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I.  INTRODUCTION

Proportional navigation (PN) is the most commonly
used guidance law for missiles in the homing phase
of their flight. The resulting equations of motion are
highly nonlinear even under simplifying assumptions.
A substantial volume of literature is available on
the performance evaluation of PN guidance laws
from various points of view. These studies can be
broadly classified as computational or analytical.

In the computational studies, usually a linearized
version of the state equations is assumed as the basic
model and limited nonlinearities (such as missile
acceleration saturation) are superposed on them. In
analytical studies too, usually linearized versions of
the state equations are used. The exceptions to this
are the papers by Guelman [1-3], Yang, Hsiao, and
Yeh [4], Becker [5], etc., which use the nonlinear
state equations for performance and trajectory
analysis. However, these papers also make a number
of simplifying assumptions to make the nonlinear
equations analytically tractable. These analytically
convenient forms of PN guidance law are different
from the ones actually implemented on-board.

No studies are available in the literature on the
performance of these realistic PN guidance laws in a
nonlinear framework. This work relaxes an important
simplifying assumption, made while defining PN, on
the closing velocity between the missile and the target
and obtains performance results for a realistic version
of the true proportional navigation (TPN) guidance
law. Both zero and non-zero miss-distance cases are
considered. Also a uniform basis for comparison of
the results available in the literature with the results
obtained in this work is proposed to demonstrate

the relative merits of the different formulations. The
results on capture region are found to be substantially
different from those obtained earlier. A computational
study of the same problem has been carried out in
[6]. A similar problem was investigated in a recently
published paper [7], which considers the case of zero
miss-distance only. However, the paper [7] does not
provide a comparison with the earlier results [1}.

In PN, the commanded acceleration is proportional
to the line of sight (LOS) rate, i.c.,

ay =Cé M

where ay is the commanded acceleration, 6 is the
LOS rate and C is a proportionality factor. The value
of the proportionality factor C, and the direction in
which the latax is applied is different for different types
of PN guidance laws.

For example, in the paper by Guelman [1],
PN guidance law is classified as TPN and pure
proportional navigation (PPN). In TPN, the
commanded lateral acceleration (latax) of the missile
is applied perpendicular to the LOS. In PPN, the
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commanded acceleration is applied normal to the
missile velocity vector.

The value of C could be a constant or it may vary
with time. In many papers on PN guidance law [1, 8,
10], the parameter C is defined as

C =NV, @)

where N is the navigation gain, V, (= —#) is the
closing velocity between missile and target, and r is
the LOS separation between missile and target.

In almost all analytical treatments of missile
trajectories governed by the PN guidance law, the
closing velocity (V;) used in the guidance law is
assumed to be constant [1, 8, 9]. However, when PN
is actually implemented in practice, only the current
closing velocity V. (= —#) is considered [10]. In
fact, the homing seeker uses a Doppler radar which
continuously provides information about the current
value of #. Thus it appears that there is a difference in
the way in which PN guidance law is analyzed and in
the way in which it is implemented. This implies that
the analytical results obtained may not be completely
valid in a realistic situation.

One of the most complete solutions to a class
of PN guidance law has been obtained by Guelman
[1] for a nonmaneuvering target. Guelman obtained
the closed-form solutions to the trajectory equations
governed by the TPN guidance law. Further, these
solutions were used to describe the performance
of TPN guidance law in terms of capture region,
boundedness of LOS rate, etc., for various navigation
constants. However, all this has been done by
assuming C (and thus ¥.) to be constant during the
engagement.

The objective of this work is to determine the
performance of TPN guidance law for nonmaneuvering
targets when the above-mentioned restriction is not
imposed and the TPN guidance law is defined in its
implemented version. A motivation for this work
arises from the fact that the very nature of TPN causes
considerable change in the missile velocity (thus
affecting the closing velocity) due to the non-zero
component of missile lateral acceleration along the
missile velocity vector. The issue of optimality of the
PN guidance law is not addressed.

il. PROBLEM FORMULATION

A. Engagement Model and State Equations

A target T and a missile M are assumed to be
point mass models on a plane moving with velocities
Vr and V), respectively, as shown in Fig. 1. The target
is assumed to be a nonmaneuvering one. The position
of the target T is assumed to be the center of the
relative coordinate system, the positive X-axis of which
is along the straight-line trajectory of the target. The

