Novel and Polynuclear K- and Na-Based Superalkali Hydroxides as Superbases Better than Li-Related Species and Their Enhanced Properties: From *ab Initio* Exploration

Sarvesh Kumar Pandey*

Department of Inorganic and Physical Chemistry, Indian Institute of Science Bangalore,

Bangalore – 560 012, India

Corresponding Author E-mail:

S. K. Pandey: sarveshp@iisc.ac.in

Species		O-H				
	M (ring)	Qo of O-H	Q _H of O-H	Qx	Qм	(stretching)
					(terminal)	(in cm^{-1})
КОН	0.985	-1.413	0.428	—	-	3961.4
$\mathrm{KOH_2^+}$	0.998	-0.972	0.486	_	_	sym: 3854.3
						asym: 3946.8
FK ₂ OH	0.976	-1.402	0.423	F(-0.973)	_	3934.4
$FK_2OH_2^+$	0.988	-0.933	0.468	F (-0.979)	-	sym: 3848.2
-						asym: 3949.8
OK ₃ OH	0.955	-1.389	0.416	O (-1.89)	0.952	3934
$OK_3OH_2^+$	0.958	-0.938	0.471	O (-1.883)	0.963	sym: 3849.6
						asym: 3950.9
NK ₄ OH	0.903	-1.388	0.397	N (-3.675)	0.884	3940
NK ₄ OH ₂ ⁺	0.872	-0.94	0.471	N (-2.424)	0.839	sym: 3833.6
						asym: 3939.2
NaOH	0.984	-1.419	0.436	_	-	4012.5
NaOH ₂ ⁺	0.993	-0.986	0.496	-	-	sym: 3855.3
						asym: 3945.4
FNa ₂ OH	0.967	-1.403	0.435	F (-0.967)	_	3969.8
FNa ₂ OH ₂ ⁺	0.969	-0.95	0.478	F (-0.945)	-	sym: 3833
						asym: 3927.2
ONa ₃ OH	0.947	-1.383	0.428	O (-1.903)	0.964	3967
ONa ₃ OH ₂ ⁺	0.956	-0.941	0.48	O (-1.902)	0.97	sym: 3876.8
						asym: 3926.3
NNa4OH	0.927	-1.369	0.425	N (-2.55)	0.821	3958
NNa ₄ OH ₂ ⁺	0.901	-0.936	0.479	N (-2.582)	0.879	sym: 3881.7
						asym: 3918.2
LiOH	0.96	-1.407	0.445	_	_	4049.8
$LiOH_2^+$	0.99	(-1.016	0.513	-	-	sym: 3833.3
						asym: 3918.4
FLi ₂ OH	0.91	-1.368	0.459	F (-0.912)	_	4016.8
FLi ₂ OH ₂ ⁺	0.974	(-0.984	0.497	F (-0.959)	-	sym: 3803.7
						asym: 3892.5
OLi ₃ OH	0.871	-1.34	0.45	O (-1.767)	0.915	4009.2
OLi ₃ OH ₂ ⁺	0.949	(-0.972	0.495	O (-1.886)	0.969	sym: 3811.1
	0.04-		0.116		0.045	asym: 3905.7
NLi ₄ OH	0.817	-1.317	0.448	N (-2.454)	0.845	3996
NLi ₄ OH ₂ ⁺	0.915	(-0.963	0.493	N (-2.723)	0.935	sym: 3805.1
						asym: 3904.9

Table **S1**. Natural Charges and O-H Stretching Frequencies of the Neutral Superalkali $XM_{n+1}OH$ and $XM_{n+1}OH_2^+$ Species Using MP2/6-311++G(d, p) Level of Theory

Table **S2**. O-M bond lengths and changes therein (non-protonated to protonated SAHs) O-K distance

KOH (2.244) to KOH_2^+ (2.629) (change in O-K: 0.385) FK₂OH (2.476) to $FK_2OH_2^+$ (3.241) (change in O-K: 0.765) OK₃OH (2.497) to $OK_3OH_2^+$ (3.008) (change in O-K: 0.511) NK₄OH (2.446) to NK₄OH₂⁺ (3.007) (change in O-K: 0.561)

O-Na distance

NaOH (1.98) to NaOH₂⁺ (2.27) (change in O-Na: 0.29) FNa₂OH (2.165) to FNa₂OH₂⁺ (2.792) (change in O-Na: 0.627) ONa₃OH (2.181) to ONa₃OH₂⁺ (2.696) (change in O-Na: 0.515) NNa₄OH (2.167) to NNa₄OH₂⁺ (2.722) (change in O-Na: 0.555)

O-Li distance LiOH (1.607) to $LiOH_2^+$ (1.869) (change in O-Na: 0.262) FLi₂OH (1.796) to $FLi_2OH_2^+$ (2.296) (change in O-Na: 0.5) OLi₃OH (1.81) to $OLi_3OH_2^+$ (2.217) (change in O-Na: 0.407) NLi₄OH (1.812) to $NLi_4OH_2^+$ (2.217) (change in O-Na: 0.405)

Cartesian Coordinates at MP2/6-311++G(d, p) Level of Theory

Superalkalis Neutral Species

FK₂

F,0,-2.0764656765,-0.1082196994,0.

