeled leaf node
n (using the Select-Node routine which we describe in Sec. 5), and checks if it is łpurež in that
all points in the node are either positive (i.e., true) or unsigned, or similarly neg/unsigned. If so,
it calls the procedure Label which tries to label it positive if all points are positive or unsigned,
or negative if all points are negative or unsigned. To label it positive, the procedure first checks
whether extending the current partial valuation u by making all the unsigned data points in n true
results in a valuation that is consistent with the given set of Horn constraints C . It does this by
calling the classical Horn-Sat procedure of Dowling and Gallier [1984], which checks whether the
proposed extension is consistent with C . If so, we call our procedure Horn-Forced (described in
the next section), which returns the set of points forced to be true and false, respectively. The node
n is labeled true and the partial valuation u is extended with the forced values. If the attempt to
label positive fails, it tries to label the node negative, in a similar way. If both these fail, it łsplitsž
the node using a suitably chosen base predicate a. The corresponding method Select-Attribute,
which (heuristically) aims to obtain a small tree (i.e., a concise formula), is described in Sec. 5.

The crucial property of our learning algorithm is that if the given set of constraintsC is satisfiable
and if the data points in X are łseparablež (as defined below), it will always construct a decision tree
consistent with C . We say that the points in X are separable if for every pair of points d1 and d2 in
X we have a base predicate ρ which distinguishes them (i.e., d1 � ρ iff d2 2 ρ). This result, together
with its time complexity, is formalized in Theorem 3.1. Below, by the size of a Horn formula we
mean the total number of occurrences of literals in it.

Theorem 3.1. Consider an input Horn sample (X ,C) to Algorithm 1. Let n denote |X |, and h the
size ofC . If the set of points X is separable and the Horn constraintsC are satisfiable, then Algorithm 1
runs in time O(h · n) and returns a decision tree that is consistent with the Horn sample (X ,C).

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 131. Publication date: November 2018.

131:10 P. Ezudheen, Daniel Neider, Deepak D’Souza, Pranav Garg, and P. Madhusudan

Algorithm 1 Decision Tree Learner for Horn Samples

1: procedure Decision-Tree-Horn

Input: A Horn sample (X ,C)
Output: A decision tree T consistent with C , if one exists.
2: Initialize tree T with root node r , with r .dat ← X

3: Initialize partial valuation u for X , with u ← ∅
4: while (∃ an unlabeled leaf in T) do
5: n ← Select-Node()
6: result ← false
7: if (pure(n)) then // n.dat ∩ domtrue(u) = ∅ or n.dat ∩ domfalse(u) = ∅
8: result ← Label(n)

9: if (¬pure(n) ∨ ¬result) then
10: if (n.dat is singleton) then
11: print łUnable to construct decision treež; return

12: result ← Split-Node(n)
13: if (¬result) then
14: print łUnable to construct decision treež; return

15: return T // decision tree constructed successfully

1: procedure Label(node n)
2: Y ← n.dat \ dom(u);
3: if (n.dat ∩ domfalse(u) = ∅) then

// n contains only pos/unsigned pts
4: if (Horn-Sat(C,uY

∅
)) then

5: n.label ← true
6: (T , F) ← Horn-Forced(C,uY

∅
)

7: u ← uY∪TF

8: return true

9: if (n.dat ∩ domtrue(u) = ∅) then
// n contains only neg/unsigned pts

10: . . . // try to label neg

11: return false

1: procedure Split-Node(node n)
2: (res,a) ← Select-Attribute(n)
3: if (res) then
4: Create new nodes l and r
5: l .dat ← {d ∈ n.dat | d � a}
6: r .dat ← {d ∈ n.dat | d 2 a}
7: n.left ← l , n.right ← r

8: return true
9: else

10: return false

Proof. At each iteration step, the algorithm maintains the invariant that the partial valuation u
is an extension of the partial valuation uT induced by the current (partial) decision tree T , and
is consistent with C . This is because each labelling step is first checked by a call to the Horn-Sat
algorithm, and subsequently the Horn-Forced procedure correctly identifies the set of forced
variables, which are then used to update u. It follows that if the algorithm terminates successfully
in Line 15, then uT is a full valuation which coincides with u, and hence satisfies C . The only way
the algorithm can terminate unsuccessfully is in Line 11 or Line 14. The first case is ruled out since
if n.dat is singleton, and by assumption uT is consistent withC , we must be able to label the single
data point with either true or false in a way that is consistent with C . The second case is ruled out,
since under the assumption of separability the Select-Attribute procedure will always return a
non-trivial attribute (see Sec. 5).

The learning algorithm (Algorithm 1) can be seen to run in time O(h ·n). To see this, observe that
in each iteration of the loop the algorithm produces a tree that is either the same as the previous

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 131. Publication date: November 2018.

Horn-ICE Learning for Synthesizing Invariants and Contracts 131:11

Algorithm 2 Finding variables forced to True and False

1: procedure Horn-Forced

Input: Horn constraints C over X , partial valuation u over X consistent with C .
Output: forced-true(C,u), forced-false(C,u).
2: Add two new variables True and False to X . Let X ′ = X ∪ {True, False}.
3: C ′ ← C + clauses łtrue → xž for each x such that u(x) = true + clauses łx → falsež for

each x such that u(x) = false.
4: Mark variable True with ł∗ž, and each variable x ∈ X with ł∗xž.
5: repeat

6: For each constraint x1 ∧ · · · ∧ xl → y in C ′:
7: if x1, . . . , xl are all marked ł∗ž then mark y with ł∗ž

8: if ∃z ∈ X s.t. x1, . . . , xl are all marked ł∗zž or ł∗ž then mark y with ł∗zž

9: until no new marks can be added
10: P ← {x ∈ X | x is marked ł ∗ ž}, N ← {x ∈ X | False is marked ł ∗xž}
11: P ′← P − domtrue(u), N

′← N − domfalse(u)
12: return P ′, N ′

step (but with a leaf node labeled), or splits a leaf to extend the previous tree. At each step we
maintain an invariant that the collection of data points in the leaf nodes forms a partition of the
input set X . Thus the number of leaf nodes is bounded by n, and hence each tree has a total of at
most 2n nodes. When the algorithm returns (successfully or unsuccessfully) each node in the final
tree has been processed at most once by calling the labeling/splitting subroutines on it. Furthermore,
the main work in the subroutines is the calls to the Horn-Sat and Horn-Forced procedures. Each
call to Horn-Sat takes O(h) time, and hence the calls to Horn-Sat totally take O(h · n) time. The
calls to Horn-Forced (which is called only for the leaf-nodes), can be seen to take a total of O(h ·n)
time (see Sec. 4). It follows that Algorithm 1 runs in O(h · n) time. �

If the points in X are not separable, we can follow a similar route to that described by Garg et al.
[2016]. For every pair of inseparable points d1 and d2 in X , we add the constraints d1 → d2 and
d2 → d1 to C , to obtain a new set C ′ of Horn constraints. Our decision tree algorithm with input
(X ,C ′) is now guaranteed to construct a decision tree consistent with C if and only if there exists a
valuation describable as a Boolean combination of the base predicates and satisfying C .