_____________________ Reference

Fig. 1. Missile-target engagement geometry.

equations of motion of the missile-target engagement
are obtained as follows

V,(t) =F =Vpmcosa —Vrcosh 3)
Ve(t) = r6 = Vi sina + Vrsind )

where V,(t) and V(¢) are the relative velocity of the
target with respect to the missile along the line of sight
and perpendicular to the line of sight, respectively,

at the time instant ¢. Note that the LOS angle 0 is
measured anti-clockwise from the target velocity
direction. Also note that the closing velocity

Ve(®) = V2 (). &)

The basic principle of PN guidance law is that
the commanded missile lateral acceleration (latax) is
proportional to the LOS rate. Further, in the case of
TPN guidance law, the commanded lateral acceleration
ay is applied perpendicular to the LOS.

Thus, according to the PN law

ay = Cé ©)

where C could be a constant or it may vary with time
as a function of the state of the system.

In Guelman’s paper [1], C is assumed to be a
constant. Furthermore C could either be an arbitrary
constant or it could be a function of the initial closing
velocity V,,, i.e.,

C =NV, . ™

However in most of the literature on PN guidance law
which discuss its implementation [10] the parameter C
is defined as

C =NV.() ®)

where V,(¢) is closing velocity at any time .
Thus, here, the TPN guidance law is modified by
using (8) instead of (7) in (6). Thus

ay = NV,(1)f. ©

We call this guidance law realistic true proportional
navigation (RTPN) guidance law.
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Now, from Fig. 1, we have

7 = —(apm cosa)/Vy (10)
Vy = —aysina an
Yy=a+60-2n. 12)
Differentiating (12) with respect to time and
substituting (10), we get
& = —(ap cose)/Vy —6. 13)
From (3), (5), and (9), we get
ay = —N(Vacosa — Vrcos)f. (14)

Substituting (14) and (4) in (13) we obtain
& = [1/(rVm)][N(Vpm cosa — VrcosB)cosa — V]

x [Vm sina + Vrsin8]. (15)
Similarly, substituting (14) and (3) in (11), we get
Vi = (N /r)(Vy cosa — Vrcosé)
x (Vusina + Vrsind)sina. (16)

Thus, the state equations for the missile-target
engagement with RTPN guidance law are given by

(3), (4), (15), and (16). Note that a simple model is
adopted here for analysis as this facilitates comparison
with previous works which also make similar
simplifying assumptions. It also helps to illustrate the
salient features of the analysis without losing clarity
due to the complexity of the model.

B. Capture Equation

The missile captures the target when the separation
between them becomes zero, i.c., when the value of
the state r becomes zero. In this section, we derive a
differential equation which is dependent only on r.

Differentiating (3) and (4) we get

V,(t) = Vi cosa — Vi sinad + Vrsingd  (17)
(18)

Substituting the values of Vi and & from (11) and (13)
in the above equations and using (3) and (4), we get

Ve(t) = Vi sina + Vi cosad + Vrcosb.

V() = Ve ()8 19)
Vo(t) = —am — V, (1)6. (20)
Replacing V() by # and Vp(r) by rf, we get
F—r@?=0 (21)
r + 216 = —ay. (22)
Substituting aps from (9) in (22), we get
ré + (2F + NV.(t))8 = 0. (23)

Equations (21) and (23) describe the trajectory of the
missile in the polar plane. From here onwards, we omit
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the argument ¢ for convenience. Substituting (9) in (20)
we obtain

Ve = (N - 1)I,4. 24
Using (19) and (24) we arrive at the following
relationship _ )
kV,V, =Vele (25)
where, k = N — 1. Intregrating, we get
kVZ-Vi=A (26)
where
A=kV:-V5. (27)

The subscript 0 denotes the initial values.
Multiplying 7 on both sides of (19) and using (4),
we get

v, =Vy, (28)
which when substituted in (26) yields
k(FY? —r(#)=A (29)
which can be rewritten as
r()—k@#)?+A=0 30

with A as given in (27).