K,0,0.2670339483,-0.2561589919,0.

K,0,-2.9981956415,2.0514771305,0.

OK₃

O,0,0.0000090301,-0.0000080754,-0.0000182145

K,0,-0.2022693064,2.3587166159,0.0000093387

K,0,2.1438736777,-1.0041740819,0.0000093383

K,0,-1.9415634015,-1.3545424587,-0.0000214624

NK4

N,0,0.,0.,0.0000066066

K,0,0.,2.1125288733,1.4937574538

K,0,0.,-2.1125288733,1.4937574538

K,0,-2.1125290231,0.,-1.4937478439

K,0,2.1125290231,0.,-1.4937478439

FNa₂

F,0,-2.2581877248,-0.3653504506,0.

Na,0,-0.1497973055,-0.2140321682,0.

Na,0,-2.8193440199,1.672616918,0.

ONa₃

O,0,-0.0000543243,-0.0002367844,-0.0000237437

Na,0,0.1501268851,2.0900010143,-0.0000056952

Na,0,-1.8854997662,-0.9149636286,-0.0000176159

Na,0,1.7352862054,-1.1748836013,0.0000380548

NNa4 at MP2/6-31+G(d, p) level

N,0,0.00000646,-0.0000008046,-0.0000133593 Na,0,-0.9276286111,-1.7748495387,-0.8434563834 Na,0,-0.9310330587,1.7736707088,-0.8421809048 Na,0,-0.2625920396,-0.0010263633,2.1570699563 Na,0,2.1212662495,0.0022059979,-0.4714593089

NNa4 (TS = -693.6 cm⁻¹) Using MP2/6-311++G(d, p) Level of Theory

N,0,0.,0.,-0.0049359312

K,0,0.,1.9270027821,-1.62993159

K,0,0.,-1.9270027821,-1.62993159

K,0,1.9268202371,0.,1.6202183484

K,0,-1.9268202371,0.,1.6202183484

FLi₂

F,0,-2.1941574243,-0.2747496747,0.

Li,0,-2.652535367,1.3666576348,0.

Li,0,-0.4938890901,-0.1589227099,0.

OLi₃

O,0,0.0000062325,0.0001011064,-0.00000231

Li,0,-1.4429352766,0.9101647345,0.0000017698

Li,0,1.5097399588,0.7944542793,0.0000017699

Li,0,-0.0668259147,-1.7046031202,0.0000017703

NLi4

N,0,-0.000005661,0.0000061737,-0.0000174447 Li,0,0.2813964864,-0.6859791493,1.6015659878

Li,0,-0.3876710919,1.714845645,0.1543628591

Li,0,-1.3465037603,-0.8404122764,-0.7716613204

Li,0,1.4527950267,-0.1884343929,-0.9842210817

Superalkali Hydroxides (SAHs)

КОН

0,0,0.,0.,-1.5063512941

H,0,0.,0.,-2.4637327596

K,0,0.,0.,0.7379280537

FK₂OH

F,0,-0.0000087131,1.645369891,0.0001409423

O,0,0.0000425974,-1.7159024166,0.0002706946

H,0,0.0000049972,-2.675132356,0.0002737398

K,0,1.7625164738,0.0229894062,0.0003984298

K,0,-1.7624863552,0.0229794755,0.0003991935

OK₃OH

O,0,0.796487,0.000499,0.000109

0,0,-2.870855,-0.000854,-0.000113

H,0,-3.830036,0.000801,-0.000196

K,0,-1.014928,-1.670334,0.00003

K,0,-1.015587,1.6704,0.00003

K,0,3.105514,0.000042,-0.000049

NK4OH

N,0,0.,0.,-0.5806881781 O,0,0.,0.,3.1065767208 H,0,0.,0.,4.066035769 K,0,0.,1.8497691716,1.5055039046 K,0,0.,-1.8497691716,1.5055039046 K,0,-2.1818381595,0.,-2.1560255605 K,0,2.1818381595,0.,-2.1560255605