Furthermore, we can extend our algorithm to work on an infinite enumerable set of predicates
P, and assure that the algorithm will find an invariant if one exists, as done by Garg et al. [2016].
To this end, we start with a finite setQ ⊂ P, ask whether there is some invariant overQ , and if not
grow Q by taking finitely more predicates from P \Q . It is not hard to verify that this strategy is
guaranteed to converge to an invariant if one is expressible over P.

4 ALGORITHM FOR FINDING FORCED VARIABLES

A crucial step in our decision tree algorithm when we decide to label a node as true or false is to
compute the set of variables forced to be true or false respectively. In this section we describe an
efficient algorithm to carry out this step. Our algorithm is an adaptation of the łpebblingž algorithm
of Dowling and Gallier [1984] for checking satisfiability of Horn formulas, to additionally find the
variables that are forced to be true or false. We begin with a conceptual extension of the pebbling
algorithm in Section 4.1 and describe in Section 4.2 how this algorithm can be implemented more
efficiently.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 131. Publication date: November 2018.

131:12 P. Ezudheen, Daniel Neider, Deepak D’Souza, Pranav Garg, and P. Madhusudan

4.1 An Improved Pebbling Algorithm for Checking Satisfiability of Horn Formulas

ProcedureHorn-Forced in Algorithm 2 shows our procedure for identifying the subset of variables
forced to true or false, by a partial valuation for a set of Horn constraints. Intuitively, the standard
linear-time algorithm for Horn satisfiability by Dowling and Gallier [1984] in fact already identifies
the minimal setM of variables that are forced to be true in any satisfying valuation, and assures
us that the others can be set to false. However, the other variables are not forced to be false. Our
algorithm essentially runs another set of SAT problems where each of the other variables are
set to true; the instance returns SAT if and only if the variable is not forced to be false. In our
algorithm, variable x being set to true is modeled by x being marked ł∗xž, and this instance being
SAT corresponds to the fact that False is not marked ł∗xž after all marks have been propagated. Fig. 5
illustrates Algorithm 2. The final marking computed by the procedure is shown above or below
each variable. Variables set to true in the partial assignment are shown with a ł+ž above/below them.
Variables forced to true (respectively false) are shown with a ł(+)ž (respectively ł(-)ž) above/below
them.

y

x

z

True

b

a

False

∗

∗, ∗y, ∗x(+)

∗, ∗x+

∗, ∗z, ∗x , ∗y

(+)

∗b , ∗a(-)

∗a, ∗b(-)

∗a, ∗b

Fig. 5. Example illustrating Algorithm 2. The given set of Horn constraints is C = {x → y, x ∧ y → z,a →

b,b → a,a ∧ b → False}, and the partial valuation u sets x to true and is undefined elsewhere. The algorithm
outputs the forced-true set P ′ = {y, z} and forced-false set N ′ = {a,b}.

Theorem 4.1. Let (X ,C) be a Horn sample, u be a partial valuation consistent with C . Then
procedure Horn-Forced correctly outputs the set of variables forced true and false respectively by u in
C .

Proof. Let us fix X ,C , and u to be the inputs to the procedure, and let X ′,C ′, P , N , P ′ and N ′ be
as described in the algorithm. It is clear that there exists an extension of u satisfying C if and only
if C ′ is satisfiable. Furthermore, the set of variables forced true by C with respect to u coincides
with those forced true in C ′, less the variables in domtrue(u). A similar claim holds for the variables
forced to false.
We first introduce the notion of pebblings (adapted from Dowling and Gallier [1984]) and state

several straight-forward propositions, from which the theorem will follow. Let x be a variable in
X ′. A C ′-pebbling of (x,m) from True is a sequence of markings (x0,m0), . . . , (xk ,mk), such that
xk = x andmk =m, and each xi andmi satisfy:

• xi ∈ X
′ andmi ∈ {∗} ∪ {∗x | x ∈ X }, and

• one of the following:
ś xi = True andmi = ł ∗ ž, or
ś mi = ł ∗ xi ž, or
ś ∃i1, . . . , il < i such that eachmik = ł ∗ ž, andmi = ł ∗ ž, and xi1 ∧ · · · ∧ xil → xi ∈ C

′, or
ś ∃z ∈ X and ∃i1, . . . , il < i such that each mik = ł ∗ ž or ł∗zž, and mi = ł ∗zž, and
xi1 ∧ · · · ∧ xil → xi ∈ C

′.

A C ′-pebbling is complete if the sequence cannot be extended to add a new mark.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 131. Publication date: November 2018.

Horn-ICE Learning for Synthesizing Invariants and Contracts 131:13

It is easy to see that each time the procedure Horn-Forced marks a variable x with a markm,
the sequence of markings till this point forms a valid C ′-pebbling of (x,m) from True, and the final
sequence of markings produced does indeed constitute a complete pebbling.

Proposition 4.2. Consider a C ′-pebbling of (x, ł ∗ž) from True. Let v be a valuation such that
v � C ′. Then v(x) = true.

Proposition 4.3. Consider a C ′-pebbling of (y, ł ∗ xž) from True. Let v be a valuation such that
v(x) = true and v � C ′. Then v(y) = true.

Proposition 4.4. Consider a complete C ′-pebbling from True, in which False is not marked ł∗ž.
Let v be the valuation given by

v(x) =

{

true if x is marked ł∗ž; and

false otherwise.

Then v � C ′.

Proposition 4.5. Let y ∈ X . Consider a complete C ′-pebbling from True, in which False is not
marked ł∗yž. Let v be the valuation given by

v(x) =

{

true if x is marked ł∗ž or ł∗yž; and

false otherwise.

Then v � C ′.

Given Propositions 4.2 to 4.5, the proof of Theorem 4.1 follows immediately. �

4.2 An Efficient Version of Algorithm Horn-Forced

Algorithm 2 can be made to run in time O(h ·n) where h and n are the sizes ofC and X respectively,
by using an efficient data structure for the propagation of marks. Algorithm 3 shows this efficient
version Horn-Forced-2 of Algorithm 2. We essentially use similar data structures (like marked,
clauses, and count) as the algorithm of Dowling and Gallier [1984], except that we need one such
set for each mark (ł∗ž or ł∗xž where x ∈ X). The propagation of marks proceeds independently,
except for the propagation of the ∗-mark which also impacts the other marks (Line 25).
The algorithm runs in time O(h · n). To see this, observe that each variable x in X is put in

the workset for each markm, at most once. This is because we first check whether marked[m][x]
is true before adding x to WorkSet[m], and once added it is marked. While processing each x in
WorkSet[m] (at Line 17), we do at most O(h) work overall, corresponding to distinct occurrences
of literals in C . While processing an x in WorkSet[∗], we additionally (in Line 25) do O(n) work to
scan the marked entries for ∗y for each y ∈ X . Thus for processing entries in the ∗ workset, we do
O(h) + O(n2) work totally. Thus the total time taken by Alg. 3 is bounded by O(h · n).
A crucial advantage of our algorithm over naive invocations of the Horn-Sat algorithm is that if

we make a series of calls to Horn-Forced in which the set of Horn constraints C is fixed and the
partial valuations u are successive extensions, then the total time taken across this series of calls is
bounded by O(h · n). To see this, observe that if we have two successive calls to Horn-Forced-2

with arguments X ,C,u and X ,C,u ′ respectively, with u ′ an extension of u (i.e., u ′ = uTF for some
T , F ⊆ X), then for the second call to the algorithm we can continue from where the first call
finished. That is, in the second call to the procedure, there is no need to initialize the data structures
in Line 9, and instead in Line 11 we use T instead of domtrue(u

′) and F instead of domfalse(u
′). Thus

the total time taken by the algorithm across the two calls is still bounded by O(h · n). It follows that

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 131. Publication date: November 2018.

