Novel and Polynuclear K- and Na-Based Superalkali Hydroxides as Superbases Better than Li-Related Species and Their Enhanced Properties: From ab Initio Exploration

Sarvesh Kumar Pandey*
Department of Inorganic and Physical Chemistry, Indian Institute of Science Bangalore,
Bangalore - 560 012, India

Corresponding Author E-mail:
S. K. Pandey: sarveshp@iisc.ac.in

S1 \| Page

Table S1. Natural Charges and O-H Stretching Frequencies of the Neutral Superalkali $\mathrm{XM}_{\mathrm{n}+1} \mathrm{OH}$ and $\mathrm{XM}_{\mathrm{n}+1} \mathrm{OH}_{2}{ }^{+}$Species Using MP2/6-311++G(d, p) Level of Theory

Species	Natural Charge (Q) (in e)					$\mathrm{O}-\mathrm{H}$(stretching)$\left(\right.$ in cm $^{-1}$)
	M (ring)	Qo of O-H	Qн of O-H	Qx	Qm (terminal)	
KOH	0.985	-1.413	0.428	-	-	3961.4
$\mathrm{KOH}_{2}{ }^{+}$	0.998	-0.972	0.486	-	-	$\begin{aligned} & \text { sym: } 3854.3 \\ & \text { asym: } 3946.8 \end{aligned}$
$\mathrm{FK}_{2} \mathrm{OH}$	0.976	-1.402	0.423	$\mathrm{F}(-0.973)$	-	3934.4
$\mathrm{FK}_{2} \mathrm{OH}_{2}{ }^{+}$	0.988	-0.933	0.468	F (-0.979)	-	sym: 3848.2 asym: 3949.8
$\mathrm{OK}_{3} \mathrm{OH}$	0.955	-1.389	0.416	O (-1.89)	0.952	3934
$\mathrm{OK}_{3} \mathrm{OH}_{2}{ }^{+}$	0.958	-0.938	0.471	O (-1.883)	0.963	sym: 3849.6 asym: 3950.9
$\mathrm{NK}_{4} \mathrm{OH}$	0.903	-1.388	0.397	N (-3.675)	0.884	3940
$\mathrm{NK}_{4} \mathrm{OH}_{2}{ }^{+}$	0.872	-0.94	0.471	$\mathrm{N}(-2.424)$	0.839	$\begin{aligned} & \text { sym: } 3833.6 \\ & \text { asym: } 3939.2 \\ & \hline \end{aligned}$
NaOH	0.984	-1.419	0.436	-	-	4012.5
$\mathrm{NaOH}_{2}{ }^{+}$	0.993	-0.986	0.496	-	-	$\begin{aligned} & \text { sym: } 3855.3 \\ & \text { asym: } 3945.4 \\ & \hline \end{aligned}$
$\mathrm{FNa}_{2} \mathrm{OH}$	0.967	-1.403	0.435	F (-0.967)	-	3969.8
$\mathrm{FNa}_{2} \mathrm{OH}_{2}{ }^{+}$	0.969	-0.95	0.478	F (-0.945)	-	$\begin{aligned} & \text { sym: } 3833 \\ & \text { asym: } 3927.2 \\ & \hline \end{aligned}$
$\mathrm{ONa}_{3} \mathrm{OH}$	0.947	-1.383	0.428	O (-1.903)	0.964	3967
$\mathrm{ONa}_{3} \mathrm{OH}_{2}{ }^{+}$	0.956	-0.941	0.48	O (-1.902)	0.97	$\begin{aligned} & \text { sym: } 3876.8 \\ & \text { asym: } 3926.3 \\ & \hline \end{aligned}$
$\mathrm{NNa4} \mathrm{OH}$	0.927	-1.369	0.425	$\mathrm{N}(-2.55)$	0.821	3958
$\mathrm{NNa}_{4} \mathrm{OH}_{2}{ }^{+}$	0.901	-0.936	0.479	N (-2.582)	0.879	$\begin{gathered} \text { sym: } 3881.7 \\ \text { asym: } 3918.2 \\ \hline \end{gathered}$
LiOH	0.96	-1.407	0.445	-	-	4049.8
$\mathrm{LiOH}_{2}{ }^{+}$	0.99	(-1.016	0.513	-	-	$\begin{aligned} & \text { sym: } 3833.3 \\ & \text { asym: } 3918.4 \end{aligned}$
$\mathrm{FLi}_{2} \mathrm{OH}$	0.91	-1.368	0.459	$\mathrm{F}(-0.912)$	-	4016.8
$\mathrm{FLi}_{2} \mathrm{OH}_{2}{ }^{+}$	0.974	(-0.984	0.497	F (-0.959)	-	sym: 3803.7 asym: 3892.5
$\mathrm{OLi}_{3} \mathrm{OH}$	0.871	-1.34	0.45	O (-1.767)	0.915	4009.2
$\mathrm{OLi}_{3} \mathrm{OH}_{2}{ }^{+}$	0.949	(-0.972	0.495	O (-1.886)	0.969	sym: 3811.1 asym: 3905.7
$\mathrm{NLi}_{4} \mathrm{OH}$	0.817	-1.317	0.448	$\mathrm{N}(-2.454)$	0.845	3996
$\mathrm{NLi4}_{4} \mathrm{OH}_{2}{ }^{+}$	0.915	(-0.963	0.493	$\mathrm{N}(-2.723)$	0.935	sym: 3805.1 asym: 3904.9