NaOH

Na,0,0.,0.,0.9373441018 O,0,0.,0.,-1.0427745508 H,0,0.,0.,-1.9969085511

FNa₂OH

F,0,1.6039327037,-0.0000412779,0.0000290978 O,0,-1.570102858,0.0000405166,-0.0000631873 H,0,-2.5271967673,0.0000767766,-0.0001012457 Na,0,0.022617518,1.4670816649,0.0000111675 Na,0,0.0225394037,-1.4670806802,0.0000111677

ONa₃OH

0,0,-0.909175135,0.0046267942,0.0005067097	
0,0,2.4559111495,-0.005555908,-0.0005126826	
H,0,3.4131885833,-0.0082026155,-0.0007151003	
Na,0,0.7676594817,-1.3857767726,0.0001174921	
Na,0,0.7758461606,1.3847762515,0.0001076261	
Na,0,-2.9656652401,0.0019682504,0.0000449549	

NNa4OH

N,0,0.6671083436,0.0000276355,0.0001009931 O,0,-2.7200579928,-0.0001142913,-0.0001322223 H,0,-3.6781995071,-0.0001926228,-0.0001540436 Na,0,2.0759571631,-1.7546397376,0.0000485271 Na,0,2.0760873293,1.7545672935,0.0000331366 Na,0,-1.1333548772,0.0000950177,-1.4758552496 Na,0,-1.1335814588,0.000109705,1.4758318588

LiOH

O,0,0.,0.,0.3220964877 H,0,0.,0.,1.2740270981 Li,0,0.,0.,-1.2844745858

FLi₂OH

F,0,-1.382927742,0.0001604723,0.0001481302 Li,0,-0.064647964,-1.1460442691,-0.0001068386 Li,0,-0.0644304955,1.1461716565,-0.0001068514 O,0,1.3164022713,-0.0001053427,0.0000544151 H,0,2.2848429302,-0.0000395169,0.0002391448

OLi₃OH

0,0,-1.1680681452,0.0002099513,0.0008669869	
Li,0,0.2589991333,-1.0906514032,0.0000943842	
Li,0,0.2593322938,1.0907823782,0.0000904251	
Li,0,-2.8274047688,-0.0005527675,-0.0007480446	
0,0,1.703205989,-0.0002235644,-0.0004117705	
H,0,2.6576434978,-0.0003685944,0.0014350188	

NLi4OH

N,0,-1.1193283489,0.0000258879,-0.0001263635 Li,0,-2.1134311162,1.4902136228,-0.0003582347 Li,0,-2.1133805098,-1.4901978005,-0.0001938448 Li,0,0.4437233099,0.000070887,1.1093155499 Li,0,0.44400434,-0.0000482592,-1.109164358 O,0,1.8771834054,-0.0000283195,0.000233442 H,0,2.8324539196,0.0001139815,0.0004368091

Protonated Superalkali Hydroxides (PSAHs)

KOH₂⁺

O,0,0.2215546808,-0.2049669382,-1.4162244599 H,0,-0.458299532,-0.7701757514,-1.7979692695 K,0,0.8194860158,0.1463057342,1.1199391672 H,0,0.6264971247,0.2035300377,-2.1885868689

FK2OH2+ (Linear)

O,0,-4.0295416725,-0.240958915,0.000001724 H,0,-4.2649261088,-1.1734980617,0.0000130463 H,0,-4.8825596847,0.2033601231,-0.0000105191 F,0,0.7463529001,0.1442117035,0.0000036648 K,0,-1.532000545,0.8206714912,-0.0000186289 K,0,2.9958251109,-0.4791383411,0.0000127128

FK₂OH₂⁺ (Ring)

F,0,0.0000055468,-1.1436325614,0.0000273358
0,0,-0.0000124284,2.0953141987,0.000205727
H,0,-0.0000447699,2.6977699041,-0.7510436559
K,0,-2.1685771604,-0.3137332065,-0.0000705542
K,0,2.1685769411,-0.3137025191,-0.0000573672
H,0,-0.0000071292,2.6972061841,0.7519065145

OK₃OH₂⁺

O,0,0.677736956,0.0000823748,-0.0000963372 O,0,-3.0741296619,-0.0003235093,0.0002499455 H,0,-3.6744885843,-0.0003835258,0.7530945162 K,0,-0.7441436051,-1.9022498208,0.0002299589 K,0,-0.7445436681,1.9021140361,0.0002296487 K,0,3.0437000119,0.0003183752,-0.0003366301 H,0,-3.6744744486,-0.0003839301,-0.7526061019

NK4OH2⁺

N,0,0.,0.,-0.5036402793 O,0,0.,0.,3.419026882 H,0,0.,0.7536908691,4.0195521882 K,0,-1.9733733513,0.,1.1507024181 K,0,1.9733733513,0.,1.1507024181 K,0,0.,-2.1020287421,-2.0289119077 K,0,0.,2.1020287421,-2.0289119077 H.0.0.,-0.7536908691,4.0195521882 -----NaOH₂⁺

Na,0,-0.000010412,-1.1375000114,0.