The above equation depends on r only. We call
this equation the capture equation since it describes
the behavior of r with respect to time and it is this
behavior which indicates whether capture is possible or
not.

It is instructive to compare this equation with the
analogous capture equation obtained by Guelman [1]
for the simplified guidance law given by (6) where C
is an arbitrary constant. In this case the differential
equation describing the behavior of r is as follows

r(F)+ (Y’ +2Ci =a (31)

where

a=V2+2CV, +Va. (32)

This forms the corresponding capture equation for
Guelman’s TPN. Another version of the capture
equation for Guelman’s TPN is obtained by assuming

C=-NV,. (33)
Substituting which we get,
r(¥)+ (})? = 2NV, i =a (34)
where
a=Vi+(1-2N)V2. (35)

In [1], Guelman obtained the closed-form solution
for r by solving the capture equation (31) and proved
that capture is possible only for those initial conditions
in (Va,, V4, )-space which satisfy the conditions a < 0
and #y < 0. This, in fact, defines the interior of a circle
in the (Vg,, V5,)-space with center at (0,—C) and radius
equal to C.
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The capture equation (30), obtained for RTPN,
does not yield a closed-form solution. However, it
is possible to perform a qualitative analysis of the
capture equation and identify the region in which there
is the possibility of capture and the region in which
capture is not possible. The exact capture region is
identified through computational means.

Ill. PERFORMANCE ANALYSIS

A. Analysis of Capture Equation

Unlike the capture equation (31) obtained in
Guelman’s case [1], the capture equation (30) obtained
here is not solvable in closed form (i.c., obtain r as
a function of t). However, it is possible to conduct a
qualitative study of this equation to obtain significant
performance resuls.

Let,
z="7 (36)
then,
# = dz/dt = (dz/dr)(dr/dt) = z(dz/dr).  (37)
Substituting (37) in (30) we obtain
rz(dz/dr)—kz* + A=0 (38)
which can be rewritten as,
(zdz)/(k2? — A) = dr/r. (39)

Assuming k # 0, the above equation can be integrated
to yield

k22— A= (kV2 — A)(r/ro)*. (40)
Using (27) and (36) we get,
k(VE-V2) = {(r/roy* — 1}V, (41)
When k = 0, (39) can be integrated to yield,
V2 -V =2V n(r [r0). 42)

LEMMA 1. Capture (define by r = 0) cannot occur
when N <1, and Vj, # 0.

PROOF. For N < 1, k <0, and hence the left-hand
side (LHS) of (41) remains bounded by (—oo, |k|V7].
For capture to occur, 7 =0, in which case the
right-hand side (RHS) of (41) tends to +oc as 7 — 0.
This implies that 7 never becomes zero and so capture
cannot occur.

Similarly, for N =1, k =0, and as r — 0, the RHS
of (42) tends to —oo, whereas the LHS is bounded
by [-¥/2,00). This again implies that capture cannot
occur. O

LEMMA 2. If N > 1, then capture (defined by r = 0)
cannot occur when

VE>(N-1DV2 43)

PROOF. When N > 1, k >0 and the LHS of (41) is
bounded by [-kV}2, c0). But at 7 = 0, the RHS of (41)
becomes —V,,zo. Thus, capture cannot occur if

~VE < —kV? (44)

which leads to the condition in (43). O
From (41) we can write

V, = [(Va/R)(r/roy* )+ VT2 (49)

Since V, = # is a continuous function of ¢, if ¥, > 0,
then ¥, > O for all subsequent time and so capture
cannot occur as r never becomes zero.

All the above results lead to the following
Theorem.

THEOREM 1. If capture (defined by r = 0) occurs then
the initial conditions in (Ve V5,)-space must satisfy
V,, < 0and ,
1) f N<1, then Vo, =0
2) F N > 1, then V3 < (N — 1)V

In the above analysis we defined capture as the
condition r = 0. However, missiles usually carry
warheads which have non-zero lethal radius. This

implies that capture may be said to occur even when
r # 0. Suppose we define capture to occur whenever

(48)

(46)
7

r<tm

where r,, is called the allowable miss-distance, and
0 < rm < ro, then the identification of the capture
region in the (Va,, V;,)-space is done as follows.