131:14 P. Ezudheen, Daniel Neider, Deepak D’Souza, Pranav Garg, and P. Madhusudan

Algorithm 3 An efficient version of Algorithm Horn-Forced

1: procedure Horn-Forced-2

Input: Set C of Horn constraints over X , partial valuation u over X consistent with C . Let |X | = n
and |C | =m.

Output: forced-true(C,u), forced-false(C,u).
2: Add two new variables True and False to X . Let X ′ = X ∪ {True, False}.
3: C ′← C + clauses true→ x for each x such that u(x) = true, and x → false for each x such

that u(x) = false.
4: Bool marked[n + 1][n] // marked arrays
5: Integer count[n + 1][m] // LHS count for each mark for each clause
6: List of Int clauses[n] // clauses[i] is the list of clauses with xi in LHS
7: Int head[m] // head[c] is variable at the head of clause c .
8: Set of VarWorkSet[n + 1] // Workset of variables to process for each mark
9: Initialize data structures;
10: P ← ∅, N ← ∅ // Forced sets
11: for all x ∈ domtrue (u) do
12: if (¬marked[∗][x]) then
13: marked[∗][x] ← true
14: WorkSet[∗] ← WorkSet[∗] ∪ {x}.

15: while (∃ some x in WorkSet[mk] for some markmk) do

16: WorkSet[mk] ← WorkSet[mk] \ {x}
17: for all (c ∈ clauses[x]) do
18: z ← head[c]
19: count[mk][c] ← count[mk][c] − 1
20: if (count[mk][c] = 0) then
21: if (z = False) and (mk is of the form ∗y) then
22: N ← N ∪ {y}
23: else if (¬marked[mk][z]) then
24: WorkSet[mk] ← WorkSet[mk] ∪ {z}

25: if (m = ∗) then
26: P ← P ∪ {z}
27: for all (y ∈ X) do
28: if (¬marked[∗y][x]) then
29: marked[∗y][x] ← true
30: WorkSet[∗y] ← WorkSet[∗y] ∪ {x}

31: P ′← P − domtrue(u), N
′← N − domfalse(u)

32: return P ′, N ′

for a series of such calls to procedure Horn-Forced-2, in which the constraints are fixed and the
partial valuations are successive extensions, the total time taken will be bounded by O(h · n).

In particular the calls made by the decision tree algorithm (Algorithm 1) of Sec. 3 are of this type,
and hence the total time across those calls is bounded by O(h · n).

5 NODE AND ATTRIBUTE SELECTION

The decision tree algorithm in Section 3 returns a consistent tree irrespective of the order in which
nodes of the tree are processed or the heuristic used to choose the best attribute to split nodes

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 131. Publication date: November 2018.

Horn-ICE Learning for Synthesizing Invariants and Contracts 131:15

in the tree. If one is not careful while selecting the next node to process or one ignores the Horn
constraints while choosing the attribute to split the node, seemingly good splits can turn into bad
ones as data points involved in the Horn constraints get classified during the construction of the
tree. We experimented with the following strategies for node and attribute selection:

Node selection: breadth-first-search, depth-first-search, random selection, and selecting nodes
with the maximum/minimum entropy.

Attribute selection: based on a new information gain metric that penalizes node splits that cut
Horn constraints; based on entropy for Horn samples obtained by assigning probabilistic
likelihood values to unlabeled datapoints using model counting.

So as to clutter the paper not too much, we here only describe the best performing combination
of strategies in detail. The experiments reported in Section 6 have been conducted with this
combination.

5.1 Choosing the Next Node to Expand the Decision Tree

We select nodes in a breadth-first search (BFS) order for building the decision tree. BFS ordering
ensures that while learning multiple invariant annotations, the subtree for all invariants gets
constructed simultaneously. In comparison, in depth-first ordering of the nodes, subtrees for the
multiple invariants are constructed one after the other. In this case, learning a simple invariant
for an annotation (e.g., true) usually forces the invariant for a different annotation to become very
complex.

5.2 Choosing Attributes for Splitting Nodes

Similar to Garg et al. [2016], we observed that if one chooses attribute splits based on the entropy
of the node that ignores Horn constraints, the invariant learning algorithm tends to produce large
trees. In the same spirit as Garg et al. [2016], we penalize the information gain for attribute splits
that cut Horn constraints, and choose the attribute with the highest corresponding information gain.
For a sample S = (X ,C) that is split with respect to attribute a into subsamples Sa and S¬a , we say
that the corresponding attribute split cuts a Horn constraintψ ∈ C if and only if (a) x ∈ premise(ψ),
x ∈ Sa , and conclusion(ψ) ∈ S¬a , or (b) x ∈ premise(ψ), x ∈ S¬a , and conclusion(ψ) ∈ Sa . The
penalized information gain is defined as

Gainpen(S, Sa, S¬a) = Gain(S, Sa, S¬a) − Penalty(S, Sa, S¬a,C),

where the penalty is proportional to the number of Horn constraints cut by the attribute split.
However, we do not penalize a split when it cuts a Horn constraint such that the premise of the
constraint is labeled negative and the conclusion is labeled positive. We incorporate this in the
penalty function by formally defining Penalty(S, Sa, S¬a,H) as

∑

ψ ∈H ,x ∈Sa
x ∈premise(ψ)

conclusion(ψ)∈S¬a

(

1 − f (Sa, S¬a)
)

+

∑

ψ ∈H ,x ∈S¬a
x ∈premise(ψ)

conclusion(ψ)∈Sa

(

1 − f (S¬a, Sa)
)

,

where, for subsamples S1 and S2, f (S1, S2) is the likelihood of S1 being labeled negative and S2
being labeled positive (i.e., f (S1, S2) =

N1

P1+N1
.

P2
P2+N2

). Here, Pi and Ni is the number of positive and

negative datapoints respectively in the sample Si .

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 131. Publication date: November 2018.

131:16 P. Ezudheen, Daniel Neider, Deepak D’Souza, Pranav Garg, and P. Madhusudan

6 IMPLEMENTATION AND EXPERIMENTAL EVALUATION

We have implemented two different prototypes to demonstrate the benefits of the proposed learning
framework.1 The first prototype, named Horn-DT-Boogie, builds on top of Microsoft’s program
verifier Boogie [Barnett et al. 2005] and reuses much of the code originally developed by Garg et al.
[2016] for their ICE learning tool. The decision tree learning algorithm and the Horn solver are
our own implementations, consisting of roughly 6000 lines of C++ code. We use Horn-DT-Boogie to
demonstrate the effectiveness of learning correlated invariants that are required for the verification
of recursive and concurrent programs.