Table S2. O-M bond lengths and changes therein (non-protonated to protonated SAHs)
O-K distance
$\mathrm{KOH}(2.244)$ to $\mathrm{KOH}_{2}{ }^{+}$(2.629) (change in O-K: 0.385)
$\mathrm{FK}_{2} \mathrm{OH}(2.476)$ to $\mathrm{FK}_{2} \mathrm{OH}_{2}{ }^{+}$(3.241) (change in $\mathrm{O}-\mathrm{K}: 0.765$)
$\mathrm{OK}_{3} \mathrm{OH}$ (2.497) to $\mathrm{OK}_{3} \mathrm{OH}_{2}{ }^{+}$(3.008) (change in $\mathrm{O}-\mathrm{K}: ~ 0.511$)
$\mathrm{NK}_{4} \mathrm{OH}(2.446)$ to $\mathrm{NK}_{4} \mathrm{OH}_{2}{ }^{+}(3.007)$ (change in O-K: 0.561)
O-Na distance
NaOH (1.98) to $\mathrm{NaOH}_{2}{ }^{+}$(2.27) (change in O-Na: 0.29)
$\mathrm{FNa}_{2} \mathrm{OH}(2.165)$ to $\mathrm{FNa}_{2} \mathrm{OH}_{2}{ }^{+}(2.792)$ (change in $\mathrm{O}-\mathrm{Na}: 0.627$)
$\mathrm{ONa}_{3} \mathrm{OH}(2.181)$ to $\mathrm{ONa}_{3} \mathrm{OH}_{2}{ }^{+}$(2.696) (change in O-Na: 0.515)
$\mathrm{NNa}_{4} \mathrm{OH}$ (2.167) to $\mathrm{NNa}_{4} \mathrm{OH}_{2}{ }^{+}$(2.722) (change in O-Na: 0.555)

O-Li distance
LiOH (1.607) to $\mathrm{LiOH}_{2}{ }^{+}$(1.869) (change in O-Na: 0.262)
$\mathrm{FLi}_{2} \mathrm{OH}(1.796)$ to $\mathrm{FLi}_{2} \mathrm{OH}_{2}{ }^{+}(2.296)$ (change in $\mathrm{O}-\mathrm{Na}: 0.5$)
$\mathrm{OLi}_{3} \mathrm{OH}$ (1.81) to $\mathrm{OLi}_{3} \mathrm{OH}_{2}{ }^{+}$(2.217) (change in $\mathrm{O}-\mathrm{Na}: 0.407$)
$\mathrm{NLi}_{4} \mathrm{OH}(1.812)$ to $\mathrm{NLi}_{4} \mathrm{OH}_{2}{ }^{+}$(2.217) (change in O-Na: 0.405)