LEMMA 3. If N < 1 then capture (defined by r < rm)
cannot occur for

{(ro/rm) 2 =1}V > A-N)V7. (49)

PROOF. When N < 1, k < 0 and so the LHS of (41)
is bounded by (—oco, —kV}2]. For r < s, the RHS of
(41) must satisfy,

RHS > {(ro/rm)~ % — 1}V2. (50)
This directly leads to the condition given in the
theorem. O

Similarly, we can state the following two lemmas.
The proofs are straightforward and are omitted.

LEMMA 4. If N =1, then capture (defined by r < I'm)
cannot occur for

Waln(ro/rm) > V2. (51)

LEMMA 5. If N > 1, then capture (defined by r < 1)
cannot occur for

(1= (rm /1o 2}V > (N =DV, (2)

IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 29, NO. 3 JULY 1993



-4

-6

-8

-10

Guelman's TPN ,
N=15

RTPN ,
N=1.5, rp/ =01

RTPN,
N=1.5, fm/ro =0

L

Fig. 2. Capture regions for fixed navigation gain.

All the above lemmas lead to the following
Theorem.

THEOREM 2. If capture (defined by r < r,,) occurs
then the initial condition in the (Vy,, V,,)-space must
satisfy V,, < 0 and

1) If N =1, then (V2/V) > 2In(ro/rm) 53)
D I N #1, then (V3/V3) > {1=(rm /1) =2}/
N-1) (54)

B. Comparison with Guelman’s Results

Until now we have identified the region in the Voo
Vr,)-space in which there is possibility of capture with
zero and non-zero miss-distances. We compare these
results with the results in Guelman’s analysis of TPN
[1], on a uniform basis.

1) Capture Region for a Fixed Navigation Gain:

In Guelman’s paper [1], the guidance law is given

by ay = C6 as expressed in (6), and C is assumed
to be a constant. Further, if we assume C to be of
the form given in (33), then it implies that C is a
constant during an engagement starting from a given
initial condition V;,, but is different for engagements
starting from different initial values of V;,. Note that
C does not depend on the value of V. Now, putting
this value of C from (33) in (32) we get the capture
condition in the region V,, < 0, in case of Guelman’s
TPN, as

Ve <@N-1)V2. (55)
Assuming N > 0.5, we can write this as,
—Vi > [Vl /V2N — 1. (56)

For a given value of N, the above equation represents
a sector-like shape in the (V,, V;,)-space for different
initial values of V, and Vj, in the region V., < 0. This
is shown in Fig. 2 for N = 1.5.

To obtain similar capture region for RTPN we use
the conditions of Theorem 1, which shows that there
is possibility of capture (with zero miss-distance) for
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N > 1, in the region V,, < 0, when
—V’o > IVool/ VN -1

The above equation also represents a sector-like shape
for a given value of N and is shown in Fig. 2 for
N =15

When we consider an allowable miss-distance
rm # 0, the possible capture region for RTPN is given
by Theorem 2. Note that there is a stable capture
region here even for N < 1. In the region V,, <0,
when N =1, the possible capture region is given by,

G7)

—V,y 2 {2V, In(ro/rm)}'/? (58)
and when N # 1, it is given by
Vi 2 Voo {1 = (1 /1) 2}1/2/ /(N - 1).
(59)

This capture region is also sector-shaped and is shown
in Fig. 2 for N = 1.5 and (r,»/ro) = 0.1.

2) Capture Region for a Variable Navigation Gain:
In Guelman’s guidance law, if C is assumed to be an
arbitrary constant independent of the initial condition
V,, then the capture condition obtained is,

VZ4+2CV,, +V3 <0 (60)

which defines the interior of a circle in the (V,,
V,,)-space with (0, —C) as the center and C as the
radius. Fig. 3 shows this capture region for C = 5. In
the earlier section (Section B1) since C was assumed
to be equal to —NV,, for Guelman’s TPN, it was
reasonable to obtain RTPN by replacing V,, with V,(¢).
But, now C is a constant independent of V,,- Hence,
it is clear that we must assume a new structure for
Guelman’s TPN law, such that it becomes dependent
on V,, while simultaneously keeping C constant. This
can be done by assuming a variable navigation gain,

=—C/Vy, 61)
For different values of V;, (i.e., different initial

conditions) the navigation gain will vary. The resulting
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Fig. 3. Capture regions for variable navigation gain.

guidance law for RTPN can now be written as
aM = (_C/Vro)Vc(t)é' (62)

Note that this reduces to Guelman’s TPN guidance law
when V,(¢) is replaced with V,.