O,0,0.0000094162,1.132209436,0.

H,0,0.0000584979,1.7245952875,0.7594271047

H,0,0.0000584979,1.7245952875,-0.7594271047

FNa₂OH₂⁺ (Linear)

O,0,-2.0334973875,0.0000217257,0.0000011311

H,0,-2.625867744,-0.7589516467,0.000003457

H,0,-2.6256626806,0.7591558221,0.0000035199

F,0,2.4253358882,0.0000706531,-0.0000004971

Na,0,0.2971871634,-0.0000432207,-0.0000093783

Na,0,4.5021417606,-0.0000466836,0.0000074374

FNa₂OH₂⁺ (Ring)

F,0,0.000000179,1.3037726124,0.0007272073 O,0,0.0000005344,-1.7650273649,0.0000523458 H,0,0.0000004139,-2.3678756172,0.7530206526 Na,0,1.8353070084,0.3391331114,-0.0004960512 Na,0,-1.8353063885,0.3391319694,-0.0004960512 H,0,0.000000414,-2.3682257112,-0.7526351034

ONa₃OH₂⁺

O,0,0.,0.,0.82847 O,0,0.,0.,-2.648505 H,0,0.756075,0.,-3.248687 Na,0,0.,1.631893,-0.502435 Na,0,0.,-1.631893,-0.502435 Na,0,0.,0.,2.919202 H,0,-0.756075,0.,-3.248687

NNa4OH2+

N,0,0.6769547143,0.0000717761,-0.0000758719 O,0,-2.9776302433,0.0002457965,0.000009627 H,0,-3.577866873,-0.7566934728,-0.0001244327 Na,0,2.0425504036,1.7785117755,0.0002811556 Na,0,2.0433358348,-1.7777780269,-0.0009078794 Na,0,-0.8271947816,-0.0007840666,1.6702114476 Na,0,-0.8280757521,0.0003098852,-1.6696087856 H,0,-3.5772163027,0.757699333,0.0003807393

LiOH₂⁺

O,0,0.2014078595,-0.2060429207,0.23658102 H,0,-0.4309295619,-0.7457772947,0.7261926928 Li,0,0.4195319535,-0.1064341795,-1.616568104 H,0,0.6908241718,0.2771987543,0.9132142707

FLi₂OH₂⁺ (Linear)

O,0,-1.3398777368,-0.0000171599,0.0000501306 H,0,-1.9260828002,-0.0000227302,-0.7638188766 H,0,-1.9257772624,-0.0000227337,0.7641560217 Li,0,0.5712634618,0.0000020807,0.0001143776 F,0,2.2911250242,0.0000020073,0.0002540727 Li,0,3.9720321734,0.0000019257,0.000342654

FLi₂OH₂⁺ (Ring)

F,0,1.3774892875,-0.0000017106,-0.0000725026 Li,0,0.4383847827,-1.4024845852,-0.0000579538 Li,0,0.4383948644,1.4024875141,-0.0000579539 O,0,-1.3796263113,0.0000006674,0.0000813161 H,0,-1.9812755979,0.0000015571,-0.7567835729 H,0,-1.9811090254,0.0000015572,0.7570786671

OLi₃OH₂+

O,0,1.2176748224,0.0000024113,-0.0001032855 Li,0,0.0552213108,-1.2698973576,-0.0000478516 Li,0,0.0553623478,1.2700311067,-0.0000466875 Li,0,2.9200547354,-0.0001124767,-0.0001844617 O,0,-1.7613386472,0.000022435,0.0001150897 H,0,-2.3589229873,0.0000318112,-0.7589281374 H,0,-2.3587885819,0.0000310702,0.7592643339

NLi₄OH₂⁺

N,0,1.1816451508,0.0000492699,-0.0001159297

Li,0,2.2461167866,-1.4645957349,-0.000233468

Li,0,2.2459645428,1.4648054296,-0.0002744248

Li,0,-0.1454464454,-0.0000679855,1.2643068797

Li,0,-0.1457950341,-0.0000345145,-1.2641964804

O,0,-1.9671086859,-0.0000465064,0.0001878888

H,0,-2.5637467002,-0.7599190401,0.0002394227

H,0,-2.5636226147,0.7599230818,0.0002571117

Reference 33

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani,
V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F.
Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J.
Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J.
E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R.
Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi,
N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R.
Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L.
Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D.
Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, *Gaussian 09, Revision D.01*, Gaussian, Inc., Wallingford CT, **2013**.