Cartesian Coordinates at MP2/6-311++G(d, p) Level of Theory Superalkalis Neutral Species

FK_{2}

F,0,-2.0764656765,-0.1082196994,0.
K,0,0.2670339483,-0.2561589919,0.
K,0,-2.9981956415,2.0514771305,0.
OK_{3}
O,0,0.0000090301,-0.0000080754,-0.0000182145
K,0,-0.2022693064,2.3587166159,0.0000093387
K,0,2.1438736777,-1.0041740819,0.0000093383
K,0,-1.9415634015,-1.3545424587,-0.0000214624

NK4
N,0,0.,0.,0.0000066066
K,0,0.,2.1125288733,1.4937574538
K,0,0.,-2.1125288733,1.4937574538
K,0,-2.1125290231,0.,-1.4937478439
K,0,2.1125290231,0.,-1.4937478439

FNa 2
F,0,-2.2581877248,-0.3653504506,0.
Na,0,-0.1497973055,-0.2140321682,0.
Na,0,-2.8193440199,1.672616918,0.
ONa_{3}
O,0,-0.0000543243,-0.0002367844,-0.0000237437
$\mathrm{Na}, 0,0.1501268851,2.0900010143,-0.0000056952$
Na,0,-1.8854997662,-0.9149636286,-0.0000176159
Na,0,1.7352862054,-1.1748836013,0.0000380548

NNa4 at MP2/6-31+G(d, \mathbf{p}) level

N,0,0.00000646,-0.0000008046,-0.0000133593
Na,0,-0.9276286111,-1.7748495387,-0.8434563834
$\mathrm{Na}, 0,-0.9310330587,1.7736707088,-0.8421809048$
$\mathrm{Na}, 0,-0.2625920396,-0.0010263633,2.1570699563$
$\mathrm{Na}, 0,2.1212662495,0.0022059979,-0.4714593089$

NNa4 (TS = -693.6 cm ${ }^{-1}$) Using MP2/6-311++G(d, p) Level of Theory
N,0,0.,0.,-0.0049359312
K,0,0.,1.9270027821,-1.62993159
K,0,0.,-1.9270027821,-1.62993159
K,0,1.9268202371,0.,1.6202183484
K,0,-1.9268202371,0.,1.6202183484

FLi 2

F,0,-2.1941574243,-0.2747496747,0.
Li,0,-2.652535367,1.3666576348,0.
Li,0,-0.4938890901,-0.1589227099,0.
OLi_{3}
O,0,0.0000062325,0.0001011064,-0.00000231
Li,0,-1.4429352766,0.9101647345,0.0000017698
Li,0,1.5097399588,0.7944542793,0.0000017699
Li,0,-0.0668259147,-1.7046031202,0.0000017703
NLi_{4}
N,0,-0.000005661,0.0000061737,-0.0000174447
Li,0,0.2813964864,-0.6859791493,1.6015659878
Li,0,-0.3876710919,1.714845645,0.1543628591
Li,0,-1.3465037603,-0.8404122764,-0.7716613204
Li,0,1.4527950267,-0.1884343929,-0.9842210817

Superalkali Hydroxides (SAHs)

KOH

O,0,0.,0.,-1.5063512941
H,0,0.,0.,-2.4637327596
K,0,0.,0.,0.7379280537
$\mathrm{FK}_{2} \mathrm{OH}$
F,0,-0.0000087131,1.645369891,0.0001409423
O,0,0.0000425974,-1.7159024166,0.0002706946
H,0,0.0000049972,-2.675132356,0.0002737398
$\mathrm{K}, 0,1.7625164738,0.0229894062,0.0003984298$
K,0,-1.7624863552,0.0229794755,0.0003991935