Now, to obtain the capture region for RTPN we
use the conditions of Theorem 1, with (61). This
shows that there is possibility of capture (with zero
miss-distance), for N > 1, when

Vi+CV, + V<0 (63)

which defines a circle (and its interior) with radius C/2
and center at (0, —C/2) in the (V4,, V;,)-space. This is
shown in Fig, 3 for C =35.

When we consider an allowable miss-distance
7w # 0, the possible capture region for RTPN is given
by the conditions in Theorem 2 in which we substitute
(61). The possible capture region, when Vy, = —C, is
given by,

(Vs + C/27 + PVE < (C/2) (64)

where
p=1—(m/ro)** (65)
k=—(C/V,+1). (66)

When V,, = —C, the possible capture region is given
by, '
|V0u| < C/{Zln(rO/rm)}l/z'

This capture region for 7, /ro = 0.1 and C =5 is shown
in Fig. 3.

(67)

C. Maximum Commanded Missile Acceleration

The latax commanded by the missile using RTPN
can be expressed as a function of r as follows.
Equation (23) can be written as

ré = (N —1)ré. (68)
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Letting, .
’ y=0 (69)
we can rewrite (68) as,
dy/y = (N —2)dr/r (70)
which can be integrated to yield,
y =6 =6o(r/ro)V 2. (1)

Assuming ay to be of the form given in (9), we have
for N #1

|ast] = (N Vool /ro){(r/ro)™ =2 = IV /(N = 1) + V] /2
x (r/ro) ? (72)
and for N =1
lan| = (Wao|/ro){V2 + 2V In(r /r0)}*(ro/7).  (73)

It is easily seen that for N < 2, |ay| — oo as r — 0.
The missile acceleration not only remains bounded

for N > 2, but also |ap| — 0 as 7 — 0. Thus, the
maximum acceleration commanded by the missile from
an initial condition lying in the capture region and with
allowable miss-distance r,, =0 is given by

|an \max = INV7 Voo |/ o,
|ap |max = (N1Va,|/70)
X [{(rm /102N 2 = 1}V /(N = 1) + V]2
X (rm/ro)N 2 N<2, N#1
|ap lmax = (Vaol/ro}{V72 + 2VaIn(rm/r0)}/?
X (r0/Tm), for N=1.

for N>2

for

@)

IV. COMPUTATIONAL RESULTS

In the previous section, the possible capture region
for RTPN was obtained through a qualitative study
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of the capture equation. However, the exact capture
region is obtained here for an example problem
through computational means. This also substantiates
the capture conditions obtained in the previous
section.

A. State Equations and Initial Conditions

The capture equation to be integrated can be
written as

(75)
(76)

F=x = fi(r,x)
x = (kx?— A)/r = fo(r,x)

" with initial conditions r(0) = r¢ and x(0) = V,.

The state equations used are (3), (4), (15), and (16)
for which the initial conditions are r(0) = ro, 6(0) = 6o,
a(0) = ag, and Vpr(0) = Vpy.

For a given set of initial conditions (Vp,, V;,) we
can determine a set of initial conditions for the capture
equation or the state equations and integrate either
of them numerically to determine if r =0 (or 7 < 7,,)
occurs for some finite, positive value of ¢. Here we
integrate both sets of equations and compare the
results so as to have a control over computational
accuracy.

The computational results are obtained for RTPN
(zero and non-zero miss-distance) and for Guelman’s
TPN (non-zero miss-distance).

B. Example Problem

In the subsequent section we consider the following
example to obtain the capture region for RTPN

VT =10 m/s; 90 = 200°; ro = 100 m.