The second prototype is named Horn-DT-CHC. Its teacher component is a fresh implementation
consisting of roughly 2500 lines of C++ code, while the decision tree learning algorithm and the
Horn solver are taken from Horn-DT-Boogie. Horn-DT-CHC takes CHCs in the SMTLib2 format as
input and learns a predicate for each uninterpreted function declared. We use Horn-DT-CHC to
evaluate the performance of our learning algorithm as a CHC solver.

Both these prototypes use a predicate template of the form x ±y ≤ c , called octagonal constraints,
where x,y are numeric program variables or non-linear expressions over numeric program variables
and c is a constant determined by the decision tree learner. Moreover, our prototypes use the split
and node selection strategies described in Sec. 5. Finally, both Horn-DT-Boogie and Horn-DT-
CHC employ two additional heuristics: first, both tools initially search for conjunctive invariants
(using Houdini [Flanagan and Leino 2001]) and if this fails, proceed with the decision tree learning
algorithm; second, since we are working over an infinite set of potential predicates (i.e., all predicates
of the form x ± y ≤ c), we slowly increase the number of predicates as sketched in Section 3 to
guarantee convergence to an invariant (if one exists).
We evaluated our prototypes on three benchmark suites:

(1) The first suite consists of 52 recursive programs from the Software Verification Competition
(SV-COMP 2018) [Beyer 2017]. We compared Horn-DT-Boogie on this benchmark suite with
Ultimate Automizer [Heizmann et al. 2013], the winner of the SV-COMP 2018 recursive
programs track.

(2) The second benchmark suite consists of 12 concurrent programs, which includes popular
concurrent protocols such as Peterson’s algorithm and producer-consumer problems. How-
ever, we are not aware of any automated tool for generating Rely-Guarantee proofs [Xu et al.
1997] or Owicki-Gries proofs [Owicki and Gries 1976] with which we could compare with
on these programs.

(3) The third benchmark suite consists of 45 sequential programs without recursion taken
from Dillig et al. [2013]. Our aim here is to evaluate the performance of our technique as
a solver for constraint Horn clauses (CHCs). To this end, we first generated CHCs of the
programs in Dillig et al.’s benchmarks suite using SeaHorn [Gurfinkel et al. 2015]. Then,
we compared Horn-DT-CHC with Z3/PDR [Hoder and Bjùrner 2012], a state-of-the-art CHC
solver. As SeaHorn does currently not handle recursive or concurrent programs, we limited
our comparison to Dillig et al.’s suite of non-recursive sequential programs.

Note that we did not compare our tool with Garg et al. [2016]’s original ICE learning algorithm
as both algorithms can be integrated seemlessly: as long as the Teacher generates linear Horn
clauses, one would use Garg et al.’s simpler algorithm and only switch to our Learner once the first
non-linear Horn clauses is returned by the Teacher. Moreover, note that our tool learns invariants
in a specific template class consisting of arbitrary Boolean combinations of user-specified atomic
inequalities. The other tools do not have such a strict template, though they do of course search for

1The sources are publicly available at https://github.com/horn-ice as well as in the ACM digital library.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 131. Publication date: November 2018.

https://github.com/horn-ice

Horn-ICE Learning for Synthesizing Invariants and Contracts 131:17

invariants in a specific logic. The experimental comparisons, especially when we outperform other
tools, should be considered with this in mind.

The rest of this section presents the three benchmarks suits in detail and discusses our empirical
evaluation. All experiments were conducted on a Intel Core i3-4005U 4x1.70GHz CPU with 4GB of
RAM running Ubuntu 16.04 LTS 64 bit. We used a timeout of 600 s for each benchmark.

6.1 First Benchmark Suite (Recursive Programs)

The first benchmark suite consists of the entire set of łtrue-unreachž (error is unreachable)
recursive programs of the Software Verification Competition (SV-COMP 2018) [Beyer 2017]. This
benchmark suite contains 52 programs, including both terminating and non-terminating programs.
For recursive programs we used a modular verification technique, in the form of function contracts
for each procedure. We run Horn-DT-Boogie on these programs by manually converting them into
Boogie programs. For three of the 52 programs we used non-linear expressions over numerical
variables as ground terms, for rest of the programs we used numerical variables as ground terms.

To assess the performance of Horn-DT-Boogie, we compared it to Ultimate Automizer [Heizmann
et al. 2013], the winner of the SV-COMP 2018 verification competition in the łReachSafety-Recursivež
track (recursive programs with satisfy assertions).

Figure 6 summarizes the results of our experimental evaluation on the recursive benchmark suite,
while Table 1 gives more detailed results. As the left-hand-side of Figure 6 shows, Horn-DT-Boogie
was able to synthesize function contracts and verified 39 programs in the benchmark suite while it
timed out on 13 remaining programs. Out of the 39 programs verified, 16 (41 %) required disjunctive
invariants. Ultimate Automizer, on the other hand, was able to verify 38 programs and timed out on
14 programs. On eleven programs, both tools timed out.

0 20 40

Horn-DT-Boogie

Automizer

52

Number of programs

Verified

Timeout (600 s)
10−1 100 101 102

10−1

100

101

102

TO

TO

Horn-DT-Boogie (time in s)

A
u
to
m
iz
er

(t
im

e
in

s)

Fig. 6. Experimental comparison of Horn-DT-Boogie with Ultimate Automizer on the recursive programs
benchmark suite. TO indicates a time out after 600 s.

Note that larger timeouts (i.e., 1200 s) did not lead to additional programs being verified. On at least
ten programs, the reason for this is that the invariants to synthesize require large constants; in fact,
SV-COMP has several such examples, including provingfib(15) = 610 for a recursive implementation
of fib. However, black-box techniques in generalÐand our learning-based techniques in particularÐ
are less effective in synthesizing formulas involving large constants. A lack of expressiveness
(in terms of richer set of ground terms) does not seem to be the reason for timeouts on these
benchmarks.

The right-hand-side of Figure 6 compares the runtimes ofHorn-DT-Boogie andUltimate Automizer.
Horn-DT-Boogie was able to verify 28 programs very quickly, requiring less than one second each.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 131. Publication date: November 2018.

131:18 P. Ezudheen, Daniel Neider, Deepak D’Souza, Pranav Garg, and P. Madhusudan

Table 1. Experimental results ofHorn-DT-Boogie andUltimate Automizer on the recursive programs benchmark
suite. łRoundsž corresponds to the number of rounds of the learning process. łPosž, łNegž, and łHornž refers
to the number of positive, negative, and Horn examples produced during the learning, respectively. łTOž
indicates a timeout after 600 s. All times are given in seconds.