$\mathrm{OK}_{3} \mathrm{OH}$

O,0,0.796487,0.000499,0.000109
O,0,-2.870855,-0.000854,-0.000113
H,0,-3.830036,0.000801,-0.000196
K,0,-1.014928,-1.670334,0.00003
K,0,-1.015587,1.6704,0.00003
K,0,3.105514,0.000042,-0.000049

$\mathrm{NK}_{4} \mathrm{OH}$

N,0,0.,0.,-0.5806881781
О,0,0.,0.,3.1065767208
H,0,0.,0.,4.066035769
K,0,0.,1.8497691716,1.5055039046
K,0,0.,-1.8497691716,1.5055039046
K,0,-2.1818381595,0.,-2.1560255605
K,0,2.1818381595,0.,-2.1560255605

NaOH

$\mathrm{Na}, 0,0 ., 0 ., 0.9373441018$
O,0,0.,0.,-1.0427745508
H,0,0.,0.,-1.9969085511

$\mathrm{FNa}_{2} \mathrm{OH}$

F,0,1.6039327037,-0.0000412779,0.0000290978
O,0,-1.570102858,0.0000405166,-0.00006631873
Н, $0,-2.5271967673,0.0000767766,-0.0001012457$
$\mathrm{Na}, 0,0.022617518,1.4670816649,0.0000111675$
$\mathrm{Na}, 0,0.0225394037,-1.4670806802,0.0000111677$

ONa 3 OH

O,0,-0.909175135,0.0046267942,0.0005067097
O,0,2.4559111495,-0.005555908,-0.0005126826
Н,0,3.4131885833,-0.0082026155,-0.0007151003
$\mathrm{Na}, 0,0.7676594817,-1.3857767726,0.0001174921$
Na,0,0.7758461606,1.3847762515,0.0001076261
Na,0,-2.9656652401,0.0019682504,0.0000449549

NNa 4 OH

N,0,0.6671083436,0.0000276355,0.0001009931
O,0,-2.7200579928,-0.0001142913,-0.0001322223
H,0,-3.6781995071,-0.0001926228,-0.0001540436
$\mathrm{Na}, 0,2.0759571631,-1.7546397376,0.0000485271$
Na,0,2.0760873293,1.7545672935,0.0000331366
$\mathrm{Na}, 0,-1.1333548772,0.0000950177,-1.4758552496$
Na,0,-1.1335814588,0.000109705,1.4758318588

S7 \| P a g e

LiOH

O,0,0.,0.,0.3220964877
H,0,0.,0.,1.2740270981
Li,0,0.,0.,-1.2844745858
$\mathrm{FLi}_{2} \mathbf{O H}$
F, $0,-1.382927742,0.0001604723,0.0001481302$
Li,0,-0.064647964,-1.1460442691,-0.0001068386
Li,0,-0.0644304955,1.1461716565,-0.0001068514
O,0,1.3164022713,-0.0001053427,0.0000544151
H,0,2.2848429302,-0.0000395169,0.0002391448

$\mathrm{OLi}_{3} \mathrm{OH}$

O,0,-1.1680681452,0.0002099513,0.00086669869
Li,0,0.2589991333,-1.0906514032,0.0000943842
Li,0,0.2593322938,1.0907823782,0.0000904251
Li,0,-2.8274047688,-0.0005527675,-0.0007480446
O,0,1.703205989,-0.0002235644,-0.0004117705
H,0,2.6576434978,-0.0003685944,0.0014350188

NLi 4 OH

$\mathrm{N}, 0,-1.1193283489,0.0000258879,-0.0001263635$
Li,0,-2.1134311162,1.4902136228,-0.0003582347
Li,0,-2.1133805098,-1.4901978005,-0.0001938448
Li,0,0.4437233099,0.000070887,1.1093155499
Li,0,0.44400434,-0.0000482592,-1.109164358
O,0,1.8771834054,-0.0000283195,0.000233442
H,0,2.8324539196,0.0001139815,0.0004368091