The values of V), and o are chosen depending on the
given initial conditions V,, and Vj,.

C. Capture Regions

Here we only obtain the capture region for variable
navigation gain since it permits easy comparison
with Guelman’s results. Capture region for variable
navigation gain, using RTPN guidance law, are shown
in Fig. 4. The capture circle as defined in Guelman’s
paper [1] for zero miss-distance is also shown here.

We also plot the capture regions considering some
non-zero miss-distances for RTPN guidance law. It is
observed that the capture region for RTPN guidance
law is much smaller compared with that of Guelman’s
TPN.

For the purpose of comparison, in Fig. 5 we also
plot the capture region for Guelman’s TPN for some
non-zero miss-distances. These results were obtained
computationally. It should be noted that in the graphs
plotted here the Vp, and V,, axes have been normalized
by the constant target velocity V7.
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Fig. 4. Capture region for RTPN with various miss-distances.
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Fig. 5. Capture region for Guelman’s TPN with various
miss-distances.

In Fig. 4 we observe a circular capture region, using
variable navigation constant N, for RTPN guidance
law. Guelman’s results are also shown in the same
figure. It is observed that in RTPN, capture region
remains circle shaped when N is greater than one.

But the region is smaller than that of Guelman’s TPN
guidance law. The line V,, < 0, Vp, = 0 is a capture
region in both the cases. If we consider some allowable
miss-distance then the capture region expands. This

is observed from Fig. 4 and Fig. 5 for both RTPN and
Guelman’s TPN. It is also observed that the capture
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Fig. 6. Trajectory in (Vp,, Vr,)-space.

regions for Guelman’s TPN expands more than that of
RTPN for the same miss-distance.

The reason for the capture region obtained by
using RTPN being smaller than that for Guelman’s
TPN guidance law is probably because the
proportionality factor C is not a constant for RTPN.
In RTPN, it depends on the current closing velocity
and navigation constant, whereas in Guelman’s TPN,
it depends on the initial closing velocity and the
navigation gain. The value of closing velocity V.(f)
reduces as engagement proceeds and the missile
commands less latax with RTPN than in the case of
Guelman’s TPN. This latax is not sufficient for the
initial conditions close to the boundary of Guelman’s
capture region. And therefore, RTPN fails to capture
the target. Fig. 6 shows the trajectory of ¥ and V,
in the (Va,, V5,)-space and substantiates the above
arguments.

V. CONCLUDING REMARKS

A survey of the literature on PN guidance law
reveals that there is a significant difference between
the way the PN law is implemented and the way it is
actually used for performance analysis. This is mainly
due to analytical convenience. This kind of dichotomy
can be observed in all the variants of PN guidance
law. In this paper we have chosen an implementable
(realistic) version of TPN guidance law which was
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analyzed earlier by Guelman [1] using simplifying
assumptions, and compared the performance results.
It was observed that RTPN showed significant
degradation in performance compared with Guelman’s
TPN.

Though this paper deals with TPN guidance law
which has been criticized in the literature for its
limitations in performance [11], it however raises a
vital issue in the performance evaluation of guidance
laws. The results in this paper demonstrates the need
to evaluate guidance laws in the form in which it is
implemented rather than the form which is convenient
for analysis. Further, it also shows that analysis
based upon simplifying assumptions may be grossly
misleading. The study also points to the necessity of
examining other guidance laws, which are proven to
be better (e.g., PPN), in the same way. Moreover, this
study can be extended to maneuvering targets and the
results compared with those of augmented PN which
might expand the capture region. The methods used
in papers [12, 13] which use a robust linearization
procedure to obtain the engagement results will be
useful for this kind of study.

Another issue that these results raise is the issue of
implementation of guidance laws. From these results it
appears that the continuous use of closing velocity has
a degrading effect on the performance. So, it should
be examined whether the closing velocity term in
the guidance law should be kept constant during the
engagement. It is also observed that the capture region
expands with increasing N. However, the question
of latax saturation is closely related to these issues.

In some parts of the capture region the LOS rate
becomes unbounded. This may have a significant effect
on the miss-distance. This could lead to an interesting
study on the selection of an optimal value of N and
the use of the closing velocity (V) term.
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