Benchmark Horn-DT-Boogie Automizer

Rounds Pos Neg Horn Learner time Total time Time

Ackermann01.c 13 2 1 11 0 0.61 17.8
Ackermann03.c TO 38.75
Ackermann04.c 262 2 5 275 24 31.18 19.21
Addition01.c 7 3 1 3 0 0.47 7.47
Addition03.c 7 4 1 2 0 0.49 TO
afterrec_2calls.c 0 0 0 0 0 0.03 99.24
afterrec.c 0 0 0 0 0 0.03 5.81
EvenOdd01.c TO TO
fibo_10.c TO TO
fibo_15.c TO TO
fibo_20.c TO TO
fibo_25.c TO TO
fibo_2calls_10.c TO TO
fibo_2calls_15.c TO TO
fibo_2calls_20.c TO TO
fibo_2calls_25.c TO TO
fibo_2calls_2.c 53 1 4 51 0 1.26 30.7
fibo_2calls_4.c 92 1 3 93 0 2.43 13.88
fibo_2calls_5.c 118 9 14 97 3 3.07 15.93
fibo_2calls_6.c 144 8 17 121 1 4.2 22.27
fibo_2calls_8.c 569 9 22 540 177 196.97 46.61
fibo_5.c 13 1 2 10 0 0.42 11.77
fibo_7.c 147 1 3 143 4 5.88 16.45
Fibonacci01.c 11 2 2 9 0 0.4 9.79
Fibonacci02.c TO 47.26
Fibonacci03.c 372 7 3 363 70 86.63 170.62
gcd01.c 11 3 1 8 0 0.61 13.24
gcd02.c TO TO
id2_b2_o3.c 20 4 2 14 1 0.65 9.19
id2_b3_o5.c 44 5 2 38 0 0.96 10.18
id2_b5_o10.c 71 4 2 66 0 1.36 9.39
id2_i5_o5.c 10 1 1 10 0 0.48 10.09
id_b2_o3.c 11 4 2 5 0 0.39 7.61
id_b3_o5.c 14 4 2 8 0 0.42 6.36
id_b5_o10.c 42 7 2 33 0 0.74 5.72
id_i10_o10.c 6 1 1 4 0 0.32 11.93
id_i15_o15.c 6 1 1 4 0 0.32 27.83
id_i20_o20.c 6 1 1 4 0 0.32 45.92
id_i25_o25.c 6 1 1 4 0 0.32 49.22
id_i5_o5.c 6 1 1 4 0 0.33 9.36
McCarthy91.c 877 14 840 23 79 106.77 7.01
MultCommutative.c 7 4 0 3 0 0.52 TO
Primes.c 74 2 0 83 1 2.63 TO
recHanoi01.c TO TO
recHanoi02.c 5 1 1 3 1 0.32 76.49
recHanoi03.c 5 1 1 3 0 0.31 32.32
sum_10x0.c 4 1 1 3 0 0.34 12.45
sum_15x0.c 4 1 1 3 0 0.35 24.12
sum_20x0.c 4 1 1 3 0 0.36 40.21
sum_25x0.c 4 1 1 3 0 0.35 55.25
sum_2x3.c 4 1 1 2 0 0.35 8.11
sum_non_eq.c 9 4 1 4 0 0.47 9.47

By contrast, on half of the programs (i.e., 26), Ultimate Automizer required more than 10 s to finish.
On benchmarks that both tools successfully verified, Horn-DT-Boogie is about two times faster than
Ultimate Automizer in terms of the total time taken.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 131. Publication date: November 2018.

Horn-ICE Learning for Synthesizing Invariants and Contracts 131:19

Table 2. Results of Horn-DT-Boogie on concurrent programs. The columns show the number of invariants
to be synthesized (łInvž), the total number of terms used (łDimž), the number of iterations (łRoundsž), the
number of counterexamples generated (łPosž, łNegž, and łHornž), and the time taken (łTimež). Benchmarks
with the suffix -RG and -OG indicate Rely-Guarantee-style proofs and Owicki-Gries-style proofs, respectively.

Benchmark Inv Dim Rounds Pos Neg Horn Time (s)

12_hour_clock_serialization 1 3 6 1 1 4 1.05

18_read_write_lock-OG 8 16 18 2 1 15 2.21

fib_bench-OG 6 18 33 2 0 37 1.61

Mine_Fig_1-OG [Miné 2014] 10 20 48 2 0 53 2.85

Mine_Fig_1-RG [Miné 2014] 12 28 49 3 0 62 5.16

Mine_Fig_4-OG [Miné 2014] 13 28 116 3 0 146 28.26

Mine_Fig_4-RG [Miné 2014] 15 44 7 2 0 5 1.11

peterson-OG 8 32 297 3 74 221 23.81

pro_cons_atomic-OG 8 16 32 2 0 30 1.75

pro_cons_queue-OG 8 16 32 2 0 30 1.77

qw2004-OG 13 20 24 2 1 23 2.84

stateful01-OG 6 12 287 2 0 285 13.03

In fact, we find it surprising that our prototype without optimizations is competitive to the best
tool for this track of SV-COMP. We believe that this demonstrates lucidly that template-based
black-box invariant synthesis is a promising and competitive technique for program verification.

6.2 Second Benchmark Suite (Concurrent Programs)

The second benchmark suite consists of 12 concurrent programs obtained from the literature on
concurrent verification, including the work of Miné [2014]. Note that some of these programs use
non-linear expressions over numerical variables as ground terms. Consequently, the annotations
our tool generated were also non-linear.
For concurrent programs, we have used both Rely-Guarantee proof techniques [Xu et al. 1997]

and Owicki-Gries proof techniques [Owicki and Gries 1976] to verify the assertions. All benchmarks
were manually converted into Boogie programs, essentially by encoding the verification conditions
for Rely-Guarantee- and Owicki-Gries-style proof requirements, respectively.
Table 2 shows the results of running Horn-DT-Boogie on these programs. The column łInvž

reports the number of invariants that need to be synthesized in parallel for a particular benchmark.
The column łDimž refers to the learning dimension (i.e., total number of predicates over which
invariants are synthesized).

Verification using Owicki-Gries proof rules requires adequate invariants at each program point
in each thread. In comparison, Rely-Guarantee additionally requires two-state invariants for each
thread for the Rely/Guarantee conditions. These additional invariants make learning for Rely-
Guarantee proofs more difficult. Nonetheless, our tool successfully learned invariants for all of
these programs in reasonable time, with most verification tasks finishing in less than 10 s. Two of
the 12 programs (16.6 %) required disjunctive invariants.

6.3 Third Benchmark Suite (Sequential Programs)

The third benchmark suite consists of 45 sequential programs from Dillig et al. [2013] (we omitted
one program, named 39.c, as the translation to CHCs trivially solves it). These programs vary in
complexity and range from simple integer manipulating programs to programs involving non-linear

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 131. Publication date: November 2018.

131:20 P. Ezudheen, Daniel Neider, Deepak D’Souza, Pranav Garg, and P. Madhusudan

computations. Each program contains at least one loop and at least one assertion. Moreover, some
benchmarks contain nested loops or multiple sequential loops. All of these programs can be proven
correct using invariants that fall into our class of templates.
To evaluate our CHC-based verifier Horn-DT-CHC, we used SeaHorn [Gurfinkel et al. 2015] to

convert the programs of Dillig et al. [2013] into verification conditions in the form of CHCs (which
are output in the SMTLib2 format). This allowed us to compare our technique to the popular Z3/PDR
engine [Hoder and Bjùrner 2012], which is implemented in the Z3 SMT solver [de Moura and
Bjùrner 2008]. However, as SeaHorn is currently unable process recursive and concurrent programs,
our comparison is necessarily limited to sequential programs.
Figure 7 summarizes the results of our experimental evaluation on the sequential programs

benchmark suite, while Table 3 lists the results in more detail. As shown on the left of Figure 7,
Horn-DT-CHC was able to verify 29 programs of the benchmark suite, while it timed out on 16
programs. Out of the 29 programs verified, five (17.24 %) required disjunctive invariants. Z3/PDR,
on the other hand, was able to verify 22 programs and timed out on 23 programs. There were 11
programs on which both tools timed out.