S8 \| Page

Protonated Superalkali Hydroxides (PSAHs)

$\mathrm{KOH}_{2}{ }^{+}$

O,0,0.2215546808,-0.2049669382,-1.4162244599
H,0,-0.458299532,-0.7701757514,-1.7979692695
K,0,0.8194860158,0.1463057342,1.1199391672
H,0,0.6264971247,0.2035300377,-2.18858686889
$\mathrm{FK}_{2} \mathrm{OH}_{2}{ }^{+}$(Linear)
O,0,-4.0295416725,-0.240958915,0.000001724
Н,0,-4.2649261088,-1.1734980617,0.0000130463
H,0,-4.8825596847,0.2033601231,-0.0000105191
F,0,0.7463529001,0.1442117035,0.0000036648
K,0,-1.532000545,0.8206714912,-0.0000186289
K,0,2.9958251109,-0.4791383411,0.0000127128
$\mathbf{F K}_{2} \mathrm{OH}_{2}{ }^{+}$(Ring)
F,0,0.0000055468,-1.1436325614,0.0000273358
O,0,-0.0000124284,2.0953141987,0.000205727
Н,0,-0.0000447699,2.6977699041,-0.7510436559
K,0,-2.1685771604,-0.3137332065,-0.0000705542
K,0,2.1685769411,-0.3137025191,-0.0000573672
H,0,-0.0000071292,2.6972061841,0.7519065145
$\mathrm{OK}_{3} \mathrm{OH}_{2}{ }^{+}$
O,0,0.677736956,0.0000823748,-0.0000963372
O,0,-3.0741296619,-0.0003235093,0.0002499455
Н,0,-3.6744885843,-0.0003835258,0.7530945162
K,0,-0.7441436051,-1.9022498208,0.0002299589
K,0,-0.7445436681,1.9021140361,0.0002296487
K,0,3.0437000119,0.0003183752,-0.0003366301
H,0,-3.6744744486,-0.0003839301,-0.7526061019

$\mathrm{NK}_{4} \mathrm{OH}_{2}{ }^{+}$

N,0,0.,0.,-0.5036402793
O,0,0.,0.,3.419026882
H,0,0.,0.7536908691,4.0195521882
K,0,-1.9733733513,0.,1.1507024181
K,0,1.9733733513,0.,1.1507024181
K,0,0.,-2.1020287421,-2.0289119077
K,0,0.,2.1020287421,-2.0289119077
H,0,0.,-0.7536908691,4.0195521882

$\mathrm{NaOH}_{2}{ }^{+}$

$\mathrm{Na}, 0,-0.000010412,-1.1375000114,0$.
O,0,0.0000094162,1.132209436,0.
H,0,0.0000584979,1.7245952875,0.7594271047
H,0,0.0000584979,1.7245952875,-0.7594271047
$\mathbf{F N a}_{2} \mathrm{OH}_{2}{ }^{+}$(Linear)
O,0,-2.0334973875,0.0000217257,0.0000011311
H,0,-2.625867744,-0.7589516467,0.000003457
H,0,-2.6256626806,0.7591558221,0.00000035199
F,0,2.4253358882,0.0000706531,-0.0000004471
$\mathrm{Na}, 0,0.2971871634,-0.0000432207,-0.0000093783$
$\mathrm{Na}, 0,4.5021417606,-0.0000466836,0.0000074374$
$\mathrm{FNa}_{2} \mathrm{OH}_{2}{ }^{+}$(Ring)
F,0,0.0000000179,1.3037726124,0.0007272073
O,0,0.0000005344,-1.7650273649,0.0000523458
H,0,0.0000004139,-2.3678756172,0.7530206526
$\mathrm{Na}, 0,1.8353070084,0.3391331114,-0.0004960512$
$\mathrm{Na}, 0,-1.8353063885,0.3391319694,-0.0004960512$
H,0,0.000000414,-2.3682257112,-0.7526351034