0 20 40

Horn-DT-CHC

PDR

Number of programs

Verified

Timeout (600 s)
10−1 100 101 102

10−1

100

101

102

TO

TO

Horn-DT-CHC (time in s)

P
D
R
(t
im

e
in

s)

Fig. 7. Experimental comparison of Horn-DT-CHC with PDR on the sequential programs benchmark suite.
TO indicates a time out after 600 s.

The right-hand-side of Figure 7 compares the runtimes of Horn-DT-CHC with those of Z3/PDR.
Z3/PDR requires less time overall to verify programs. Horn-DT-CHC, on the other hand verifies
more programs.

6.4 Summary of the Experimental Evaluation

We believe our results show that our extension of decision tree-based ICE learners to Horn-ICE
learners is quite efficient, and favorably compares with state-of-the-art tools for solving non-linear
Horn constraints. Our technique is able to prove a large class of programs correct drawn from a
variety of styles (sequential programs with and without recursion, concurrent programs) that result
in non-linear Horn clauses.

7 RELATED WORK

Invariant synthesis is the central problem in automated program verification and, over the years,
several techniques have been proposed for synthesizing invariants, including abstract interpretation
[Cousot and Cousot 1977], interpolation [Jhala and McMillan 2006; McMillan 2003], IC3 and PDR
[Bradley 2011; Karbyshev et al. 2015], predicate abstraction [Ball et al. 2001], abductive inference
[Dillig et al. 2013], as well as synthesis algorithms that rely on constraint solving [Colón et al.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 131. Publication date: November 2018.

Horn-ICE Learning for Synthesizing Invariants and Contracts 131:21

Table 3. Experimental results of Z3/PDR and Horn-DT-CHC on the sequential programs benchmark suite.
łTOž indicates a timeout after 600 s. All times are given in seconds.

Benchmark Horn-DT-CHC Z3/PDR Benchmark Horn-DT-CHC Z3/PDR

01.c 0.59 0.47 24.c 3.51 0.06

02.c TO 2.64 25.c 1.85 TO

03.c 1.46 0.03 26.c 2.35 TO

04.c 0.48 0.03 27.c 0.71 0.02

05.c 0.69 TO 28.c 0.69 TO

06.c 1.09 TO 29.c 2.65 TO

07.c TO TO 30.c 0.39 TO

08.c 1.12 TO 31.c 3.13 0.11

09.c TO TO 32.c TO TO

10.c 0.59 0.05 33.c TO TO

11.c TO 138.65 34.c 85.21 0.88

12.c TO TO 35.c 0.52 0.03

13.c TO TO 36.c TO TO

14.c 0.85 TO 37.c 0.82 0.06

15.c TO TO 38.c TO TO

16.c 0.83 TO 40.c TO TO

17.c 1.38 0.06 41.c 0.87 0.08

18.c TO 184.39 42.c TO 1.47

19.c 1.3 1.43 43.c 0.95 0.04

20.c TO 0.09 44.c 1.1 TO

21.c 0.85 0.03 45.c 1.87 TO

22.c TO TO 46.c 0.59 0.06

23.c 0.59 0.03

2003; Gulwani et al. 2008; Gupta and Rybalchenko 2009]. Subsequent to Grebenshchikov et al.
[2012], there has been a lot of work towards Horn-clause solving [Beyene et al. 2013; Bjùrner et al.
2013], using a combination of these techniques. For instance, SeaHorn [Gurfinkel et al. 2015] is
a verification framework that translates verification conditions of a program to constraint Horn
clauses that can be solved using several backend solvers.
Complementing these techniques are data-driven invariant synthesis techniques, the first ones

to be proposed being Daikon [Ernst et al. 2000], which learns likely program invariants, and
the popular Houdini algorithm [Flanagan and Leino 2001], which learns conjunctive inductive
invariants. Although Houdini can be seen as an algorithm that learns from Horn samples, it is
fundamentally different from our approach in that it requires a finite set of predicates to be given
by the user. Thus, as all of our benchmarks programs (and their invariants and contracts) involve
numeric variables, we cannot directly apply Houdini, even if an conjunctive invariant exists, without
manually providing a sufficient set of predicates. By contrast, our decision tree learning algorithm
learns Boolean combinations over an infinite set of predicates. These predicates of the form e ≤ c ,
where e is an arithmetic expression over the program variables provided by the user (or an octagoal
constraint of two such expressions) and the value c is automatically inferred by our learning
algorithm.
In fact, data-driven invariant synthesis has seen renewed interest lately [Brockschmidt et al.

2017; Fedyukovich et al. 2017; Garg et al. 2013, 2014, 2016; Nguyen et al. 2012; Padhi et al. 2016;
Pavlinovic et al. 2016; Sharma and Aiken 2014; Sharma et al. 2013b,a, 2012; Zhu et al. 2015, 2016].

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 131. Publication date: November 2018.

131:22 P. Ezudheen, Daniel Neider, Deepak D’Souza, Pranav Garg, and P. Madhusudan

When the program manipulates complex data-structures, arrays, pointers, etc., or when one needs
to reason over a complicated memory model and its semantics, the invariant for the correctness
of the program might still be simple. In such a scenario, a black-box, data-driven guess-and-check
approach, guided by a finite set of program configurations, has been shown to be advantageous.
Recent work by Vizel et al. [2017] shows how IC3 can be viewed as a form of ICE learning.
However, implication counterexamples proposed by Garg et al. [2014] are not sufficient for

learning invariants in general program verification settings. Grebenshchikov et al. [2012] have
shown that most reasoning in program verification is expressed in terms of Horn clauses which are
in general non-linear. In the context of data-driven invariant synthesis, our work generalizes the
ICE learning model by Garg et al. [2014] to non-linear Horn counterexamples, expanding the class
of programs that can be handled by learning from Horn-ICE counterexamples.

We are aware of a concurrently developed work by Champion et al. [2018] that builds a decision
tree learner for Horn samples in the context of finding refinement types for higher-order functional
programs. However, this algorithm is quite different from ours in that it builds different trees
for different annotations, processing one annotation at a time, while our approach builds all the
annotations simultaneously. Moreover, Champion et al.’s algorithm does neither guarantee that a
decision tree will always be constructed if one exists, nor that the learner will eventually converge
to a valid solution when the hypothesis class is infinite, as in our case.

Recent work by Zhu et al. [2018] presents another data-driven solver for constrained Horn clauses
that is also based on learning decision trees. This algorithm has twomain differences to our approach.
First, Zhu et al.’s algorithm generates decision predicates automatically, whereas we operate within
a fixed template class (octagonal constraints over the program variables). Note, however, that
this is not a restriction but a design choice that balances effectiveness with performance: in
fact, our algorithm can easily handle any other user-specified set of decidable predicate. Second,
Zhu et al.’s algorithm operates in the classical machine learning setup with only positively and
negatively labeled data. If a conjucture is found to be non-inductive, additional positive and negative
examples are generated by unwinding the constrained Horn clauses a finite number of times (which
increases during the learning process). However, this approach of generating counterexamples
cannot guarantee to converge to a valid solution (if one exists). This is in stark contrast to our
algorithm, which provides this guarantee.
An experimental comparison of our algorithm with those of Champion et al. [2018] as well as

Zhu et al. [2018] is part of future work.

8 CONCLUSIONS AND FUTURE WORK

We have developed learning-based black-box algorithms for synthesizing invariants for programs
that generate Horn-style proof constraints. We have overcome several challenges in this process
that non-linear Horn constraints bring, giving new and efficient decision tree algorithms that build
small decision trees consistent with samples. Our algorithms come with robustness guarantees that
they will always succeed in building a tree when one exists while working in polynomial time, and
with convergence guarantees that they will find an inductive invariant if one expressible in the
logic exists. We have implemented and evaluated our technique, and shown that our tool favorably
compares with state-of-the-art tools on a large class of benchmarks for several styles of programs
that compile to non-linear Horn constraints.

One avenuewhere black-box learning engines for invariants have been particularly useful is in the
context of programs where checking validity of verification conditions is itself undecidable [Neider
et al. 2018]. It would be interesting to extend our technique to such domains.

Second, we believe that our experimental results suggest that a template-based learning engine
is quite competitive. Building a more competitive tool based on our techniques for the SVComp

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 131. Publication date: November 2018.

Horn-ICE Learning for Synthesizing Invariants and Contracts 131:23

competition is an interesting future direction. We believe choosing a template from a class of
templates based on extracting feaures from a simple static analysis of the program and using priors
gained from the experience of verifying similar programs in the past would make our approach
efficient.

Finally, we would like to apply our invariant synthesis technique for particular practical domains,
where domain-specific templates involving complex atomic predicates can be used to synthesize
invariants (much like GPUVerify [Betts et al. 2012; Chong et al. 2013] does for learning conjunctive
invariants to prove GPU programs race-free).

ACKNOWLEDGMENTS

This material is based upon work supported by the National Science Foundation under Grant
Nos. 1527395 and 1138994.

REFERENCES

Thomas Ball, Rupak Majumdar, Todd D. Millstein, and Sriram K. Rajamani. 2001. Automatic Predicate Abstraction of C

Programs. In PLDI, 2001. 203ś213.

Michael Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs, and K. Rustan M. Leino. 2005. Boogie: A Modular

Reusable Verifier for Object-Oriented Programs. In FMCO 2005 (LNCS), Vol. 4111. Springer, 364ś387.

Adam Betts, Nathan Chong, Alastair F. Donaldson, Shaz Qadeer, and Paul Thomson. 2012. GPUVerify: a verifier for GPU

kernels. In OOPSLA 2012. ACM, 113ś132.

Tewodros A. Beyene, Corneliu Popeea, and Andrey Rybalchenko. 2013. Solving Existentially Quantified Horn Clauses. In

CAV 2013 (LNCS). Springer, 869ś882.

Dirk Beyer. 2017. Software Verification with Validation of Results - (Report on SV-COMP 2017). In TACAS 2017 (LNCS),

Vol. 10206. 331ś349.

Nikolaj Bjùrner, Kenneth L. McMillan, and Andrey Rybalchenko. 2013. On Solving Universally Quantified Horn Clauses. In

SAS 2013. 105ś125.

Aaron R. Bradley. 2011. SAT-Based Model Checking without Unrolling. In VMCAI 2011 (LNCS), Vol. 6538. Springer, 70ś87.

Marc Brockschmidt, Yuxin Chen, Pushmeet Kohli, Siddharth Krishna, and Daniel Tarlow. 2017. Learning Shape Analysis. In

SAS 2017. 66ś87.

Adrien Champion, Tomoya Chiba, Naoki Kobayashi, and Ryosuke Sato. 2018. ICE-Based Refinement Type Discovery

for Higher-Order Functional Programs. In Proc. TACAS 2018, Thessaloniki, Greece, April 14-20, 2018 (LNCS), Vol. 10805.

Springer, 365ś384. https://doi.org/10.1007/978-3-319-89960-2_20

Nathan Chong, Alastair F. Donaldson, Paul H. J. Kelly, Jeroen Ketema, and Shaz Qadeer. 2013. Barrier invariants: a shared

state abstraction for the analysis of data-dependent GPU kernels. In Proc. OOPSLA 2013, Indianapolis, USA, October 26-31,

2013. ACM, 605ś622. https://doi.org/10.1145/2509136.2509517

Michael Colón, Sriram Sankaranarayanan, and Henny Sipma. 2003. Linear Invariant Generation Using Non-linear Constraint

Solving. In CAV 2003 (LNCS), Vol. 2725. Springer, 420ś432.

Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs

by Construction or Approximation of Fixpoints. In POPL 1977. ACM Press, 238ś252.

Leonardo Mendonça de Moura and Nikolaj Bjùrner. 2008. Z3: An Efficient SMT Solver. In TACAS 2008 (LNCS), Vol. 4963.

Springer, 337ś340.

Isil Dillig, Thomas Dillig, Boyang Li, and Kenneth L. McMillan. 2013. Inductive invariant generation via abductive inference.

In Object Oriented Programming Systems Languages & Applications, OOPSLA 2013. 443ś456.

William F. Dowling and Jean H. Gallier. 1984. Linear-Time Algorithms for Testing the Satisfiability of Propositional Horn

Formulae. J. Log. Program. 1, 3 (1984), 267ś284.

Michael D. Ernst, Adam Czeisler, William G. Griswold, and David Notkin. 2000. Quickly detecting relevant program

invariants. In ICSE 2000. ACM Press, 449ś458.

Grigory Fedyukovich, Samuel J Kaufman, and Rastislav Bodik. 2017. Sampling Invariants from Frequency Distributions.

(2017).

Cormac Flanagan and K. Rustan M. Leino. 2001. Houdini, an Annotation Assistant for ESC/Java. In FME 2001 (LNCS),

Vol. 2021. Springer, 500ś517.

Pranav Garg, Christof Löding, P. Madhusudan, and Daniel Neider. 2013. Learning Universally Quantified Invariants of

Linear Data Structures. In CAV 2013 (LNCS), Vol. 8044. Springer, 813ś829.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 131. Publication date: November 2018.

https://doi.org/10.1007/978-3-319-89960-2_20
https://doi.org/10.1145/2509136.2509517

131:24 P. Ezudheen, Daniel Neider, Deepak D’Souza, Pranav Garg, and P. Madhusudan

Pranav Garg, Christof Löding, P. Madhusudan, and Daniel Neider. 2014. ICE: A Robust Framework for Learning Invariants.

In CAV 2014 (LNCS), Vol. 8559. Springer, 69ś87.

Pranav Garg, Daniel Neider, P. Madhusudan, and Dan Roth. 2016. Learning invariants using decision trees and implication

counterexamples. In POPL 2016. ACM, 499ś512.

Sergey Grebenshchikov, Nuno P. Lopes, Corneliu Popeea, and Andrey Rybalchenko. 2012. Synthesizing software verifiers

from proof rules. In PLDI 2012. ACM, 405ś416.