$\mathrm{ONa}_{3} \mathrm{OH}_{2}{ }^{+}$

O,0,0.,0.,0.82847
O,0,0.,0.,-2.648505
H,0,0.756075,0.,-3.248687
Na,0,0.,1.631893,-0.502435
Na,0,0.,-1.631893,-0.502435
Na,0,0.,0.,2.919202
H,0,-0.756075,0.,-3.248687
$\mathrm{NNa}_{4} \mathrm{OH}_{2}{ }^{+}$
$\mathrm{N}, 0,0.6769547143,0.0000717761,-0.0000758719$
O,0,-2.9776302433,0.0002457965,0.000009627
H,0,-3.577866873,-0.7566934728,-0.0001244327
Na,0,2.0425504036,1.7785117755,0.0002811556
$\mathrm{Na}, 0,2.0433358348,-1.7777780269,-0.0009078794$
Na,0,-0.8271947816,-0.0007840666,1.6702114476
$\mathrm{Na}, 0,-0.8280757521,0.0003098852,-1.6696087856$
H,0,-3.5772163027,0.757699333,0.0003807393

$\mathbf{L i O H}_{2}{ }^{+}$

O,0,0.2014078595,-0.2060429207,0.23658102
Н,0,-0.4309295619,-0.7457772947,0.7261926928
Li,0,0.4195319535,-0.1064341795,-1.616568104
H,0,0.6908241718,0.2771987543,0.9132142707

$\mathbf{F L i}_{2} \mathbf{O H}_{2}{ }^{+}$(Linear)

O,0,-1.3398777368,-0.0000171599,0.0000501306
H,0,-1.9260828002,-0.0000227302,-0.7638188766
Н,0,-1.9257772624,-0.0000227337,0.7641560217
Li,0,0.5712634618,0.0000020807,0.0001143776
F,0,2.2911250242,0.0000020073,0.0002540727
Li,0,3.9720321734,0.0000019257,0.000342654

$\mathbf{F L i}_{2} \mathrm{OH}_{2}{ }^{+}$(Ring)

F, $0,1.3774892875,-0.0000017106,-0.0000725026$
Li,0,0.4383847827,-1.4024845852,-0.0000579538
Li,0,0.4383948644,1.4024875141,-0.0000579539
O,0,-1.3796263113,0.0000006674,0.0000813161
Н,0,-1.9812755979,0.0000015571,-0.7567835729
Н,0,-1.9811090254,0.0000015572,0.7570786671

$\mathrm{OLi}_{3} \mathrm{OH}_{2}{ }^{+}$

O,0,1.2176748224,0.0000024113,-0.0001032855
Li,0,0.0552213108,-1.2698973576,-0.0000478516
Li,0,0.0553623478,1.2700311067,-0.0000466875
Li,0,2.9200547354,-0.0001124767,-0.0001844617
O,0,-1.7613386472,0.000022435,0.0001150897
H,0,-2.3589229873,0.0000318112,-0.7589281374
H,0,-2.3587885819,0.0000310702,0.7592643339
$\mathrm{NLi}_{4} \mathrm{OH}_{2}{ }^{+}$
$\mathrm{N}, 0,1.1816451508,0.0000492699,-0.0001159297$
Li,0,2.2461167866,-1.4645957349,-0.000233468
Li,0,2.2459645428,1.4648054296,-0.0002744248
Li,0,-0.1454464454,-0.0000679855,1.2643068797
Li,0,-0.1457950341,-0.0000345145,-1.2641964804
O,0,-1.9671086859,-0.0000465064,0.0001878888
Н,0,-2.5637467002,-0.7599190401,0.0002394227
H,0,-2.5636226147,0.7599230818,0.0002571117

Reference 33

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford CT, 2013.