Sumit Gulwani, Saurabh Srivastava, and Ramarathnam Venkatesan. 2008. Program analysis as constraint solving. In PLDI

2008. ACM, 281ś292.

Ashutosh Gupta and Andrey Rybalchenko. 2009. InvGen: An Efficient Invariant Generator. In CAV 2009 (LNCS), Vol. 5643.

Springer, 634ś640.

Arie Gurfinkel, Temesghen Kahsai, Anvesh Komuravelli, and Jorge A. Navas. 2015. The SeaHorn Verification Framework.

In CAV 2015 (LNCS), Vol. 9206. Springer, 343ś361.

Matthias Heizmann, Jürgen Christ, Daniel Dietsch, Evren Ermis, Jochen Hoenicke, Markus Lindenmann, Alexander Nutz,

Christian Schilling, and Andreas Podelski. 2013. Ultimate Automizer with SMTInterpol. In Proceedings of the 19th

International Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS’13). Springer-Verlag,

Berlin, Heidelberg, 641ś643. https://doi.org/10.1007/978-3-642-36742-7_53

Krystof Hoder and Nikolaj Bjùrner. 2012. Generalized Property Directed Reachability. In SAT 2012 (LNCS), Vol. 7317. Springer,

157ś171.

Ranjit Jhala and Kenneth L. McMillan. 2006. A Practical and Complete Approach to Predicate Refinement. In TACAS 2006

(LNCS), Vol. 3920. Springer, 459ś473.

C. B. Jones. 1983. Tentative Steps Toward a Development Method for Interfering Programs. Transactions on Programming

Languages and System 5, 4 (1983), 596ś619.

Aleksandr Karbyshev, Nikolaj Bjùrner, Shachar Itzhaky, Noam Rinetzky, and Sharon Shoham. 2015. Property-Directed

Inference of Universal Invariants or Proving Their Absence. In CAV 2015 (LNCS), Vol. 9206. Springer, 583ś602.

Kenneth L. McMillan. 2003. Interpolation and SAT-Based Model Checking. In CAV 2003 (LNCS), Vol. 2725. Springer, 1ś13.

Antoine Miné. 2014. Relational Thread-Modular Static Value Analysis by Abstract Interpretation. In VMCAI 2014 (LNCS),

Vol. 8318. Springer, 39ś58.

Antoine Miné. 2014. Relational thread-modular static value analysis by abstract interpretation. In International Conference

on Verification, Model Checking, and Abstract Interpretation. Springer, 39ś58.

Daniel Neider, Pranav Garg, P Madhusudan, Shambwaditya Saha, and Daejun Park. 2018. Invariant Synthesis for Incomplete

Verification Engines. In International Conference on Tools and Algorithms for the Construction and Analysis of Systems.

Springer, 232ś250.

ThanhVu Nguyen, Deepak Kapur, Westley Weimer, and Stephanie Forrest. 2012. Using dynamic analysis to discover

polynomial and array invariants. In ICSE 2012. IEEE, 683ś693.

Susan Owicki and David Gries. 1976. Verifying properties of parallel programs: An axiomatic approach. Commun. ACM 19,

5 (1976), 279ś285.

Saswat Padhi, Rahul Sharma, and Todd D. Millstein. 2016. Data-driven precondition inference with learned features. In

Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2016.

42ś56.

Zvonimir Pavlinovic, Akash Lal, and Rahul Sharma. 2016. Inferring annotations for device drivers from verification histories.

In Proceedings of the 31st IEEE/ACM International Conference on Automated Software Engineering, ASE 2016. 450ś460.

J. Ross Quinlan. 1986. Induction of Decision Trees. Machine Learning 1, 1 (1986), 81ś106.

Rahul Sharma and Alex Aiken. 2014. From Invariant Checking to Invariant Inference Using Randomized Search. In CAV

2014 (LNCS), Vol. 8559. Springer, 88ś105.

Rahul Sharma, Saurabh Gupta, Bharath Hariharan, Alex Aiken, Percy Liang, and Aditya V. Nori. 2013b. A Data Driven

Approach for Algebraic Loop Invariants. In ESOP 2013 (LNCS), Vol. 7792. Springer, 574ś592.

Rahul Sharma, Saurabh Gupta, Bharath Hariharan, Alex Aiken, and Aditya V. Nori. 2013a. Verification as Learning Geometric

Concepts. In SAS 2013 (LNCS), Vol. 7935. 388ś411.

Rahul Sharma, Aditya V. Nori, and Alex Aiken. 2012. Interpolants as Classifiers. In CAV 2012 (LNCS), Vol. 7358. Springer,

71ś87.

Yakir Vizel, Arie Gurfinkel, Sharon Shoham, and Sharad Malik. 2017. IC3 - Flipping the E in ICE. In VMCAI 2017 (LNCS),

Vol. 10145. Springer, 521ś538. https://doi.org/10.1007/978-3-319-52234-0_28

Qiwen Xu, Willem P. de Roever, and Jifeng He. 1997. The Rely-Guarantee Method for Verifying Shared Variable Concurrent

Programs. Formal Asp. Comput. 9, 2 (1997), 149ś174.

He Zhu, Stephen Magill, and Suresh Jagannathan. 2018. A data-driven CHC solver. In Proceedings of the 39th ACM SIGPLAN

Conference on Programming Language Design and Implementation, PLDI 2018, Philadelphia, PA, USA, June 18-22, 2018.

ACM, 707ś721. https://doi.org/10.1145/3192366.3192416

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 131. Publication date: November 2018.

https://doi.org/10.1007/978-3-642-36742-7_53
https://doi.org/10.1007/978-3-319-52234-0_28
https://doi.org/10.1145/3192366.3192416

Horn-ICE Learning for Synthesizing Invariants and Contracts 131:25

He Zhu, Aditya V. Nori, and Suresh Jagannathan. 2015. Learning Refinement Types. In ICFP 2015. ACM, 400ś411.

He Zhu, Gustavo Petri, and Suresh Jagannathan. 2016. Automatically Learning Shape Specifications. In PLDI (2016). ACM,

New York, NY, USA, 491ś507. https://doi.org/10.1145/2908080.2908125

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 131. Publication date: November 2018.

https://doi.org/10.1145/2908080.2908125

	Abstract
	1 Introduction
	2 Overview
	2.1 The Need for Nonlinear Horn-ICE Learning
	2.2 An Illustrative Example

	3 Decision Tree Learning with Horn Constraints
	3.1 Preliminary Definitions
	3.2 The Learning Algorithm

	4 Algorithm for Finding Forced Variables
	4.1 An Improved Pebbling Algorithm for Checking Satisfiability of Horn Formulas
	4.2 An Efficient Version of Algorithm Horn-Forced

	5 Node and Attribute Selection
	5.1 Choosing the Next Node to Expand the Decision Tree
	5.2 Choosing Attributes for Splitting Nodes

	6 Implementation and Experimental Evaluation
	6.1 First Benchmark Suite (Recursive Programs)
	6.2 Second Benchmark Suite (Concurrent Programs)
	6.3 Third Benchmark Suite (Sequential Programs)
	6.4 Summary of the Experimental Evaluation

	7 Related Work
	8 Conclusions and Future Work
	Acknowledgments
	References

